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Recently, there is a rapid increase of research in the area of Quantum calculus (known as g-calculus) due to its widespread
applications in many areas of study, such as geometric functions theory. To this end, using the concept of g-conic domains of
Janowski type as well as g- calculus, new subclasses of analytic functions are introduced. This family of functions extends the
notion of a-convex and quasi-convex functions. Furthermore, a coeflicient inequality, sufficiency criteria, and covering results for

these novel classes are derived. Besides, some remarkable consequences of our investigation are highlighted.

1. Introduction

Recently, there is a rapid increase in the area of Quantum
calculus (known as g-calculus) due to its widespread ap-
plications in many areas of study such as geometry functions
theory (GFT), combinatorial analysis, Lie theory, mechan-
ical engineering, cosmology, and statistics. The concept of
g-integral was first introduced and studied by Jackson et al.
[6] at the beginning of the twentieth century.

The development of the concept of g-calculus in GFT had
its history from the work of Ismail et al. [5], where the notion of
g-starlike functions was extensively studied. As such, many
subclasses of univalent functions correlated with g-calculus
have been on increase (see [1, 14, 17, 20, 23-25, 27, 28]). In
recent times, various family of g- extension of starlike func-
tions, which are connected to Janowski functions in the open
unit disc U, were initiated and examined from many different
viewpoints and perspective (see [17, 20, 28]).

In an attempt to generalize the notion of uniformly
closed-to-convex functions considered by Goodman [3],
Kanas and Wisniowska [8-10, 13] and Kanas and Srivastava
[12] introduced the conic domain Q,, (m >0) and studied
the classes m — UCV and m — UST of m-uniformly convex
and starlike functions. Furthermore, Noor and Malik [22],

using the concept of Janowski class, extended the domain
Q,, to Q. (y,A), —1<A<y<1. In the latest article by
Mahmood et al. [17], the importance of g-calculus was used
to improve the Noor-Malik conic domains to Q,, (y,).
Using this domain, they examined the coefficient inequal-
ities associated with the class m — UST, (y, 1) of g-uniformly
starlike functions. Afterward, the same coefficient problems
were also explored for the classes
m—UCV_(y, A), m— UKV, (ysA), m— UC*Vq ;) of
m-uniformly g-convex, close-to-convex and quasi-convex
functions by Naeem et al. [20].

Motivated by these recent articles [15, 17, 20, 28], our
aim is to introduce the novel classes 11 — UM, (a,9,A) and
m —UQ, (a,y,A) consisting of m-uniformly g-alpha convex
and quasi-convex functions. We study the coefficient in-
equalities associated with these classes and some other re-
lated properties. Some relevant consequences of our results
which were studied in previous work show the significance
of our investigation.

2. Materials and Methods

Now, we give some useful preliminaries which are necessary
for our study.
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Let & be the class of normalized analytic functions f ()

in U = {¢: [¢| <1} with
@ =c+ay’ +as’+---. (1)
Let S,CV,ST,QV, and KV be the subclasses of &
consisting functions that are univalent, convex, starlike,
quasi-convex, and close-to-convex functions, respectively.

The function f (¢) of form (1) is subordinate to the analytic
function g (¢) (written as f (¢)<g(c)) of the form

() = c+by +b8 +--1, (2)
if there exists a Schwarz function w(¢) in U such that

f)=gw(g), cel. (3)
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Let -1<A<y<]1. Then, class P(y,A) (see [7]) of
function p(¢) satisfies the subordination condition
1+yg

+
p(c)<1 e ceU, (4)

or equivalently,

(1 +ph()+(1-y)
EEIGETTE

p(c) ceU, (5)

where h € P (class of functions with positive real part). For
y=1-2B,0<B<1,and A = -1, the class P(y, A) reduces to
the class P(f3), the class of functions whose real part is
greater than .

The conic domains Q,, (y,A) (m>0) of Janowski type
introduced by Noor and Malik [22] are defined as follows:

Q,, (p,A) = {u +iv: [(/12 - 1)(u2 + vz) -2(yA-1u +(y2 - 1)]2

(6)

>mz[(_20L + 1)(u2 + Vz) +2(y+A+2u—-2(y+ 1))2 +4(Y—/\)2v2”_

Geometrical interpretation of Q,, (y,4) and its effect on
Q,, were also demonstrated in [22]. The class m — P(y, 1)
represents the class of all functions that maps U onto
Q,, (y;A). Equivalently, a function p(¢) belongs to
m — P(y,A) if and only if

y+Dp,-(y-1)
A+Dp, (o) -(A-1)

where p,, (¢) has its definition in [10, 11] and given by

p(o)< m=0,-1<A<y<l, (7)

1+
ST o=o,
1-g
2
2 1+
1+—2<log \/E>, m =1,
i 1- /¢
Pm(6) = 1 5 5 (8)
12
1 + —sinh Kfarccos m>arctan\/3 ] O<m<1,
1-m s
1 P u(Q)/VE 1 : 1
1+——=sin —J x|+ m>1
2 2 > b
| 1-m 2R(t) 0 1/1_x21’1_(tx)2 m -1

where u(¢) = ((¢— vt )/ (1 -+/£)), t € (0,1),ce U and ¢t
is chosen such that m = cosh((mR' (t))/(4R(t))), R(t) is
Legendre’s complete elliptic integral of the first kind, and
R'(t) is the complementary integral of R(t)

1_
q, necC,
l1-¢q
(nl, =
n—1

Definition 1 (see [2]). Let q € (0,1). Then, the g-number
[n] q is given as

(9)

Zq‘:1+q+q2+...+qn_l, neN,n, asq—>l_,

=0
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and the g-derivative of a complex valued function f () in U
is given by

f(gq¢) = f(3)

Tq-ns - 7Y
DS@O=1 oy cmo (10)

\f'(c), asq — 1.

From the above explanation, it is easy to see that, for
£ (¢) given by (1),

D,f(9)=1+) [das (11)
1=2

Definition 2 (see [28]). An analytic function p(¢) in U
belongs to P, (y, 1) if and only if the condition
(O1y +O3)h(5) - (y - DO,

(01X +O3)h(g) —-(A-1)O;

p(o) = (12)

is satisfied, where O, =1+ 9,0, =3 -qg and h € P.

Definition 3 (see [17]). An analytic function p(c) in U
belongs to m — P, (y,A) if and only if the subordination
condition

(O1y + 03)p,, (5) = (y = 1)O;
(01A+03)p,, (6) = (A -1)O;

p(o)< (13)

is satisfied, where p,, (¢) is given by (8). Equivalently,
pem=—P,(y,A) if and only if p(¢) conformally maps U
onto the domain Q_,, (y,A) defined by

Qq’m(y,l):{p(c) =u+iv: Re(®)>m|D -1}, (14)
where
(A=1)0,p(¢) - (y - 1O,
o= X
(A0, +0O5)p(¢) - (YO, + 05) (13)
Equivalently,

Q. (1 1) = {u +iv: O [(A - 1) (A0, + O3)(u2 + vz) — (A= 1) (y0, + 03)
+y = 1) (A0, +O3)u + (y - 1) (yO, + 03))]°

> dn [ (010, + 0,)(w +) + ((y + 1O, +20))u - (10, + 05))’

(16)

+(y - A)zOfvz]}, m=>0,0<g<1l.

We note that
1) m- P, (y,A) € P(fB), where B is given by

_4m+(1-1y)O,
ﬁ_4m+(1—/\)ol' (17)
(ii) As g — 17, the class m — P, (y,A) becomes the
class m — P(y,A) and Qo (P A) = Q,,, (v, A) [22].

(iii) When g— 17 and y=1,A=-1, the class
m— Pq(y, A) reduces to the class P(p,,) and
Qqm (y,4) = Q,, [10].

Definition 4 (see [20]). Let g(c) of form (2) be in &/ and
a>0,m € [0,00). Then, g € m — ucv, (y,A) if and only if

Dq(CDqg(C)) (Oyy + 03)p,, (6) = (y - DO,

18
D,g(c)  (OA+0;5)p,,(c) =(A =10, (18)

where p,, (¢) is given by (8).
Inspired by the above recent mentioned work, we an-
nounce the following novel classes of analytic functions.

Definition 5. Let  f(¢) € &,a>0,m € [0,00). Then,
f €em—-UM,(a y,A) if and only if
e( A -1)0,J,(a, f56) = (y - 1O, ) m| (A-10J, (& f;9) - (y =10, (19)
(A0, + O3)]q (a f36) = (YO, +O3) |()‘Ol + Oa)]q(“’f; $) = (yO, +O;)
Equivalently, f € m — UM, (a,¥,) if and only if
]q (OC,f; C) — (1 _ “) Cqu(C) Dﬂ(chf(C)) (Oly + O3)Pm (C) - (Y - l)ol (20)

)

D,f (9

(O +03)p,, (©) —=(A = 1)Oy



Definition 6. Let  f(¢) € &,a>0,m € [0,00). Then,
fem-UQ,(a,y,1) if and only if there exists an analytic
function g(¢) € m - Ucv, (y,A) such that
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| A-10,7,(a f;¢) - (y - 1O,

e( (A -1)0..7,(a f;6) = (y - 1)O, )

m - (21)
(A0, +05).7 4 (@ f36) = (yO, + O;5) | (A0, +05).7, (@ f36) = (yO, + O5)
Equivalently, f € m —UQ, (a,y,1) if and only if
D D (<D C(y—1
jq (a, f; )=(1-a) qf(C) +a Q(C qf(C)) (Oly + OS)pm(C) (V )Ol' (22)
D,g(c) Dyg(s)  (O1A+05)p, () —(A = 1O,
8
We note the following special cases: 7 m=1,
(i) When g — 17, the classes m — UMq((x, y,A) and
m-UQ,(ay,A) reduce to the classes 272
m—UM(a,y,1) [21] and m—-UQ(a,y,1) [18], Q=11_,7 0sm<1, (23)
respectively.
(ii) When g—1- and a=0, the classes 5
m—UMq(oc,y,/l) andm—UQq(oc,y,)t) cut down to i - i . om>1,
the classes m — UST (y,A) [22] and m — UKV (y,1) | 4K (t)(f - 1) (1+t)Vt
(16].
(iii) When g—1" and a=1, the Cclasses %@p m=1,
m - UM, (a, y,A) and m — UQ, (a, 5 A) scale down 3
to the «classes m—-UCV(y,A) [22] and 5+ T2
m—UC*V (y,4) [16]. 0,=-{— Q,, 0<m<]l, (24)
(iv) When a = 0 and « = 1, the classes m — UM, (at, 9, 1)
and m -UQ,(a,y,A) diminish, respectively, to 4K? (t)(tz +6f + 1) — 7
those classes of functions considered in [17, 20]. ) Q,, m>1,
24K° () (1 + )Vt

(v) When a=0=m in Definition 2, the class
m— UM, («,y,A) becomes the class g-starlike
functions ST, (y,A) of Janowski type recently ex-
plored by Srivastava et al. [28].

To effectively establish our findings, the following set of
lemmas is required.

3. A Set of lemmas

Lemma 1 (see [4]). Let m >0 and p,, () given by (8) be of the
form p,,(¢) =1+ Q¢+ Q,¢* +---. Then,

where T = (2cos™'m)/m and t € (0,1) is chosen such that
m = cosh (7K' (¢))/K (t)), where K (t) is Legendre’s complete
elliptic integral of the first kind.

Lemma 2 (see [17]). If p(¢) = 1 +¢,G + c,62 +--- € P, then,
for any real number 6,

-46+2, 6<0,
e, —dci|< {2, 0<d<1, (25)
46+2, 621,
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when 6 <0 or § > 1, the equality holds if and only if p(¢) =
(1+¢)/(1—¢) or one of its rotations. If 0 <5< 1, then the
equality holds if and only if p(g) = (1 + ¢?)/ (1 — ¢*) or one of
its rotations. If § = 0, then the equality holds if and only if

1+ 1+¢ /1-v1-¢
- C0<v<l, (2
140 ( 2 )1—c+< 2 >1+q Y (26)

or one of its rotations. If § = 1, then the equality holds if and
only if p(c) is the reciprocal of one of the functions such that
equality holds for the case § = 0. Although the above upper
bound is sharp, when 0 < § < 1 it can be improved as follows:
o= o]+l <2, (0<os2)
(27)
le, = 6ci| + (1= O)|e, [ <2, <%< §< 1).

Lemma 3 (see [20]). Let g(¢) be of form (2) and
g € m—UCV_(y,A). Then,

(o8]

(28)

|@,0,(y-1) - 49111,
4qi+1], ’

bl

q =0

where @, is defined by (23).

4. Results and Discussion

We now turn our attention to the main results of this article.

4.1. Sufficient Conditions

Theorem 1. A function f () of form (1) belongs to the class
m — UM, (&, y,A) if it satisfies the condition

¢, (a,m, q,7,A) <|A —y|Oy, (29)

where

¢, (a,m,q,y,1) = Z [4(m + 1)([n]q - 1)(1 + oc( [n], - 1)) + l()LOl +O3)(2[n]q

n=2

+oc( (1], - 1)2> -(yO, + O3)([n]q + l)l

oo n-1

+ZZ[4(m+1)|([l]q—1)+oc([n+l—t]

n=21=2
+ (A0, +O05)([1, + o [n+ 1= 1]
—()/Ol + 03)” [Tl +1- I]qlataml—:l'

Proof. Suppose condition (29) holds. Then, we need to prove
that

| A =10, (@ f50 - (y - 1O, ‘
l()‘ol +03)] (@ 39 = (yO, +Oa)

Therefore,

(A =10 J, (& f56) = (y - 1O,

|(AOI + 03)] (@ f56) = (yO, + 03)

< m s 1] A= DO @ 159~ (y =10, I

|()‘Ol +0;5)],(a, f56) = (yO; + O;) B

=4(m+1)

|a.|
(30)
q_[’]q)‘
q_[‘]q))
—R( A =10 J,(a f56) = (y - 1O, _1)
(A0, +05)], (@, f36) = (yO, + O;) (31)
<1.
‘—R( A =10 J (& f56) = (y - 1O, B >
(A01+O3)] (@ f36) = (YO, +O5)
(32)

| (1= @)D, f (€D, f (¢) + af ()D,(cD, f () = £ (D, f () |

|(1-a) (A0, +0,)¢D, f ()D, f (¢) + a(AO; + Os) f (), (D, f (6)) — (YO, + Os) £ ()D, f ()|
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We have
D, f (0D, f () = <Z [n]qanc"> <Z [n]qanc"_l>> ay=0,a; =[0], =[1], =1
n=0 n=0
(o)
-1
Z (n—i,aa,., |
n—0<1—0 >
00 n+l
=c+z [z [n+1- l]aam“ ¢
n=2 \ =1
(o)
=¢+ Z 2[n [(n+1-4d,aa,., |
n=2
Similarly,

n—1
(Cqu(C))—C+Z<( +1)a +Z m+1- ]aanﬂ_l)c",
1=2

1=2

00 n-1
f(C)qu(C) =¢t+ Z(([n]q + l)an + Z [n+1-1] g% Pni1- L>C
n=2

From inequality (32) and equations (33) and (34), we
arrive at

| A =1)0J, (& f36) - (y - 1)O, ~ I_ ( (A =1)0J, (& f36) = (y = 1)O; 1)
|(AOI+O3)] (@ f;6) = (yO, + 05) (/\Ol+o3)] (@ f;6) = (yO, + 05)

n-1

B[00 a0, ) $ (0 1) a1 -10,)

n=2 =2
2 )

<4(m+1)

N——

n=2

mn+l1- t]qa,an+1_,:|cn} X {()L — )06 + ZK(AOI + O3)<2[n]q + (x( [n], - 1)

n-1

—-(yO, + OS)([n]q + 1))61” + Z((/\Ol + 03)([1]q + oc( [(n+1-4], - [l]q))

1=2

-1
_(Yol + O3)> [n+1- []qazaml—z]cn} |

00 n-1
<4(m+ 1)[2([@ —1)(1+a([nl, - 1))|a,| + Z\ ([, -1) +a([n+1-1, - [z]q)|
n=2 =2

m+1- 1]q|a,an+1_l|:| X |:|(/\ |0, - Z [ (A0, + O3)<2[n]q + oc( [n], - 1)2>

n=2

n-1

= (yO, + 05)([nl, + lla,| = Y 1(A0, + O3) ([, + & [n+1 -], ~[1],))-(yO, + O3)l[n+ 1 -

1=2

|al n+1 II

-1

(33)

(34)

(35)

(36)
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The last inequality is bounded by 1if (29) is satisfied. This =~ Corollary 1. A function f(¢) of type (1) is in
completes the proof. m — UM (a,y,A) if it satisfies the condition
[21]1‘% q — 17 in Theorem 1, we are led to Theorem 1 in 8, (o, 1) <A — 31, (37)
where
$p(amp, 1) = Y [2(m+ D) (n-1) (1 +a(n-1)+|A+1)(2n+a(n-1)*)
n=2
o0 n-1
—(y+ D+ Dlla,+ )Y [Z(m +D-D+a(n+1-2)) (38)
n=21=2

HA+ D+ a(nt1-20)—(p+ 1)|] (n+1-D)|aa,,, |

Setting « = 0 in Theorem 1, we obtain a variance version
of the result presented in [17].

n=2

then f € m—UST, (y,A).

If we choose a =0 and allow g — 17 in the above
theorem, our investigation comes down to Theorem 1 in
[22].

Corollary 3. A function f (¢) demonstrated by (1) is in the
class m — UST (y, A) if it satisfies the condition

[e9)

2[2(m+ Dn-1)+|A+1n-(y+ 1)|]|an| <A = yl.

n=2

(40)

Corollary 2. If f(c) having representation (1) satisfies the
condition

y [4q(m +1)[n- 1], 4|10, +0y)[n], - (O, + 03)” la,| <A - Y10y, (39)

If we choose« = 0,A = -1, andy = 1 and allowg — 1~
in the above theorem, our investigation comes down to
Theorem 1 in [22].

Corollary 4 (see [11]). If f (c) € A satisfies the condition
Y (m(n-1)+n)a,| <1, (41)
n=2

then f e m— USTq_)r (0,1,-1) =m — UST.

Theorem 2. Let f € . Then, f € m—UQ,(a,y,A) if in-
equality (42) is satisfied,

n2 (4(m+1) +(yO, +0,))|@,0, (y - 1) - 4q[4 )

)

=
[N

o0

0 4q[1 + l]q

(42)

+ Z (4(m+1) + (10, + o3))(1 +aqln- l]q)[n]q|an| <A -ylO,,

n=2

where @, is given by (23).

ml (A0, + O3)jq(“’f; )= (yO, +O3) B

<l

| A-10,7,(a f;9) - (y-1)0, ‘_ e( (A-1)0,7,(a f;¢) - (y - 1O, _1>

Proof. Assuming (42) holds, then it suffices to establish that

(A0, +03).7, (a0, f16) = (yO, + Os) (43)



Following the same process in the proof of Theorem 1,
we have

| (A =107, (a f;6) = (y - 1)O,

(A =107, (@ f;6) -
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|(/\01+O3)j (a, f56) = (Y01+O3)_

o«

<4(m+1)

I_R<(Aol+oa)f (@ f:9-

~ @)D, £ (¢) + aDy(sDy f (5)) -

(y-10, ~ 1)
(YO, +0;5)

D,g(c) |

|(10, +0,)((1 - )
(whereg em—UCV,(y, )L))

4(m+ 1)(X2,(1+ af [n], - 1)) [n],

D,f (¢) + aD,(sD,f (9))) ~ (YO, + 0;)D,g (o)

|an| +[n]q|bn|)

<
A =y10, = ¥32,|(20, + O5)(1 + o [n], -

<

1))' [”]q - (YO1 + 03) Zﬁzz [”]q|bn|

40m+ D[ Z2(1 + a( g = 1)) Il + 22 T (@001 (v = ) - 4q1a qle + 11, )|

A= y10, = ¥2, (A0, +O5)(1 + o [n], -

where we have used Lemma 3. Thus, the last inequality is
bounded by 1 if (42) is satisfied. Hence, we complete the
proof.
Asg— 17
proved in [18].

in Theorem 2, we obtain the similar result

Corollary 5. Let f € o. Then, f € m — UQ(a,y,A) if

< ﬁ 2(m+1)+(y+1)|@,0; (y - 1) - 21)|
201+ 1)

n=2 1=0

+ i(Z(m+ D+A+1D))(1+a(n-1)nja,| <A -y,

n=2
(45)

holds.

For & = 0 in Theorem 2, we get the result established by
Naeem et al. [20].

Corollary 6. Let f € of. Then, f € m— UKV, (y,A) if in-
equality (46) is satisfied,

1)) il fa,| - (YO, +05) 32, T (]@ 0, (y - 1) - 4q[] |/4q[1+1]q>’

(44)

12 (4(m+1) + (YO, +0,))|@,0, (y - 1) - 4q[4 )
4qi + l]q

>

=2 1=0

S

+ Z (4(m +1) + (A0, + 03))[n],a,| <IA - y|O,.

n=2

(46)

Fora =0and a = 1asq — 1~ in Theorem 2, we obtain
the following results established in [16].

Corollary 7. Let f € of. Then, f € m— UKV (y,A) if

12 (2(m+ 1)+ (y+1))|@,0, (y - 1) - 2)|
ZH 2(t+1)

n=2 1=0

(47)
+Y 2m+1)+ A+ 1D)nfa,) <A -yl

n=2

is satisfied.

Corollary 8. Let f € of. Then, f e m— UKV (y,]) if
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® 12 (2 (m+ 1) +p+ 1))|@1O1 (y-2) —21/\| Theorem 3. Let f e m - UMq(oc,y,/l). Then, for any real
Z number 6, we have
= 2(1+1)
(48) Al ((x’m) q: ya/")) 6<p1)
Y @m+ )+ O+ D))ila,| < -y, lay - 802 c=— VG Lo ) <o<py
n=2 Sq(l + ocq[z]q)
is satisfied. Ay (a,m,q,y,4), 6> py,
(49)
4.2. Fekete Szeg0 Inequality where
1 8q(1 + ag) (@2—@1 (Aol+o3)@1> ]
= - +(1+ag([2],+1))],
P [2]q(1 +aq [z]q) [(Y -10,Q,\ 20, 8 ( q( 1 ))
1 84 (1 + ag)’ (@2+@1 (A0, +O3)@1) ]
= - +(1+ag((2],+1))],
P [2]q(1 + (xq[z]q) [(V—A)OIQI 20, 8 ( q( q ))
(50)
18,10, +0,)@% (1 aa(12),+1)) - 31211+ agl2],)) (- )0y,
A (a,m,q,9,A) = + 3 ,
20, 2q(1 + aq)
(A0, +0,)@; - 46, (8[21,(1 + aql2],) (1 + aq([2], +1))) (y - )0, &,
A (a,m,q,9,A) = + 5 ,
2@, 2q(1 + aq)
¢g)—-1 ¢ o
and @, and @, are given by (23) and (24). This result cannot w(g) = PE ; - Elc +2 5 124 ...,
be improved. Then, f(¢) € m— UM, (a, y,A) implies there pis
exists a Schwarz function w(¢) such that i .0, (262 B C%)@l N cf@z X
(o f1) = (0,7 +03)p,, (w(Q) - (y - 1)O, (51) Pm(Q) =1+ 5 St 1 A
s (011 + 035)p,, (w(Q)) — (A - 1)O;
(52)
Using the representation for p,, (¢) in Lemma 3 and the Thus,
relationship between w(q) and
p(6) =1+¢;6+c,6% +---€ P, we can write
T, (o, 1) = 4+ (((yOr + 03)c1@;)12) + ((yO, + O5)/4) [(2c2 - Cf)él + Cééz]cz +--
CE 4+ ((A0; + 03)c,@,)/2)¢ + ((AO; + O5)/4) [(2c2 - cf)@l + ci@z]cz oo
(y =1e,0,Q y-A
=1+ 81 et e Ol((ZCZ—C?)@l +cf@2) (53)

(Y_A)(AOI+O3)C%OIQ% 2
a ¢+
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However,

Dyf () Dy(<Dyf ()
G D, f(s) (54)

=1+q(1+aq)a,c+ q[[Z]q(l + ocq[Z]q)a3 —(1 + ocq( [Z]q + 1))a§]c2 SREE

Jq(a fi6) =(1-a)

On comparing the coefficients of ¢ and ¢* of (53) and
(54), we obtain

_ (y - Me,0,0,

“2= 8q(1+aq) °
G = 1 y-A ((26 _Cz)@ + 36 )_ (y -MH (A0, +03)C%01@i
’ (1+(xq[2] ) 16 SR 64 (55)
1+ 2], +1
+( (121, + 1))
q[Z]q(1+aq[2]q)
Now, for a real number §, we have
2
ay - 62 | 1 (y A)ol[@1c2+<@2 @, (Ao, +O3)@1>cf]
la(21,(1 +ag(2],) \ 8 2 8

- A)olafc§<y - B>Ol [(1 +aq(121, + 1)) - 6121,(1 + ag(2], ) ]|

8 8q°(1+aq)’[2],(1+aql2],) |
_ =-MOo,e, [@1 - @, (A0,+05)Q 56
" 8q[2],(1 Jr(;cq[z]q)'c2 20, 8 (56)
((1+aq([2], +1)) - 8[21,(1 +aql2],)) (y - 1)O, &, 2
8q(1 + ag)’ !
_ (y -00,6, _p2
" Sall (1 + aglzr,) P
where
y -6, 00,+0)g, [(1+ a2+ 1)) 5011+ al2))]v- 10,0, -
20, 8 8q(1 +ag)’
Hence, the result follows from Lemma 2. Corollary 9. Let 0<m<1 and f em—UST,(y,1) be of

If «a=0 and 0<m<1, then Theorem 3 reduces to  form (1). Then, for any real number 8, we have
Theorem 10 in [17].
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A] (m> q> y’ A)’ 6 < A1> Where
2
|as — 8a3 s% 2, 1,<8<h,,
4q(1 -m )
AZ(m7q)Y)A)) 8>A‘2)
(58)
~4q(1-m)  (TP1 TP+ +3-9) L L (59)
-\ 6 4(1-m?) I+q
where
B 4q(1—m2) T2+5_T2(A(1+q)+3—q) N 1
-+ \ 6 4(1-m’) 1+q
22+T%) T*A(1+@+3-q T*1-81+q)1+q(y—-A
Aty =24 3 ) T <( Dr3-9 T'0-80+ )+ (©0)
1-m ) q(l -m )
T*A(1+q)+3-q) 2(2+T°) T>(1+q) -1)(1+g)(y-2)
Ay (m,q,y,4) = N q)2 9 _ ( 3 )+ 1 > ANl
(1 -m ) q(l -m )
The result is sharp. where
2
Proof. The proof is straightforward from Theorem 3 and v = 1 qr > (14_ 1@ +q)2+ 3 _q)))
Lemma 1. l+q (y-M(1+9)°\6 s
If « = 0 in Theorem 3, the case m = 1 is contained in the (62)
following corollary.
where
Corollary 10. Let m =1, and f(c) of form (1) belongs to
m—UST,(y,A). Then, for a real number 8, we have the
following sharp inequality:
Al (q) Y) /1)) 6 < V])
lay —8a2| <=M Loy <6<, (61)
qr
Ay (g, 9,4), 6>y,
N gr’ (5_(/1(1+q)+3—q))
Plvg (p-M(1+gP\6 n ’
4 4A(1+g) +3- 1-6(1+ 1+ -1
Mgy =t (A( qz 9, (1-4( q))(z Py-H (63)
qr
4A(1+gq)+3 - 4 (+g-DA+g(y-2)
Az(m)q))/)/l)z ( ( qz q)__+( ( q) q y .

3 qr[z
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The result is sharp. Corollary 11. Let f (c) of the series representation (1) be in
Theorem 3 becomes Theorem 1 in [28] when a = m = 0. ST, (y>A). Then, we have the sharp inequality:

P-D+@-2A-1)g+(1-Dg" -8(y-N(1+q)° d<a,,
-2
|as - dal| < <y4 5 ) Xq2q 0,<80<0, (64)
q
A= +QCA-y+1)g+A-Dg +8(y-D(1 +q)° >0,
where Thus, we have the result.

0y

1 (1_q(x(1+q)+3—q))

Tl+q UEEY)
(65)

+47‘12.
y-MN1+gq)

0, =0,

4.3. Covering Theorems
Theorem 4. The range of every univalent functions f € m —
UM, (a,y,A) contains the disc:

4q(1 + aq)
8q(1 +ag) + (y - 10, |@,|

gl < (66)

Proof. From the proof of Theorem 3, we can see that

Corollary 12. The range of every univalent function
f €8T, (y, 1) contains the disc:

2q

g+ -no;, (69)

[g]

Theorem 5. The range of every univalent function f € m—
uQ, (a, v, A) contains the same disc given by (66).

Proof. Let w(s) be a Schwarz function. We note first in
Theorem 3 that

(017 + 03)p,, (W(Q)) = (y - NO; _ 2
(0N +0,)p, (@(Q) —(A=1)0, _  THerrs+

(70)
|a2l < % (67) where
49(1 + aq)
_ (y =V, 0,Q
Since the Koebe one-quater theorem asserted that each & 8 ’
omitted value w of the univalent function f (¢) of form (1) N D10, + 020, @
satisfies " :<%>Ol((2c2 -3)e, + ) - (y = M( 161 5)c101 L
1
[wl > 2 4[] (71)
(68) Since fem- UQ, (a,7,A), then for  some
- 4q(1 + aq) 9() = ¢+ by, +b;6° +---€m—UCV, (y, ), we have
T 8q(1+aq) + (y—)L)Ol|@1|
(O1y +05)p,, (w(e) - (y - 1)O,
1-a)D D_(¢D = R 72
(1-0)D,f () + aD,(sD, f (<)) ((Ol)L 0P, @)~ (=10, 49 (72)

which in turn implies
1+[2],(1+ag)ayc+- = L+(y, +[2],by)s+-.  (73)

It is easy to see that

Y1
b, = .
2 ql2], (74)

Therefore, comparing the coefficients of ¢ of (73) and
applying (74), we obtain

Y1

- q(1 +ocq)’ (75)

a,

such that
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(y=10,|q,|
|a2| = 4q(1 +aq)

Now, proceeding the same way as in the proof of
Theorem 4, we have the required result.

(76)

5. Conclusion

Using the concept of g-calculus, we have introduced some
new subclasses of analytic functions in the unit disc related
to Janowski class of functions. In addition, sufficient con-
ditions, Fekete-Szeg6 inequality as well as covering results
for functions belonging to these new classes were estab-
lished. Consequently, many remarkable special cases of our
findings which were studied in the previous work were
obtained [19, 26].
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