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(is article focuses on controlling single-input-single-output (SISO) nonlinear systems with actuator failures via sliding mode
control (SMC) and composite learning SMC (CLSMC). In the design of the SMC, an integer-order sliding surface is proposed, and
an adaptive law is constructed to update the parameter evaluation in the actuator failure. (e SMC method can achieve the
tracking error approaching zero if a strict permanent excitation (PE) condition is satisfied. To mitigate this requirement, by using
all data recorded while the controller works, we construct prediction errors that are utilized to produce a composite learning
adaptive law. (en, the proposed CLSMC method not only drives the tracking error to zero but also realizes the accurate
evaluation of the unmatched unknown parameter in the actuator failure. In addition, in the proposed CLSMC method, we only
need to satisfy an interval excitation (IE) condition. Simulation results are presented to indicate the validity of our methods.

1. Introduction

It is commonly recognized that actuator failures in the
control of nonlinear systems usually makes the control
process more complicated and reduces the control perfor-
mance. To deal with this problem, fault-tolerant control
(FTC) was proposed, for example, an FTC method was
proposed for SISO systemwith actuator failures in [1], where
only matched system uncertainty is taken into consider-
ation. For unknown SISO systems, adaptive fuzzy FTC
(AFFTC) methods were introduced in [2, 3], where fuzzy
systems are used to model the systems. By using a distur-
bance observer, an adaptive decentralized FTC of large-scale
systems subject to actuator failures was addressed in [4],
which considers two types of actuator failures, i.e., loss of
effectiveness type and stuck type. In addition, different
actuator failures, for example, loss of effectiveness and bias
are presented in [5]. More meaningful results about FTC can
be seen in [6–9]. It is also well known that the sliding mode
control (SMC) method is also been proposed for nonlinear
systems with actuator faults. For example, the SMC for
nonlinear systems with actuator faults via disturbance

observer was studied in [10]. Fuzzy adaptive SMC forMIMO
nonlinear systems was studied in [11]. A novel sliding
surface was introduced to handle the problem of multiple
inputs containing sector nonlinearities and dead-zones in
[12]. Although FTC of nonlinear systems has been studied by
many scientists and fruitful results has been produced, in
above literature, unmatched parametric uncertainties are
not taken into account.

In the adaptive control, one staple objective is to
guarantee the convergence of parameters. However, people
often need accurate estimations of unknown parameters.
(erefore, to accelerate the convergence speed and achieve
accurate estimation of an unknown parameter, composite
adaptive control (CAC) was introduced by combining
tracking error and prediction error in [13]. In [14], an
antidisturbance method was given for nonlinear systems
with multisource disturbances by using an adaptive dis-
turbance observer. In [15], a CAC method for fractional-
order systems was proposed via fractional dynamic surface
and backstepping technique. Composite neural network
control for fractional-order systemwith actuator failures was
presented in [16], where two types of failures are considered
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and a fractional filter is also implemented to solve the
“explosion of terms” problem in the backstepping controller
design. However, in above literature, a strict condition, i.e.,
the permanent excitation (PE), should be satisfied to
guarantee the convergence of the adaptive parameters. To
relax this limitation, a more powerful control method called
composite learning control (CLC) was proposed in [17],
where only a condition named interval excitation (IE) must
be satisfied. In fact, the IE is much weaker than PE and easier
to be satisfied in real-world systems. In the CLC method, all
the data in the control process are recorded and used to
produce a prediction error. (en, both the prediction error
and the instantaneous tracking error are used to construct a
composite learning law. Up to now, CLC has been inves-
tigated by some researchers. In [18], by using CLC in
adaptive neural network control, the unknown control
objective can be modeled accurately. In [19], CLC for MIMO
systems was investigated, where the actual application of this
method in the control of robotics is also considered. In [20],
the CLC method was used to control fractional-order sys-
tems, where a fractional sliding surface is designed. Some
other interesting CLC methods can be referred to [21–23].
However, to the best of our knowledge, the CLC for non-
linear systems with actuator faults has not been investigated.

From the above discussion, in this work, we study the
SMC and the composite learning SMC (CLSMC) for non-
linear systems with actuator failures. (e SMC with adaptive
law is designed to ensure the convergence of tracking error
but cannot accurately evaluate the parameter. In order to
obtain accurate parameter evaluation, the CLSMC method
with composite learning adaptive law is designed. (e
contributions to this article are as follows: (1) a sliding
surface is designed for strict-feedback nonlinear systems to
facilitate the CLC design; (2) actuator failures with mis-
matched parameters are discussed, and a CLSMC method is
proposed to obtain the accurate estimation of parametric
uncertainties under the IE condition.

(e structure of this work is as follows. In Section 2, the
problem statement, actuator failures model, the SMC
method, and the CLSMC method are presented. Section 3
gives a simulation example. Finally, Section 4 summarizes
this work.

2. Construction of SMC and CLSMC

2.1. Problem Description. Consider the SISO nonlinear
systems as

_xi(t) � xi+1(t),

_xn(t) � f(x(t)) + 

q

k�1
uk(t),

⎧⎪⎪⎨

⎪⎪⎩
(1)

where i � 1, 2, . . . , n − 1, x(t) � [x1(t), . . . , xn(t)]T ∈Rn is
the state vector, f(x(t)): Rn↦R are known continuous
nonlinear functions, and uk(t), k � 1, . . . , q is the actuator’s
output. In this paper, k control inputs are considered, where
some inputs subject to actuator faults are listed as follows.

(ere are two types of the actuator failures to be dis-
cussed here. One is the stuck type which is described as

uk(t) � u
⌣

k(t) � uk(t) + ϕT
k (x(t))θ, t≥Tk, (2)

with k ∈ k1, . . . , kp  ⊂ 1, . . . , q , p ∈N, p≤ q − 1, uk be-
ing a constant, Tk being the time when failure occurs,
ϕk(x(t)): Rn↦Rl with l ∈N being a function, and θ �

[θ1, . . . , θl]
T ∈Rl being an unknown constant vector.

Another is the loss of effectiveness type which is de-
scribed as

uk(t) � ϱkvk(t), t>Tk, (3)

with 0< ϱk ≤ 1, k ∈ k1, . . . , kp  ⊂ 1, . . . , q , ϱk being a
known parameter, and vk(t) is the control input.

(e actuator failures are defined as follows:

uk(t) � δku
⌣

k(t) + 1 − δk( ϱkvk(t),

δk �
1, uk(t) � u

⌣

k(t),

0, uk(t)≠ u
⌣

k(t).

⎧⎨

⎩

(4)

Remark 1. In this paper, two kinds of input faults are
considered. Consider the stuck type (2), the failure type (3),
and the actuator failures (4). In (4), when δk � 0, (4) be-
comes the failure type where uk � 0, ϕT

k (x(t)) � 0. When
δk � 1, (4) means the stuck type, where vk(t) � 0 for t>Tk.

Assuming the ideal signal is xd(t) � [xd1(t), . . . ,

xdn(t)] ∈Rn, it is a smooth function where xd(t) and _xd(t)

are of L∞ and _xdi(t) � xd(i+1)(t) for i � 1, 2, . . . , n − 1. (e
tracking error is designed as

e(t) � x(t) − xd(t), (5)

and the parameter evaluation error is designed as
θ(t) � θ(t) − θ, (6)

where θ(t) represents the estimation of θ.
Here are some definitions and assumptions we will use in

the following article.

Definition 1. ϕ(t) is the IE in the interval [T − σ0, T] with
0< σ0 <T when ϕ(t) meet 

T

T− σ0
ϕT(σ)ϕ(σ)dσ ≥ ιIm×m with

ι ∈R+.

Definition 2. ϕ(t) is the PE when ϕ(t) meet


t

t− σ0
ϕT(σ)ϕ(σ)dσ ≥ ιIm×m with ι ∈R+, σ0 > 0, and t ∈R+.

Assumption 1. Atmost q − 1 control input fault is (2), and
the remaining fault is (3), SISO nonlinear system (1) can also
achieve the control goal.

2.2. Tradition SMC Design. Next, we will introduce an in-
teger-order sliding surface, which is constructed as

S(t) � 
n

i�1
ρiei(t), (7)
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where ρi in this formula is chosen to make S(t) converge as
faster as possible. From formula (7), we can get the following
formula:

_S(t) � 

n

i�1
ρi _ei(t),

� ρ1, ρ2, . . . ρn 

_e1(t)

_e2(t)

⋮

_en(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

� ρ1, ρ2, . . . ρn 

x2(t) − _xd1(t)

x3(t) − _xd2(t)

⋮

f(x(t)) + 

q

k�1
uk(t) − _xdn(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

� 
n− 1

i�1
ρixi+1(t) − 

n

i�1
ρi _xdi(t) + ρn f(x(t)) + 

q

k�1
uk(t)⎡⎣ ⎤⎦.

(8)

We construct the control input as

vk(t) � ck1v
∗
(t) + ck2, (9)

where v∗(t) is the real controller and ck1 and ck2 are positive
constants that satisfy



q

k�1
1 − δk( ϱkck1 � 1, (10)



q

k�1
1 − δk( ϱkck2 � − 

q

k�1
δkuk. (11)

From (4), (8), and (9), we get the following:

_S(t) � 
n− 1

i�1
ρixi+1(t) − 

n

i�1
ρi _xdi(t) + ρnf(x(t))

+ ρn 

q

k�1
δku

⌣

k(t) + 1 − δk( ϱkvk(t) ,

� 

n− 1

i�1
ρixi+1(t) − 

n

i�1
ρi _xdi(t) + ρnf(x(t))

+ ρnv
∗
(t) 

q

k�1
1 − δk( ϱkck1 + ρn 

q

k�1
δkuk

+ ρn 

q

k�1
δkϕ

T
k (x(t))θ + ρn 

q

k�1
1 − δk( ϱkck2.

(12)

Based on (10) and (11), the above expression is written as

_S(t) � 
n− 1

i�1
ρixi+1(t) − 

n

i�1
ρi _xdi(t)

+ ρn f(x(t)) + v
∗
(t) + 

q

k�1
δkϕ

T
k (x(t))θ⎡⎣ ⎤⎦.

(13)

Make v∗(t) as

v
∗
(t) � − f(x(t)) − 

q

k�1
δkϕ

T
k (x(t))θ(t)

+
1
ρn



n

i�1
ρi _xdi(t) − 

n− 1

i�1
ρixi+1(t) − bS(t)⎡⎣ ⎤⎦.

(14)

(e adaptive law is constructed as

Υ(t) � ϖ

q

k�1
δkϕk(x(t))S(t),

θ
.

(t) � Ω(θ(t),Υ(t)),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

with ϖ being a positive parameter, and Ω(θ(t)t, nΥq(t)) is
constructed as

Ω(θ(t),Υ(t)) �

Υ(t), if ‖θ(t)‖ ≤ α,

Υ(t) −
θ(t)θ

T
(t)Υ(t)

‖θ(t)‖
2 , otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

where α> 0.

Remark 2. It should be mentioned that the proposed ad-
aptation law (16) has some applications. Firstly, it can obtain
the objective of accurate estimation of the unknown pa-
rameter θ. Secondly, the boundedness of the updated pa-
rameter can be guaranteed by introducing a term α. In fact, if
‖θ(t)‖ is too large, i.e., ‖θ(t)‖ ≥ α, then the second equation
in (16) is activated, and a negative term − (θ(t)θ

T
(t)

Υ(t))/‖θ(t)‖2 will drive θ convergence rapidly.

Theorem 1. For SISO nonlinear systems satisfying As-
sumption 1, the control input (14) and the adaptive law (15)
ensures that all signals are bounded and e(t) approaches 0.

Proof. Substituting (14) into (13) yields

_S(t) � − bS(t) − ρn 

q

k�1
δkϕ

T
k (x(t))θ(t). (17)

Let the Lyapunov function be

V(t) �
1
2
S
2
(t) +

ρn

2ϖ
θ

T
(t)θ(t). (18)

Differentiating (18) along (15) and (17) gives

Journal of Mathematics 3



V
.

(t) � − bS
2
(t) − ρn

θ
T
(t) 

q

k�1
δkϕk(x(t))S(t) −

θ
.

(t)

ϖ
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦.

(19)

Substituting (15) into (19) yields

V
.

(t)≤ − bS
2
(t). (20)

(at means the system is asymptotically stable, and this
ends the proof of (eorem 1. □

2.3. CLSMCDesign. From the tradition SMCmethod above,
we can see that the convergence of e(t) can be guaranteed
under the PE condition. Next, we will introduce a CLSMC
method to ensure e(t)’s convergence and θ’s accurate
evaluation in the absent of the PE condition.

Let ϕT
k (x(t)) be an IE in [T − σ0, T] and the prediction

evaluation error is

ξ(t) � χ(x(t))θ(t), (21)

with χ(x(t)): Rn↦Rz×z being constructed as

χ(x(t)) �

0z×z, for t≤ σ0,


t

t− σ0
Ψ(x(σ))ΨT

(x(σ))dσ, for t> σ0,

⎧⎪⎪⎨

⎪⎪⎩

(22)

with Ψ(x(t)) � ρn 
q

k�1 δkϕk(x(t)).
(e composite learning adaptive law is constructed as

Υ(t) � ϖ 

q

k�1
δkϕk(x(t))S(t) − cξ(t)⎡⎣ ⎤⎦,

θ
.

(t) � Ω(θ(t),Υ(t)),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(23)

with c> 0, and definition of Ω(θ(t)t, nΥq(t)) is the same as
that of (16).

(e next task is to compute ξ(t), in order to accomplish
this task, we define

ϑ(t) � 
t

t− σ0
Ψ(x(σ))ΨT

(x(σ))θdσ. (24)

Multiply both ends of (17) by Ψ(x(t))

Ψ(x(t))ΨT
(x(t))θ � Ψ(x(t)) _S(t) + bS(t) + ΨT

(x(t))θ(t) .

(25)

From (24) and (25), we get

ϑ(t) � 
t

t− σ0
Ψ(x(σ)) _S(σ) + bS(σ) + ΨT

(x(σ))θ(σ) dσ.

(26)

From the above equation, we can get

ξ(t) � χ(x(t))θ(t) − 
t

t− σ0
Ψ(x(σ)) _S(σ) + bS(σ)

+ ΨT
(x(σ))θ(σ)dσ.

(27)

Remark 3. From the above discussion, we can get the al-
gorithm of ξ(t). So, by Definition 1, we can see that if
χ(x(t))≤ ιI, then ξ(t) � 0. Conversely, if χ(x(t))> ιI, then
we have

ξ(t) � χ(x(t))θ(t) − ϑ(t). (28)

In addition, we can see from formula (26) that, in order
to figure out the value of ϑ(t), we have to know the value of
_S(σ). Because the value of _S(σ) cannot be obtained directly,
but we can get all the data of S(t) that will help us to get to
_S(t).

Theorem 2. For SISO nonlinear systems satisfying As-
sumption 1, the control input (14) and the composite learning
adaptive law (23) ensure that θ and e(t) approaches 0.

Proof. Let the Lyapunov function and its derivatives be the
same as (18) and (19). Substituting (23) into (19) gives

V
.

(t)≤ − bS
2
(t) − cρn

θ
T
(t)ξ(t),

� − bS
2
(t) − cρn

θ
T

(t)[χ(x(t))θ(t) − ϑ(t)],

� − bS
2
(t) − cρn

θ
T

(t)χ(x(t))θ(t),

≤ − bS
2
(t) − cιρn

θ
T
(t)θ(t),

≤ − dV(t),

(29)

with d � min 2b, 2ϖιc . So, the unknown parameter θ and
e(t) approaches 0, and this ends the proof of(eorem 2. □

Remark 4. In [24], the concurrent learning control methods
are used to get accurate parameter evaluation without the PE
condition. (e difference between this method and the
introduced composite learning method is the usage of online
recording data. (e prediction error of concurrent learning
control method is produced by recording data. Furthermore,
prediction error is applied to get the accurate parameter
evaluation under the IE condition, so sufficient online re-
cording data are used. From the above discussion, it can be
seen that the use of concurrent learning control method will
add a lot of computing burden to the system. However, the
introduced CLSMC method can reduce the computation
because the online recording data can be obtained through
(22) and (24), and maximizing the singular values is re-
quired. In addition, the use of integral can also reduce the
measurement deviation of ϑ.

Remark 5. It should be emphasized that the SMC method
and the CLSMC method use the same control input (15),
both of which can make e(t) approaches 0. (e difference
between the two methods lies in the CLSMC method which
uses the composite learning adaptive law (23) to obtain
accurate parameter evaluation. However, the SMC method
does not have the ability to do that it can only make θ(t)

bounded. (erefore, it can be concluded that the CLSMC
method has better control ability, which can also be seen
from the simulation results.
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Figure 1: Parameter evaluations under SMC and CLSMC.
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Figure 2: Control inputs and sliding surface of SMC and CLSMC.
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Remark 6. In (16), the value of α is designed so that θ(t) is
bounded by α. (at is (16), if ‖θ(t)‖ ≤ α, the θ(t) can be
updated through

Ω(θ(t)t, nΥq(t)) � Υ(t). (30)

Because Υ(t) is continuous, θ(t) is also continuous. If
‖θ(t)‖ > α, θ(t) can be updated through

Ω(θ(t)t, nΥq(t)) � Υ(t) −
θ(t)θ

T
(t)Υ(t)

‖θ(t)‖
2 . (31)

It can be seen from the above equation that
(θ(t)θ

T
(t)Υ(t))/‖θ(t)‖2 has been increased so that ‖θ(t)‖

has been decreased. However, this discontinuity will pro-
duce instability phenomenon, in order to avoid this phe-
nomenon, (16) can be simply expressed as (30). In addition,
(eorem 2 can also be proved by adaptive law (30):

3. Simulation Example

We discuss the following nonlinear systems:
_x1(t) � x2(t),

_x2(t) � x3(t),

_x3(t) � − x1(t) − 1.1x2(t) − 0.44x3(t) + x
2
1(t) + 

q

k�1
uk(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(32)

(e actuator failures are selected as

u1(t) �
v1(t) + ϕ1(x(t))θ, t< 4,

− 0.8 + ϕ1(x(t))θ, t≥ 4,


u2(t) �
0.6v2(t), t< 8,

v2(t), t≥ 8,


u3(t) �
0.5v3(t), t< 16,

v3(t), t≥ 16,


(33)

where δ1 � 1,δ2 � δ3 � 0,ϱ1 � ϱ2 � ϱ3 � 1 and c11 � 1/0.5, c21 �

0.3, c31 � 0.7, c12 � 2/0.5, c22 � 0.5, andc32 � 0.3. (e basic
functions ϕ1(x(t)) � [x1(t)x2(t),x2(t)x3(t)]T, ϕ2(x(t)) �

[0,0]T,ϕ3(x(t)) � [x3(t),x2(t)]T, and θ� [− 0.05,0.25]T.(e
controller parameters are given as ϖ� 0.5,α� 5,ρ1 � ρ2 �

ρ3 � 1,c � 1,σ0 � 5, andb � 2. (e desired signal is that when
t≤25, xd(t) � [1,0,0]T, and when t>25, xd(t) � [0,0,0]T.

(e parameter evaluations for the SMC method and the
CLSMC method are shown in Figure 1, and the control
inputs and the sliding surface under the two methods are
given in Figure 2, and the state variables of x1(t), x2(t), and
x3(t) for SMC and CLSMC are shown in Figure 3. It can be
seen from the stimulation results that (1) in the SMC
method, u2(t) and u3(t) is updated quickly, while in the
CLSMC method, u2(t) and u3(t) is updated slowly. (2) (e
CLSMC method can realize the accurate evaluation of θ
which cannot be realized by the SMC method.

4. Conclusions

In this work, the SMCmethod and the CLSMCmethod for
the SISO nonlinear systems with actuator failures are
designed. From the above research, we can draw the
following conclusions. (1) (e CLSMCmethod can ensure
the convergence of tracking error and accurate parameter
evaluation under the PE condition. However, the SMC
method can only make the tracking error converge under
the IE condition. (2) (e CLSMC method has better
control capability than the SMC method. (e designed of
CLSMC method for nonlinear systems with time-varying
unknown actuator failures parameter is our future re-
search work.

Data Availability

All datasets generated for this study are included in the
manuscript.
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Figure 3: State variables of SMC and CLSMC.
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