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In this paper, authors present a new method “Sawi decomposition method” for determining the primitive of Volterra integral
equation (V.I.E.) with application. Sawi decomposition method is the combination of Sawi transformation and decomposition
method. Some numerical problems have been considered and solved sequentially for explaining the complete methodology. For
the practical application of the Sawi decomposition method, an advance problem of medical science for determining the blood
glucose concentration during an intravenous injection has been considered and solved sequentially applying this method. Results
of numerical problems depict that the Sawi decomposition method is a very effective decomposition method for determining the
primitives of V.I.E.

1. Introduction

Many complex problems of mathematics, chemistry, biol-
ogy, astrophysics, and mechanics such as problem of radi-
ative energy transfer, oscillation problems of string and
membrane, and problem of momentum representation in
quantum mechanics can be expressed in the terms of
Volterra integral equation. Aggarwal et al. [1] and Chauhan
and Aggarwal [2] used different integral transformations for
obtaining the solutions of V.I.E. of second kind. Abdelrahim
[3] solved constant coefficient linear differential equations
by defining Sawi transformation. Singh and Aggarwal [4]
applied Sawi transformation for determining the solutions of
biological problems of growth and decay. Aggarwal and
Gupta [5] established duality relations between Sawi and
other advanced integral transformations. Wang [6] gave the
reliable mechanical algorithm for obtaining the numerical
solution of famous Volterra integral equation. Maleknejad
and Aghazadeh [7] used the Taylor-series expansion method
and determined the numerical primitives of second kind
V.I.E. with convolution kernel.

Rashidinia and Zarebnia [8] solved the Volterra integral
equation by the Sinc-collocation method. Babolian and
Davari [9] gave the numerical implementation of the
Adomian decomposition method for linear Volterra integral
equations of the second kind. Lin et al. [10] used extrapo-
lation of the iterated-collocation method for integral
equations of the second kind. Zhang et al. [11] applied
Galerkin methods for determining the numerical solution
for second-kind Volterra integral equations. Shoukralla et al.
[12] used the Barycentric-Maclaurin interpolation method
for solving Volterra integral equations of the second kind.
Isaacson and Kirby [13] gave the numerical solution of linear
Volterra integral equations of the second kind with sharp
gradients. -e Adomian decomposition method of Volterra
integral equation of second kind was given by Abaoud et al.
[14].

Aggarwal et al. [15] applied Mahgoub transform for
solving linear Volterra integral equations. Aggarwal et al.
[16] gave a new application of Shehu transform for handling
Volterra integral equations of first kind. Solution of linear
volterra integral equations of second kind using mohand
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transform was given by Aggarwal et al. [17]. Aggarwal et al.
[18] used Aboodh transform for solving linear Volterra
integral equations of first kind. Duality relations of Kamal
transform with Laplace, Laplace–Carson, Aboodh, Sumudu,
Elzaki, Mohand, and Sawi transforms were given by
Aggarwal et al. [19]. Aggarwal and Bhatnagar [20] defined
dualities between Laplace transform and some useful inte-
gral transforms.

Chauhan et al. [21] gave the dualities between Lap-
lace–Carson transform and some useful integral transforms.
Aggarwal andGupta [22] defined the dualities betweenMohand
transform and some useful integral transforms. Dualities be-
tween Elzaki transform and some useful integral transforms
were given by Aggarwal et al. [23]. Chaudhary et al. [24] defined
the connections between Aboodh transform and some useful
integral transforms. Aggarwal et al. [25] applied Mahgoub
transform for solving linear Volterra integral equations of first
kind. Application of Elzaki transform for solving linear Volterra
integral equations of first kind was given by Aggarwal et al. [26].
Aggarwal and Sharma [27] used Laplace transform for the
solution of first kind linear Volterra integral equation. Mishra
et al. [28] defined the relationship between Sumudu and some
efficient integral transforms. Aggarwal et al. [29] discussed the
exact solutions for a class of Wick-type stochastic (3+1)-di-
mensional modified Benjamin–Bona–Mahony equations.
Cesarano [30] used generalized special functions in the de-
scription of fractional diffusive equations. Dattoli et al. [31]
discussed special polynomials and gave some results in fractional
calculus. Aggarwal et al. [32] gave the application of Aboodh
transform for solving linear Volterra integral equations of first
kind. Application of Kamal transform for solving linear volterra
integral equations of first kind was given by Aggarwal et al. [33].

-e objective of the present paper is to determine the
solutions of V.I.Es by applying the Sawi decomposition
method on them and determining the solution of the
problem of sugar level (blood glucose concentration) of a
patient for explaining the applicability of this method in the
field of medical science.

2. Definition of Sawi Transformation

-e Sawi transformation of the function ω(t), t≥ 0is given
by Abdelrahim [3]:

S ω(t){ } �
1
σ2


∞

0
ω(t)e

− (1/σ)tdt � T(σ), σ > 0. (1)

Remark 1. In the above equation, the function (1/σ2)e− (1/σ)t

is called the kernel of the Sawi transformation.

Remark 2. -e Sawi transformation of the function
ω(t), t≥ 0exists if the integral (1/σ2) 

∞
0 ω(t)e− (1/σ)tdt

exists.

Remark 3. -e integral (1/σ2) 
∞
0 ω(t)e− (1/σ)tdt exists if

ω(t) is a function of exponential order and piecewise
continuous in the interval 0≤ t<∞.

3. Some Important Properties of
Sawi Transformation

Authors present important characteristics of Sawi trans-
formation in this part of the paper.

3.1. Linearity Property of Sawi Transformation. If Sawi
transform of functions ω1(t) and ω2(t) are T1(σ) and T2(σ),
respectively, then Sawi transform of [lω1(t) + mω2(t)] is
given by [lT1(σ) + mT2(σ)], where l andm are arbitrary
constants.

Proof. Using (1), we obtain

S ω(t){ } �
1
σ2


∞

0
ω(t)e

− (1/σ)tdt

⇒ S lω1(t) + mω2(t) 

�
1
σ2


∞

0
lω1(t) + mω2(t) e

− (1/σ)tdt

⇒ S lω1(t) + mω2(t) 

� l
1
σ2


∞

0
ω1(t)e

− (1/σ)tdt 

+ m
1
σ2


∞

0
ω2(t)e

− (1/σ)tdt 

⇒ S lω1(t) + mω2(t) 

� lS ω1(t)  + mS ω2(t) 

⇒ S lω1(t) + mω2(t) 

� lT1(σ) + mT2(σ),

(2)

where l andm are arbitrary constants. □

Remark 4. One immediate consequence of the above
property is that if ω(t) � 

k
i�1 aiωi(t), where ai are arbitrary

constants, then S ω(t){ } � S 
k
i�1 aiωi(t)  � 

k
i�1 aiS ωi(t) .

3.2. Scaling Property of Sawi Transformation. If
S ω(t){ } � T(σ), then S ω(kt){ } � kT(kσ).

Proof. Using (1), we obtain

S ω(t){ } �
1
σ2


∞

0
ω(t)e

− (1/σ)tdt

⇒ S ω(kt){ } �
1
σ2


∞

0
ω(kt)e

− (1/σ)tdt.

(3)

Putting kt � p⇒ kdt � dp in the above equation, we
have
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S ω(kt){ } �
1
σ2

1
k


∞

0
ω(p)e

− (1/σ)(p/k)dp 

⇒ S ω(kt){ } �
1
k

1
σ2


∞

0
ω(p)e

− (1/σ)(p/k)dp 

�
k

k
2σ2


∞

0
ω(p)e

− (1/kσ)pdp 

⇒ S ω(kt){ } � kT(kσ).

(4)

□

3.3. Translation Property of Sawi Transformation. If
S ω(t){ } � T(σ), then S ektω(t)  � (1/(1 − kσ)2)

T(σ/(1 − kσ)).

Proof. Using (1), we obtain

S ω(t){ } �
1
σ2


∞

0
ω(t)e

− (1/σ)tdt

⇒ S e
ktω(t)  �

1
σ2


∞

0
e

ktω(t)e
− (1/σ)tdt

⇒ S e
ktω(t)  �

1
σ2


∞

0
ω(t)e

− ((1/σ)− k)tdt

�
1
σ2


∞

0
ω(t)e

− ((1− kσ)/σ)tdt

�
1

(1 − kσ)
2

(1 − kσ)
2

σ2

∞

0
ω(t)e

− ((1− kσ)/σ)tdt 

�
1

(1 − kσ)
2 T

σ
1 − kσ

 .

(5)

□

4. Sawi Transformation of Derivatives

If S ω(t){ } � T(σ), then

S ω′(t)  �
1
σ

T(σ) −
1
σ2

ω(0),

S ω″(t)  �
1
σ2

T(σ) −
1
σ3

ω(0) −
1
σ2
ω′(0),

S ω(ρ)
(t)  �

1
σρ

T(σ) − 

ρ− 1

k�0

1
σ

 
ρ− (k− 1)

ω(k)
(0).

(6)

Proof

(a) Using (1), we obtain

S ω(t){ } �
1
σ2


∞

0
ω(t)e

− (1/σ)tdt

⇒ S ω′(t)  �
1
σ2


∞

0
ω′(t)e

− (1/σ)tdt

�
1
σ2

ω(t)e
− (1/σ)t

 
∞
0 −

1
σ2


∞

0
−

1
σ

  ω(t)e
− (1/σ)tdt

�
1
σ2

lim
t⟶∞

ω(t)e
− (1/σ)t

  −
1
σ2

ω(0)

+
1
σ3


∞

0
ω(t)e

− (1/σ)tdt � 0 −
1
σ2

ω(0) +
1
σ

S ω(t){ }

⇒ S ω′(t)  �
1
σ

T(σ) −
1
σ2

ω(0).

(7)

(b) We have S ω′(t)  � (1/σ)T(σ) − (1/σ2)ω(0) �

(1/σ)S ω(t){ } − (1/σ2)ω(0),

⇒ S ω″(t)  �
1
σ

S ω′(t)  −
1
σ2
ω′(0)

�
1
σ

1
σ

S ω(t){ } −
1
σ2

ω(0)  −
1
σ2
ω′(0),

⇒ S ω″(t)  �
1
σ2

S ω(t){ } −
1
σ3

ω(0) −
1
σ2
ω′(0),

⇒ S ω″(t)  �
1
σ2

T(σ) −
1
σ3

ω(0) −
1
σ2
ω′(0).

(8)

(c) We have S ω″(t)  � (1/σ2)T(σ)− (1/σ3)ω(0)−

(1/σ2)ω′(0),

�
1
σ2

S ω(t){ } −
1
σ3

ω(0) −
1
σ2
ω′(0)

⇒ S ω‴(t)  �
1
σ2

S ω′(t)  −
1
σ3
ω′(0) −

1
σ2
ω″(0)

�
1
σ2

1
σ

S ω(t){ } −
1
σ2

ω(0)  −
1
σ3
ω′(0) −

1
σ2
ω″(0)

⇒ S ω‴(t)  �
1
σ3

S ω(t){ } −
1
σ4

ω(0) −
1
σ3
ω′(0) −

1
σ2
ω″(0)

�
1
σ3

T(σ) −
1
σ4

ω(0) −
1
σ3
ω′(0) −

1
σ2
ω″(0).

(9)

In general, we have
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S ω(ρ)
(t)  �

1
σρ

S ω(t){ } −
1

σρ+1 ω(0)

−
1
σρ
ω′(0) − · · · −

1
σρ− 1ω

(ρ− 1)
(0)

⇒ S ω(ρ)
(t)  �

1
σρ

T(σ) −
1

σρ+1 ω(0)

−
1
σρ
ω′(0) − · · · −

1
σρ− 1ω

(ρ− 1)
(0)

⇒ S ω(ρ)
(t)  �

1
σρ

T(σ) − 

ρ− 1

k�0

1
σ

 
ρ− (k− 1)

ω(k)
(0).

(10)

□

Remark 5. -e results of this section are very useful and can
be used for solving initial value problems.

5. Faltung Theorem for Sawi Transformation

Faltung theorem of integral transforms has many applica-
tions in the solution of differential equations and integral
equations of Faltung form. If S ω1(t)  � T1(σ) and
S ω2(t)  � T2(σ), then S ω1(t)∗ω2(t)  � S ω1(t) S ω2

(t)} � σ2T1(σ)T2(σ), where Faltung of ω1(t) and ω2(t) is
denoted by ω1(t)∗ω2(t), and it is defined by

ω1(t)∗ω2(t) � 
t

0
ω1(t − u)ω2(u)du

� 
t

0
ω1(u)ω2(t − u)du.

(11)

Proof. Using (1), we obtain

S ω(t){ } �
1
σ2


∞

0
ω(t)e

− (1/σ)tdt

⇒ S ω1(t)∗ω2(t)  �
1
σ2


∞

0
e

− (1/σ)t ω1(t)∗ω2(t) dt

⇒ S ω1(t)∗ω2(t)  �
1
σ2


∞

0
e

− (1/σ)t

· 
t

0
ω1(t − u)ω2(u)du dt.

(12)

After reversing the order of integration, we obtain

S ω1(t)∗ω2(t)  �
1
σ2


∞

0
ω2(u) 

∞

u
ω1(t − u)e

− (1/σ)tdt du.

(13)

Putting t − u � v so that dt � dv in the above equation,
we have

S ω1(t)∗ω2(t)  �
1
σ2


∞

0
ω2(u) 

∞

0
ω1(v)e

− (1/σ)(v+u)dv du

⇒ S ω1(t)∗ω2(t) 

�
1
σ2


∞

0
ω2(u)e

− (1/σ)u

· 
∞

0
ω1(v)e

− (1/σ)vdv du

⇒ S ω1(t)∗ω2(t) 

� σ2
1
σ2


∞

0
ω2(u)e

− (1/σ)u
 

·
1
σ2


∞

0
ω1(v)e

− (1/σ)vdv du

⇒ S ω1(t)∗ω2(t)  � σ2T1(σ)T2(σ).

(14)
□

Remark 6. -e above result can be used to obtain a con-
nection between a k-fold Faltung of k functions and the
product of the transforms of these functions.

Remark 7. In the above definition, the term ω1(t − u) or
ω2(t − u) is called the influence function.

6. Inverse Sawi Transformation

-e inverse Sawi transformation of T(σ), designated by
S− 1 T(σ){ }, is another function ω(t) having the property that
S ω(t){ } � T(σ).

6.1. Linearity Property of Inverse Sawi Transformation. If
S− 1 T1(σ)  � ω1(t) and S− 1 T2(σ)  � ω2(t), then

S
− 1

lT1(σ) + mT2(σ)  � lS
− 1

T1(σ)  + mS
− 1

T2(σ) 

⇒ S
− 1

lT1(σ) + mT2(σ) 

� lω1(t) + mω2(t),

(15)

where l andm are arbitrary constants.

7. Sawi Decomposition Method for Volterra
Integral Equation

-is section contains Sawi decomposition method for the
primitive of linear Faltung-type second kind V.I.E. -e
general form of second kind linear Faltung-type Volterra
integral equation is given by [2, 34–36]

ω(t) � g(t) + μ
t

0
K(t − u)ω(u)du, (16)

where
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ω(t) � unknown function

g(t) � known function(perturbation function)

μ � non − zero parameter

K(t − u) � faltung type kernel

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (17)

Operating Sawi transformation on both sides of (16), we
have

S ω(t){ } � S g(t)  + μS 
t

0
K(t − u)ω(u)du . (18)

Applying Faltung theorem of Sawi transformation on
(18), we obtain

S ω(t){ } � S g(t)  + μσ2S K(t){ }S ω(t){ }. (19)

Operating inverse Sawi transformation on both sides of
(19), we have

ω(t) � g(t) + μS
− 1 σ2S K(t){ }S ω(t){ } . (20)

-e Sawi decomposition method assumes the sol-
utionω(t) of (16) is analytic, so ω(t) can be expressed in
terms of infinite series as

ω(t) � 
∞

m�0
ωm(t). (21)

Using (21) in (20), we obtain



∞

m�0
ωm(t) � g(t) + μS

− 1 σ2S K(t){ }S 
∞

m�0
ωm(t)

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭.

(22)

In general, the recursive relations are given by

ω0(t) � g(t)

ωm+1(t) � μS
− 1 σ2S K(t){ }S 

∞

m�0
ωm(t)

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭, m≥ 0

⎫⎪⎪⎬

⎪⎪⎭
.

(23)

Using (23), we can find the values of ω0(t),

ω1(t),ω2(t),ω3(t), . . .easily. After finding these values, we
use (21) for required solution of (16).

Remark 8. -e present scheme can be used for determining
the primitives of system of linear Faltung-type second kind
Volterra integral equations in future.

Sawi and inverse Sawi transformations of frequently
used functions are given in Tables 1 and 2, respectively.

Example 1. Consider following linear second kind Faltung-
type V.I.E.:

ω(t) � t + 
t

0
ω(u)du. (24)

Operating Sawi transformation on both sides of (24), we
have

S ω(t){ } � S t{ } + S 
t

0
ω(u)du 

⇒ S ω(t){ } � 1 + S 
t

0
ω(u)du .

(25)

Applying Faltung theorem of Sawi transformation on
(25), we obtain

S ω(t){ } � 1 + σ2S 1{ }S ω(t){ }

⇒ S ω(t){ } � 1 + σ2
1
σ

 S ω(t){ }.

(26)

Operating inverse Sawi transformation on both sides of
(26), we have

ω(t) � t + S
− 1 σS ω(t){ }{ }. (27)

-e Sawi decomposition method assumes the solution
ω(t)of (24) is analytic so ω(t) can be expressed in terms of
infinite series as

ω(t) � 
∞

m�0
ωm(t). (28)

Using (8) in (27), we obtain



∞

m�0
ωm(t) � t + S

− 1 σS 
∞

m�0
ωm(t)

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭. (29)

In general, the recursive relations are given by

Table 2: Inverse Sawi transformation of frequently used functions
[4].

S.N. T(σ) ω(t) � S− 1 T(σ){ }

1. (1/σ) 1
2. 1 t

3. σ (t2/2!)

4. (σ)ρ− 1, ρ ∈ N (tρ/ρ!)

5. (σ)ρ− 1, ρ> − 1 (tρ/(Γ(ρ + 1)))

6. (1/(σ(1 − lσ))) elt

7. (1/(1 + l2σ2)) (sin lt/l)
8. (1/(σ(1 + l2σ2))) cos lt

9. (1/(1 − l2σ2)) (sinh lt/l)
10. (1/(σ(1 − l2σ2))) cosh lt

Table 1: Sawi transformation of frequently used functions [4,5].

S.N. ω(t) S ω(t){ } � T(σ)

1. 1 (1/σ)

2. t 1
3. t2 2σ
4. tρ, ρ ∈ N ρ!(σ)ρ− 1

5. tρ, ρ> − 1 Γ(ρ + 1)(σ)ρ− 1

6. elt (1/(σ(1 − lσ)))

7. sin lt (l/(1 + l2σ2))
8. cos lt (1/(σ(1 + l2σ2)))
9. sinh lt (l/(1 − l2σ2))
10. cosh lt (1/(σ(1 − l2σ2)))
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ω0(t) � t,

ωm+1(t) � S
− 1 σS 

∞

m�0
ωm(t)

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭, m≥ 0

⎫⎪⎪⎬

⎪⎪⎭
, (30)

with the help of (30), we obtain

ω1(t) � S
− 1 σS ω0(t)   � S

− 1 σS t{ }{ } � S
− 1 σ · 1{ } � S

− 1 σ{ } �
t
2

2
,

ω2(t) � S
− 1 σS ω1(t)   � S

− 1 σS
t
2

2
   � S

− 1 σ · σ{ } � S
− 1

(σ)
2

  �
t
3

6
,

ω3(t) � S
− 1 σS ω2(t)   � S

− 1 σS
t
3

6
   � S

− 1 σ · (σ)
2

  � S
− 1

(σ)
3

  �
t
4

24
,

ω4(t) � S
− 1 σS ω3(t)   � S

− 1 σS
t
4

24
   � S

− 1 σ · (σ)
3

  � S
− 1

(σ)
4

  �
t
5

120
,

(31)

and so on. Using (28), the series solution of (24) is given by

ω(t) � 
∞

m�0
ωm(t),

⇒ω(t) � t +
t
2

2
+

t
3

6
+

t
4

24
+

t
5

120
+ · · ·  � e

t
− 1.

(32)

Example 2. Consider the following linear second kind
Faltung-type V.I.E.:

ω(t) � t − 
t

0
ω(u)du. (33)

Operating Sawi transformation on both sides of (33), we
have

S ω(t){ } � S t{ } − S 
t

0
ω(u)du ,

⇒ S ω(t){ } � 1 − S 
t

0
ω(u)du .

(34)

Applying Faltung theorem of Sawi transformation on
(34), we obtain

S ω(t){ } � 1 − σ2S 1{ }S ω(t){ },

⇒ S ω(t){ } � 1 − σ2
1
σ

 S ω(t){ }.

(35)

Operating inverse Sawi transformation on both sides of
(35), we have

ω(t) � t − S
− 1 σS ω(t){ }{ }. (36)

-e Sawi decomposition method assumes the sol-
utionω(t) of (33) is analytic, so ω(t) can be expressed in
terms of infinite series as

ω(t) � 
∞

m�0
ωm(t). (37)

Using (37) in (36), we obtain



∞

m�0
ωm(t) � t − S

− 1 σS 
∞

m�0
ωm(t)

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭. (38)

In general, the recursive relations are given by

ω0(t) � t,

ωm+1(t) � − S
− 1 σS 

∞

m�0
ωm(t)

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭, m≥ 0

⎫⎪⎪⎬

⎪⎪⎭
. (39)
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With the help of (39), we obtain

ω1(t) � − S
− 1 σS ω0(t)   � − S

− 1 σS t{ }{ } � − S
− 1 σ · 1{ } � − S

− 1 σ{ } � −
t
2

2
,

ω2(t) � − S
− 1 σS ω1(t)   � − S

− 1 σS −
t
2

2
   � S

− 1 σ · σ{ } � S
− 1

(σ)
2

  �
t
3

6
,

ω3(t) � − S
− 1 σS ω2(t)   � − S

− 1 σS
t
3

6
   � − S

− 1 σ · (σ)
2

  � − S
− 1

(σ)
3

  � −
t
4

24
,

ω4(t) � − S
− 1 σS ω3(t)   � − S

− 1 σS −
t
4

24
   � S

− 1 σ · (σ)
3

  � S
− 1

(σ)
4

  �
t
5

120
,

(40)

and so on. Using (37), the series solution of (33) is given by

ω(t) � 
∞

m�0
ωm(t) � t −

t
2

2
+

t
3

6
−

t
4

24
+

t
5

120
− · · · � 1 − e

− t
.

(41)

8. Application

-is part of the paper contains an application from the field
of medical science during an intravenous injection (con-
tinuous) for determining blood glucose concentrationC(t)

of a patient at any particular time t. -is concentrationC(t)

is determined by the following linear Volterra integral
equation:

C(t) � Ci +
α
V

 t − k 
t

0
C(x)dx, (42)

where

k: constant velocity of elimination

α: the rate of infusion

V: volume inwhich glucose is distributed

Ci: initial concentration of glucose in the blood

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (43)

Operating Sawi transformation on both sides of (42), we
have

S C(t){ } � CiS 1{ } +
α
V

 S t{ } − kS 
t

0
C(x)dx ,

⇒ S C(t){ } � Ci

1
σ

  +
α
V

  · 1 − kS 
t

0
C(x)dx .

(44)

Applying Faltung theorem of Sawi transformation on
(44), we obtain

S C(t){ } � Ci

1
σ

  +
α
V

  − kσ2S 1{ }S C(t){ },

⇒ S C(t){ } � Ci

1
σ

  +
α
V

  − kσ2
1
σ

 S C(t){ }.

(45)

Operating inverse Sawi transformation on both sides of
(45), we have

C(t) � Ci +
α
V

 t − kS
− 1 σS C(t){ }{ }. (46)

-e Sawi decomposition method assumes the solution
C(t)of (42) is analytic, so it can be represent in power series
(Taylor’s series) as

C(t) � 
∞

m�0
Cm(t). (47)

Using (47) in (46), we obtain



∞

m�0
Cm(t) � Ci +

α
V

 t − kS
− 1 σS 

∞

m�0
Cm(t)

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭. (48)

In general, the recursive relations are given by

C0(t) � Ci +
α
V

 t

Cm+1(t) � − kS
− 1 σS 

∞

m�0
Cm(t)

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭, m≥ 0

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (49)

Using (49), we obtain

Journal of Mathematics 7



C1(t) � − kS
− 1 σS C0(t)   � − kS

− 1 σS Ci +
α
V

 t   � − kS
− 1 σ S Ci  + S

α
V

 t   

� − CikS
− 1 σS 1{ }{ } −

α
V

 kS
− 1 σS t{ }{ } � − CikS

− 1 σ ·
1
σ

   − k
α
V

 S
− 1 σ · 1{ }

� − CikS
− 1 1{ } − k

α
V

 S
− 1 σ{ } � − k Cit +

α
V

 
t
2

2!
 ,

C2(t) � − kS
− 1 σS C1(t)   � − kS

− 1 σS − k Cit +
α
V

 
t
2

2!
   

� k
2
S

− 1 σ S Cit  + S
α
V

 
t
2

2!
   

� k
2

CiS
− 1 σS t{ }{ } +

α
V

 S
− 1 σS

t
2

2!
   

� k
2

CiS
− 1 σ · 1{ } +

α
V

 S
− 1 σ · σ{ } 

� k
2

CiS
− 1 σ{ } +

α
V

 S
− 1

(σ)
2

   � k
2

Ci

t
2

2!
+

α
V

 
t
3

3!
 ,

C3(t) � − kS
− 1 σS C2(t)   � − kS

− 1 σS k
2

Ci

t
2

2!
+

α
V

 
t
3

3!
   

� − k
3
S

− 1 σ S Ci

t
2

2!
  + S

α
V

 
t
3

3!
    � − k

3
CiS

− 1 σS
t
2

2!
   +

α
V

 S
− 1 σS

t
3

3!
   

� − k
3

CiS
− 1 σ · σ{ } +

α
V

 S
− 1 σ · (σ)

2
   � − k

3
CiS

− 1
(σ)

2
  +

α
V

 S
− 1

(σ)
3

  

� − k
3

Ci

t
3

3!
+

α
V

 
t
4

4!
 ,

C4(t) � − kS
− 1 σS C3(t)   � − kS

− 1 σS − k
3

Ci

t
3

3!
+

α
V

 
t
4

4!
   

� k
4
S

− 1 σ S Ci

t
3

3!
  + S

α
V

 
t
4

4!
    � k

4
CiS

− 1 σS
t
3

3!
   +

α
V

 S
− 1 σS

t
4

4!
   

� k
4

CiS
− 1 σ · (σ)

2
  +

α
V

 S
− 1 σ · (σ)

3
   � k

4
CiS

− 1
(σ)

3
  +

α
V

 S
− 1

(σ)
4

  

� k
4

Ci

t
4

4!
+

α
V

 
t
5

5!
 ,

(50)
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and so on. Using (47), the series solution of (42) is given by

C(t) � 
∞

m�0
Cm(t)

� Ci +
α
V

  t − k Cit +
α
V

 
t
2

2!
  + k

2
Ci

t
2

2!
+

α
V

 
t
3

3!
  − k

3
Ci

t
3

3!
+

α
V

 
t
4

4!
  + k

4
Ci

t
4

4!
+

α
V

 
t
5

5!
  + · · ·

� Ci 1 − kt +
k
2

2!
t
2

−
k
3

3!
t
3

+
k
4

4!
t
4

− · · ·  +
α
V

  t −
k

2!
t
2

+
k
2

3!
t
3

−
k
3

4!
t
4

+
k
4

5!
t
5

− · · · 

� Cie
− kt

+
α
V

 
k

k
  t −

k

2
t
2

+
k
2

6
t
3

−
k
3

24
t
4

+
k
4

120
t
5

− · · · 

� Cie
− kt

+
α

Vk
  kt −

k
2

2
t
2

+
k
3

6
t
3

−
k
4

24
t
4

+
k
5

120
t
5

− · · · 

� Cie
− kt

+
α

Vk
  1 − 1 + kt −

k
2

2
t
2

+
k
3

6
t
3

−
k
4

24
t
4

+
k
5

120
t
5

− · · · 

� Cie
− kt

+
α

Vk
  1 − 1 − kt +

k
2

2
t
2

−
k
3

6
t
3

+
k
4

24
t
4

−
k
5

120
t
5

+ · · ·  ,

C(t) � Cie
− kt

+
α

Vk
  1 − e

− kt
 .

(51)

-e values of blood glucose concentration C(t) are
obtained for different values of initial concentration of
glucose Ci, volume in which glucose is distributed V, the rate
of infusion α, constant velocity of elimination k, and time t.
All these results are presented in Tables 3–6.

-e normal range of blood glucose mentioned by
American Diabetes Association [37] is 79 to 110mg/dL.

From Table 3, it can be concluded that, as time t increases
from 0 to 90min, blood glucose concentration C(t) decreases
for all the five combinations, namely, V � 45 dL, α �

(280mg/min), k � 0.058min− 1
, Ci � 320mg/dL V � 45 dL,

α � (280mg/min), k � 0.058min− 1
, Ci � 322mg/dL V �

45 dL, α � (280mg/min), k � 0.058min− 1
, Ci � 324mg/dL

V � 45 dL, α � (280mg/min), k � 0.058min− 1
, Ci �

326mg/dL V � 45 dL, α � (280mg/min), k � 0.058min− 1
,

Ci � 328mg/dL}. From this table, it is also clear that the
normal blood glucose concentration is achieved in 90min for
all five combinations. -e graph plotted in Figure 1 supports
the results of Table 3.

FromTable 4, it can be concluded that, as time t increases
from 0 to 90min, blood glucose concentration C(t) de-
creases for all the five combinations, namely, Ci �

325mg/dL, α � 280mg/min, k � 0.058min− 1
, V � 45 dL

Ci � 325mg/dL, α � 280mg/min, k � 0.058min− 1
, V �

46 dLCi � 325mg/dL, α � 280mg/min, k � 0.058min− 1
,

V � 47 dL Ci � 325mg/dL, α � 280mg/min, k �

0.058min− 1
, V � 48 dLCi � 325mg/dL, α � 280mg/min,

k � 0.058min− 1
, V � 49 dL}. From this table, it is also clear

that the time required for achieving normal blood glucose
concentration reduces as volume in which glucose is dis-
tributed V increases. -e results of Table 4 are supported by
the graph, which is plotted in Figure 2.

Table 5 shows that, as time t increases from 0 to 90min,
blood glucose concentration C(t) decreases for all the five
combinations, namely, V � 45 dL, Ci � 320mg/dL, k �

0.058min− 1
, α � 280mg/minV � 45 dL, Ci � 320mg/dL,

k � 0.058min− 1
, α � 281mg/minV � 45 dL, Ci � 320mg/

dL, k � 0.058min− 1
, α � 282mg/minV � 45 dL, Ci �

320mg/dL, k � 0.058min− 1
, α � 283mg/minV � 45 dL,

Ci � 320mg/dL, k � 0.058min− 1
, α � 284mg/min}. From

this table, it is also clear that the time required for achieving
normal blood glucose concentration increases as the rate of
infusion α increases. -e graph of Figure 3 supports the
results of Table 5.

Table 6 shows that, as time t increases from 0 to 90min,
blood glucose concentration C(t) decreases for all the five
combinations, namely, V � 45 dL, α � 280mg/min, Ci �

320mg/dL, k � 0.058min− 1
V � 45 dL, α � 280mg/min,

Ci � 320mg/dL, k � 0.059min− 1
V � 45 dL, α � 280

mg/min, Ci � 320mg/dL, k � 0.060min− 1
V � 45 dL, α �

280mg/min, Ci � 320mg/dL, k � 0.061min− 1
V � 45 dL,

α � 280mg/min, Ci � 320mg/dL, k � 0.062min− 1
}. From

this table, it is also clear that the time required for achieving
normal blood glucose concentration decreases as the con-
stant velocity of elimination k increases. -e results of
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Table 3: Blood glucose concentration C(t) for different values of initial concentration of glucose Ci and time t with
V � 45 dL, α � 280mg/min, and k � 0.058min− 1, see Figure 1.

t(min)
V � 45 dL, α � 280mg/min, k � 0.058min− 1

Ci � 320mg/dL Ci � 322mg/dL Ci � 324mg/dL Ci � 326mg/dL Ci � 328mg/dL

0 320 322 324 326 328
15 196.40 197.24 198.08 198.91 199.75
30 144.62 144.97 145.32 145.67 146.02
45 122.92 123.07 123.22 123.36 123.51
60 113.83 113.89 113.96 114.02 114.08
75 110.03 110.05 110.08 110.10 110.13
90 108.43 108.44 108.45 108.46 108.47

Table 4: Blood glucose concentration C(t) for different values of volume in which glucose is distributed V and time t with
Ci � 325mg/dL, α � 280mg/min, and k � 0.058min− 1, see Figure 2.

t(min)
Ci � 325mg/dL, α � 280mg/min, k � 0.058min− 1

V � 45 dL V � 46 dL V � 47 dL V � 48 dL V � 49 dL

0 325 325 325 325 325
15 198.49 197.14 195.84 194.60 193.41
30 145.49 143.57 141.73 139.97 138.27
45 123.29 121.13 119.06 117.08 115.18
60 113.99 111.73 109.56 107.49 105.50
75 110.09 107.79 105.58 103.47 101.45
90 108.46 106.14 103.92 101.79 99.75

Table 5: Blood glucose concentration C(t) for different values of the rate of infusion α and time t with
V � 45 dL, Ci � 320mg/dL, and k � 0.058min− 1, see Figure 3.

t(min)
V � 45 dL, Ci � 320mg/dL, k � 0.058min− 1

α � 280mg/min α � 281mg/min α � 282mg/min α � 283mg/min α � 284mg/min

0 320 320 320 320 320
15 196.40 196.62 196.84 197.07 197.29
30 144.62 144.93 145.25 145.56 145.88
45 122.92 123.28 123.63 123.99 124.34
60 113.83 114.20 114.58 114.95 115.32
75 110.03 110.40 110.78 111.16 111.54
90 108.43 108.81 109.19 109.57 109.95

Table 6: Blood glucose concentration C(t) for different values of constant velocity of elimination k and time t with
V � 45 dL, α � 280mg/min, andCi � 320mg/dL, see Figure 4.

t(min)
V � 45 dL, α � 280mg/min, Ci � 320mg/dL

k � 0.058min− 1 k � 0.059min− 1 k � 0.060min− 1 k � 0.061min− 1 k � 0.062min− 1

0 320 320 320 320 320
15 196.40 194 191.64 189.31 187.02
30 144.62 142 139.46 136.97 134.55
45 122.92 120.54 118.24 116.01 113.85
60 113.83 111.69 109.61 107.61 105.68
75 110.03 108.03 106.11 104.25 102.46
90 108.43 106.52 104.68 102.90 101.19
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Table 6 are supported by the graph which is plotted in
Figure 4.

9. Conclusions

In the present paper, authors fruitfully discussed the Sawi
decomposition method for V.I.E. and complete

methodology explained by taking numerical examples with
application in the field of medical science during an in-
travenous injection (continuous) for determining blood
glucose concentration of a patient at any particular time.
Results of numerical examples depict that the Sawi de-
composition method is a very fast and effective
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Figure 1: Blood glucose concentration C(t) for different values of
initial concentration of glucose Ci and time t with.
V � 45 dL, α � 280mg/min, and k � 0.058min− 1.
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Figure 2: Blood glucose concentration C(t) for different values of
volume in which glucose is distributed V and time t with.
Ci � 325mg/dL, α � 280mg/min, and k � 0.058min− 1.
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Figure 3: Blood glucose concentration C(t) for different values of
the rate of infusion α and time t with.
V � 45 dL, Ci � 320mg/dL, and k � 0.058min− 1.
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Figure 4: Blood glucose concentration C(t) for different values of
constant velocity of elimination k and time t with
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decomposition method for determining the solution of
V.I.E. Furthermore, the Sawi decomposition method gives
the solution of problem of blood glucose concentration and
provides the information of required time to achieve normal
blood glucose concentration, which is very useful for sugar
patients and at the time of operation. -e Sawi decompo-
sition method will be useful for determining the primitives
of system of V.I.E. and other problems of medical science,
engineering, physical chemistry such as determination of
tumor growth, counting the total number of infected cells,
determining the concentration of viral particles in plasma
during HIV-1 infections, examining the temperature effect
on the vibration of skew plates, and determining the con-
centration of chemical substances of the chemical chain
reaction in future.
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