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The purpose of this paper is to introduce the extragradient methods for solving split feasibility problems, generalized equilibrium
problems, and fixed point problems involved in nonexpansive mappings and pseudocontractive mappings. We establish the
results of weak and strong convergence under appropriate conditions. As applications of our three main theorems, when the
mappings and their domains take different types of cases, we can obtain nine iterative approximation theorems and corollas on

fixed points, variational inequality solutions, and equilibrium points.

1. Introduction

Let H, and H, be two real Hilbert spaces, and let C and Q be
two nonempty closed and convex subsets of H, and H,,
respectively. Let A: H; — H, be a bounded linear oper-
ator with its adjoint A*. The split feasibility problem (SFP) is
to find a point x such that

xeC, AxeQ. (1)

We denote the solution set of the split feasibility problem
(SFP) by

Q={xeC: AxcQ}=CnA'Q. (2)

Problem (1) was first introduced by Censor and Elfving
[1] in the finite-dimensional spaces and further has been
studied by many researchers (see, for example, [2-6]) and
the references therein. To solve the SFP, Byrne [2, 7] first
introduced the so-called CQ algorithm as follows:

xy € Hy,
{ X1 = Po(I-AA*(I - Py)A)x,, Yn20, ®

where 0 <A <2/p(A*A), P denotes the projection onto C,
and p (A* A) is the spectral radius of the self-adjoint operator
A*A. Many authors continue to study the CQ algorithm in
its various forms (see, for example, [8-14]). The CQ algo-
rithm can be viewed from two different but equivalent ways:
optimization and fixed point [6]. From the view of opti-
mization point, x* € Q in (2) if and only if x* is a solution of
the following minimization problem with zero optimal value
min, . f (x) = (1/2)|Ax - PQAxIIZ, where f is a differen-
tiable convex function and has a Lipschitz gradient given by
Vf(x) = A" (I - Py)A, with Lipschitz constant L = p (A A).
Thus, x* solves the (SFP) if and only if x* solves the var-
iational inequality problem of finding x* € C such that
(Vf(x*),y—x")=0forall y eC.

Xu [6] considered the following Tikhonov regularized
problem:
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min fo(x) = E”Ax - PQAx”2 + Eallxllz, (4)

where a > 0 is the regularization parameter. We observe that
the gradient

Vie(x)=Vf(x)+al = A"(I-Py)A+al,  (5)

is (a+ ||A||2)—Lipschitz continuous and a-strongly mono-
tone. The fixed point approach method to solve the SFP is
based on the following observations. Let A >0, and assume
that x* € Q. Then, Ax* € Q, which implies that (I-—
PQ)Ax* =0, and thus, AA*(I —PQ)Ax* = 0. Hence, we
have the fixed point equation (I —AA* (I - Py)A)x" = x*.
Requiring that x* € C, we consider the fixed point equation

Po(I-AVf)x" = Po(I-AA"(I-Py)A)x" =x".  (6)

In [6], it is proved that the solutions of fixed point
equation (6) are precisely the solutions of the SFP.

Let A: C — H be a nonlinear mapping and F be a
bifunction from CxC to R, where R is the set of real
numbers. The generalized equilibrium problem is to find
x* € C such that F (x*, y) + (Ax*, y —x*) >0, Vy € C. The
set of solutions is denoted by GEP(F,A). If A =0, then
GEP(F,A) is denoted by EP(F). If F(x,y) =0 for all
x,y €C, then GEP(F,A) is denoted by VI(C,A)=
{x* € C: (Ax*,y —x*) >0, Vy € C}. This is the set of so-
lutions of the variational inequality for A (see, for example,
[15-21]). If C = H, then VI(H,A) = A"'(0) where A™!
(0) ={x € H: Ax =0}.

In 2008, Takahashi and Takahashi [15] have suggested
the following iterative method. Let {x,} be a sequence
generated by

x, €C,
1
F(yy) +{A%0 Y = yu> + =Xy = Y Y= X 20, ¥y €C,

Xn+1 :anxn+(1 _an)T[ﬁnu"'(l_ﬁn)yn]’ Vnz1.

(7)

Under some appropriate conditions, they proved that
the sequence {xn} converges strongly to a point
Pr(1ynGEP (F,) Y-

Motivated and inspired by the above works, we will
investigate the weak and strong convergence methods for
solving the split feasibility problems, generalized equilib-
rium problems, and fixed point problems involved in
nonexpansive mappings and pseudocontractive mappings.
As applications of our three main theorems, when the
mappings and their domains take different types of cases, we
can obtain nine iterative approximation theorems and
corollaries on fixed points, variational inequality solutions,
and equilibrium points. So, our results in this paper gen-
eralize and improve upon the corresponding modern results
of many other authors.
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2. Preliminaries

Let H be a real Hilbert space with the inner product ¢-,-) and
norm | - || and C be a nonempty, closed, and convex subset of
H. Recall that a mapping A: C — H is said to be monotone
if (Au — Av,u—v)>0forallu,v e C[18,19]. A mapping A
is said to be a-strongly monotone whenever there exists a
positive real number « such that {(Au-—-Av,u-—v)>
allu—v|]* forallu,v € C. A mapping A is said to be a-inverse
strongly monotone if there exists a positive real number «
such that (Au — Av,u —v) >al|Au — Av|)? for all u,v € C.
Recall that the classical variational inequality problem,
which we denote by VI(C, A), is to find x € C such that
(Ax,y —x) >0, for all y € C [16, 17]. It is well known that,
for any x € H, there exists a unique nearest point in C,
denoted by P.(x), such that [x—Pq(x)|= inf},ec
lx =yl =:d(x,C). It is well known that P, is a non-
expansive and monotone mapping from H onto C and
satisty the following:

(1) {<x=Pcx,z—Pcxy<0forall x e H,zeC

@) llx - zlI* = lx - Pex|* + |z — Pox|* for all
x€H,zeC
(3) The relation (Pex—Prz,x—2z)>|Pcx - PCZ||2

holds for all z,x € H

Let A be a monotone mapping of C into H. In the
context of the variational inequality problem, it is easy to see
from (2) that

peVI(C,A)e p=P-(p-AAp), VA>O0. (8)

For solving the equilibrium problem, we assume that F
satisfies the following conditions:

(1) (AF(x,x)=0forall x e C
(ii) (A,)F ismonotone, thatis, F(x, y) + F(y, x) <0 for
all x,y e C
(iii) (A;) for each x,y,z € C, lim,_  F(tz+ (1 —1t)x,
Y)<F(x,y)
(iv) (A,) for each x € C, the function y — F(x, y) is
convex and lower semicontinuous

If F(x, y) = (Ax, y — x) for every x, y € C, we see that
the equilibrium problem is reduced to the variational in-
equality problem.

Lemma 1 (see [22]). Let C be a nonempty, closed, and convex
subset of H, and let F be a bifunction from CxC to R
satisfying (A;) — (A,). For r>0 and x € H, consider the
mapping T,.: H — C defined by

T (x) :{z €C:F(zy)+i(y-22-x)30, Vye c}.
r

9)

Then, T, (x) + @ forall x € H, T, is single-valued, EP (F)

is closed and convex, F(T,)=EP(F), and T, is firmly

nonexpansive, that is, |T,(x)-T, (y)II2 <(T,(x)-
T,(y),x—yy forall x,y € H.
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Lemma 2 (see [23]). Let C be a nonempty, closed, and convex
subset of H, F be a bifunction from C x C to R satisfying
(A, — A,), ad A be a multivalue mapping from H into itself
defined by Apx={z€C:F(z,y)<{(y-x,2),VyeC}
whenever x € C and Apx =& otherwise. Then, Ap is a
maximal monotone operator with the domain T,(x) =
(I+rAp)""'x, for all x € H and r> 0.

Definition 1. Let T: H — H be a nonlinear operator.

(1) T is said to be L-Lipschitz whenever there exists L >0
such that |Tu - Tv|<Lllu—-v|, YVu,v e H. If L = 1,
we call T is nonexpansive, and T is said to be a
contraction if L< 1.

(2) T is said to be firmly nonexpansive if 2T -1 is
nonexpansive and I is the identity mapping, or
equivalently, (Tu — Tv,u — v) > ||Tu - Tv|?, Yu,v €
H. Alternatively, T is firmly nonexpansive if and only
if T can be expressed as T = (1/2)(I +S), where
S: H — H is nonexpansive.

(3) T is said to be a-averaged nonexpansive mapping, if
there exists a nonexpansive mapping S, such that
T=1-a)+aS, where a€ (0,1). Thus, firmly
nonexpansive  mappings are  (1/2)-averaged
mapping.

(4) T is said to be pseudocontractive if and only if
ITw = Tvl* < llu = vI* + 11 = T)u= (I =TWI, Vu,
veH.

(5) T is said to be k-strictly pseudocontractive if and
only if there exists 0 <k <1, such that

1T~ Tvl* <llu—vI* +KI(I = T)u — (I - v,
Yu, v € H.
(10)

Remark 1 (see [2]). Let T: C — C be a given mapping:

(i) T is nonexpansive if and only if the complement
I-T is (1/2)-inverse strongly monotone.

(ii) If T is a-inverse strongly monotone, then for
y>0,yT is (a/y)-inverse strongly monotone.

(iii) T is averaged if and only if the complement I — T is
a-inverse strongly monotone for some a > 1/2. In-
deed, for a € (0,1),T is a-averaged if and only if
I-T is (1/2a)-inverse strongly monotone.

We denote by F (T') the set of fixed points of T. Note that
every a-inverse strongly monotone mapping T is Lipschitz
and [|[Tu — Tv|| < (1/a)|lu — v|. Every nonexpansive mapping
is a k-strictly pseudocontractive mapping and every
k-strictly pseudocontractive mapping is pseudocontractive.
Assume that T: C — C is a strictly pseudocontractive. If
A =1-T, we easily find that A is (1 — k/2)-inverse strongly
monotone and F(T) = VI(C, A). Note that T is pseudo-
contractive if and only if A=I-T is monotone, and
F(T)= A"'(0) = {x € H: Ax = 0}. There are a lot works

associated with the fixed point algorithms for nonexpansive
mappings and pseudocontractive mappings (see, for ex-
ample, [24-28]).

A set-valued mapping T: H — 2H is called monotone
if for all x,ye€H,feTx, and heTy imply (x-
¥, f —h) >0. A monotone mapping T: H — 2 is maxi-
mal if the graph G(T) of T is not properly contained in the
graph of any other monotone mappings. Also, a monotone
mapping T: H — 2" is maximal if and only if, for
(x, f)e HxH,{x—y, f —h) >0 for every (y,h) e G(T)
implies f € Tx. Let A: C— H be an inverse strongly
monotone mapping and let Nu be the normal cone to C at
ueC,ie, Nou={ve H: {u-—w,v) >0, Yw € C}. Define

{ Au + Ncu,
Tu =
g, u¢cC.

uecC,

(11)

It is known that T is maximal monotone and 0 € Tu if
and only if u € VI(C, A) [29, 30].

Lemma 3 (see [8]). Let C and Q be nonempty, closed, and
convex subsets of real Hilbert spaces H, and H,, respectively,
and let A: H — H, be a bounded linear operator and
f: H — R be a continuous differentiable function. If a >0
and A € (0, (1/|Al]*)), then

(D) Vf(x)=Vf(x)+al =A"(I - Py)A+al is
(1/a + ||A))-inverse strongly monotone mapping
2)I-AVf,is (A(a+ ||A||2)/2)—averaged

(3) Po(I-AVf,) is (-averaged, with (= 2+A(a+
IAI%)/4)

(4) Po (I -AVf,) is nonexpansive

Lemma 4 (see [31]). Let H be a real Hilbert space, C be a
closed convex subset of H, and T: C — C be a continuous
pseudocontractive mapping. Then,

(i) F(T) is a closed convex subset of C

(ii) (I —T) is demiclosed at zero, i.e., if {x,} is a sequence
in C such that x, — x and Tx, —x, — 0; as
n — oo, then x = T (x).

Lemma 5 (see [32]). Let H be a real Hilbert space. Then, for
all x;j € H and a;j € [0,1], for j=1,2,3 such that
a, + a, + as = 1, the following equality holds:

2 2 2 2
layx, + ayxe, + asxs|” = ay|x; | + auf|x, | + s x|
2
1<i,j<3
(12)

Lemma 6 (see [33]). Let C be a nonempty closed and convex
subset of a real Hilbert space H and T: C — C be a non-
expansive mapping. Then, I — T is demiclosed at zero.



Lemma 7 (see [34]). Let {x,} and {y,} be sequences of
nonnegative real numbers satisfying x,.,; <X, + Y. If Y20 Vn
converges, then lim X,, exists.

n—~oo " 'n

Lemma 8 (see [35]). Let C be a nonempty closed convex
subset of a real Hilbert space H and let T: C — C be a
k-strictly pseudocontraction with a fixed point. Define
§:C— CbySx =ax+ (1 —a)Tx for each x € C. Then, as
a € [k, 1),S is nonexpansive such that F(S) = F(T).

Lemma 9 (see [36]). Let {x,} be a sequence of nonnegative
real numbers satisfying x,,.; < (1 = f,)x,, + B,Vn + &, where
{B.} € (0,1) and {y,} is a sequence such that ¥, f3, = o,
limsup, oY, <0 or Y 2o ly,Bal <00, and Y20, <co
where «, >0. Then, lim x, =0.

n—-00

Lemma 10 (see [37]). Let {x,}, {&,}, and {a,} be the se-
quences in [0,00) such that

Xy SX, + &, (%, - x,) + @, Vn>0, (13)
Yoo &, <00, and there exists a real number ¢ with
0<e,<e<1 for all n>0. Then, the following holds:

(i) Y20 [x, — x,_1], <0co, where [t], = max{t, 0}

(ii) There exists x* € [0,00) such that lim,_,  x, = x*

Lemma 11 (see [31]). Let H be a real Hilbert space. Then, for
any given x,y € H, the following inequality holds:
lx + yI? < el + 2¢y, x + p).

3. Weak and Strong Convergence Results

Now, we are ready to state and prove some of our main
results in this section.

Theorem 1. Assume that C and Q are 2 nonempty, closed,
and convex subsets of real Hilbert spaces H, and H,, re-
spectively. Let A: H — H, be a bounded linear oper-
ator, f: H; — R be a continuous differentiable function, F
be a bifunction from C x C to R satisfying (A,) — (A,), M be
an a-inverse strongly monotone mapping from C into H,,
S: C — C be a nonexpansive mapping, and T: C — C be
a strictly pseudocontractive mapping with constant k such
that ' = F(T)NF(S)NQNGEP(F, M) #@. Let {x,}, {y,},
{z,}, and {v,} be sequences generated by the following
extragradient algorithm:

Journal of Mathematics
[ x, =x €C,
1
F(v,, y) +{Mx,, y — v, +r—(y — V¥, — x,0 20,
Vy eC,
2, = Pe(1= L,V fo YV

Yn = PC(Vn - Anvfotnzn)’

Vn=0,
(14)

{ Xnt1 = AnXo + bnxn + Cn ((1 - ﬁn)syn + ﬁnTnZn)’

where T, = (1-vy,)I+vy,T and vy, € (k,1). Suppose the
following conditions are satisfied:

(6!) ZZ.;O &, < 00, hmn—»ooan =0, Zgzl a, = o

(b) {B,} < [Bi, B3] for some By, By € (0,1)
(c) {A,} € le,d] for some e,d € (0, (1/]|AlI*))
(d) 0<a,<a’ <1,0<b<b,<b <1,0<c<c,<c' <1
and a, +b,+c, =1,
(e) 0<q,<r,<gq,<2ax
Then, {x,} converges strongly to the point u = P (x,)
provided lim -x,l=0.

n—»oo"xn+1

Proof. For any fixed u € T, we find that u = P (I - AV f)u
for A € (0, (1/]|A*)) and Su = u. We see from Lemma 8 that
T, is nonexpansive and F(T',,) = F(T). It is observed that v,
can be rewritten as v, =T, (x,-r,Mx,), n>0. From
condition (e) and Lemma 1, we have

v, —ul” =|

-

T, (x,-1,Mx,) - u"2

T, (x,—r,Mx,) T, (u- rnMu)"2

<|(x, - r,Mx,) = (u - 1',,Mu)||2 (15)
=|x, - u"2 +1,(r, - 2a)|Mx, - Mu||2
2
< ||xn - u" .
From (14), (15), and Lemma 3, it follows that
2 = ull =|Pc(T = A,V fo ) = Pe (1= 1,9 )
<[Pe(T =AY fo )= Pe(T = AV £, )
+|Po(T =19 f 4 Ju - Pc(1-1,9f)u (16)

< ”vn - u|| + H(I - )Lana”)u -(I- )t,,Vf)u”
< ||vn - u|| + A0, llull

<|lx, = uf) + Al
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By the property of metric projection, we have

Vi = )anfa,l (Zn) - uuz - ’

Hyn - u"2 = Vi = /\Vlvfocnzn ~Yn

<[ =’ ~[v = 3l + 20,C9 o () = 30
<N =t = v = 3l + 24,4V f, (2)
~Vfo Wu-2z,)
+ 2, (CV fo, (W) u = 2,)
+ 20,V fo, (20): 20 = ¥))
<[y = sl == 2l + 20,V f o 1= 2,
+ 24,V f o, (20): 20 = V)
v =t =y =yl + 20,4 + Ve — 2,
+ 20,V fo, (20): 20 = V)
<=l =V = vl + 2hun 1 = 2,
+ 20,V fo, (20): 20 = V)
=y = ull =V = 2zl - 2% = 20020 = 3>
“llz. - I
+ 20, [0, st = 2,3 + <V f o (20220 = ¥) ]
=y, = uf =~z
+ 200, = L,V f o (20) = 2 Y = Z0)

+ 24,0, (uu -2,y ||z, - J’nHZ'
(17)

Furthermore, by the property of metric projection, we
have

V=0V S o, (20) = 20 Y = 20
=V =MV fo, (V) = 20 Y = 200
+ AV f o, (V) =XV fo, (20)s ¥ = 20
SV fo, (V) = AV fo, (20) Y = 200
Ve, (V) = Vo (2)

g/\n(ocn +||A||2)||vn A S §

(18)

<A,

"yn - zn"

Hence, we have

Ly =l <[lv =l ~[lv - 2|
+ 2V, = A,V f o, (20) = 2 Vi = 2Z0)
|20 = vl + 200, 1 — 2,
<[ = ] = v = 2l + 20, (s, +1412)
Jvn = zally - 2l
2 =yl + 22,0l - 2,
< v = ] = [vn = 2l + A2, +IAI)’
Nvu=zall +y - 2l
[z = yall” + 22,00, sl = 2,
= [ =l + (¥ 41AIY = 1) - 2
+ 24,0, llull|[u - z,|
<|v, - u||2 + 24,0, llull|[u - z,|
<[v, =l + 22, lull (|, = 4] + ety llul)
<[lv, = ul]* + ah e v, — ] + A2 ul’?
= (= + 20,
(19)
So, from (15), we obtain
Iy = ul” < (1, = uf + 24,0, lull ). (20)
We find from (14) and (16) and the last inequality that

a1 = ul =[lanxo + bux, + ¢, (1= Bo)Sy, + B.T2,) — 1
< an"xo - u“ + bn”xn - u“
6 [(1=BISy, =t + BTz, — u]]
< an"xo - un + bn”xn - un
+6u[(1= By = ull + Bullzw v
< an"xo - u“ + bn”xn - u“
0 (1= B ([P = ] + 22,0, 1)
+ ([l = ] + A lul)
<ayxo =l +(1-a,)x, - uf + 2,0, ul

< max{”xo = ul), |x, - u”} + 2000, [|ull

< |xo = uf + 24lull ) ;.

i=0
(21)
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Consequently, from condition (a), we deduce that {x,,}is  {y,}. Put t, = (1-,)Sy, + B,T,z, for all n>0. We find
bounded and so there exist the sequences {z,}, {v,}, and  from (15), (16), (19), and Lemma 5 that

”tn - unz = “(1 _ﬂn)syn +ﬁnTnzn - uuz
< (1 _ﬁn)"Syn - I/l”2 + Bn"Tnzn - uuz _ﬁn(l - ﬁn)”syn - TnZn"Z
= (1 - ﬁn)"yn - u"2 + ﬁn”zn - u"2 - ﬁn(l _ﬁn)usyn - Tnznuz

< (1= B) [0 =l + (M2t +1APY = 1) = 2 7, (1= 20) M, = Ml + 2,0z, - o]

(22)
Bl = uf + Ayt ) = By (1= B[Sy, ~ Tz
<J =l + (22 +0A1) = 1) v, - 2
+r,(r,— 20c)||Mxn - Mu”2 + 24,0, lull ||zn - u“
+ 20 lull|x, — ul + A2l = B, (1 = B)SYn — Tzl
From (14) and the last inequality, we conclude that
||xn+1 - u||2 = ||anx0 +b,x, +c,t, — u"2
<a,|x, - u||2 +b,|x, - u||2 +ct, - u||2 = b,cu|x, - tn||2
< an“xo - u"2 + bn"xn - u"2 - bncn”xn - tn"2
¢l = (N2 +BAPY = 1), = 2+ 1, (1 = 200 M, = Mulf + 2,0 |z, ]
# 20,0l = ] + bl = B, (1 - By, - Tz
<a,|x, - u||2 +(1-a,)|x, - u||2 = b,c,|x, - tn||2
(23)

+ (A +1AP) = 1), = 2, + 20,00z, - ]
+ 24,0, lull|x, — u + 7, (r, - 20) | Mx,, - Mu”2

+ /\721“;21”1'{”2 - Cnﬁn (1 - ﬁn)"syn - Tnzn||2

L e I R R A A
+ e, (A, +1APY = 1), = 2, + 24,0z, - ]
+ 24,0, lull|x, — u + 7, (r, - 20) | Mx,, - Mu”2

+ 202Ul = B (1= B)Syn — Tzl
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This yields that

From (97) and the condition (a)-(d), we also obtain

Syn“ = lim ||Mx —Mu” = lim ”x -t ||

C<1 - dz(‘xn + ”A"Z)z)”Vn - an|2 + Cb”xn - tn”z nh—r>noo||T Zn n—s00 n—s00
12— 1) |Mx, - Mul + B, (1= B,)e| Tz — Sy, = lim [lv, -z, =
<c (1 - )Lz(oc +||A||2)2)||V -z ||2 +c,b ||xn - tn”2 (26)
+1,(2a-r,)|Mx, —Mu“ +¢,B, (1 =BTz, Sy,,u2 It is observe that
2
subo-dl b | b=l =[Pl AT 0) - Pl A5+ )
+ 24,0, llull( |z, — ul +|x, — u|| + A0, llull).
( (24) SHVa — Anvfocn (Zn) _(Vn - /lnvftx,l (Vn))
. i N = An " (Zn) - Vfan (Vn)
Since lm;—’“’”x”“ —anu = 0 we have <A, (o +IAP) |2, = v, — 0, asn — co.
[, = ] ~[lsr = (27)
< U= =l =) Using L 1 and (14), we h
sing Lemma 1 an , we have
(A B ) (25)
< e = 2l ([ = 2] + 01 = 1) — 0,
asn — 0o.
v, - u"2 = -r,Mx,) =T, (u- rnMu)“2
<{(x, - r,Mx,) — (u—-r,Mu),v, —u)
1 2 1 2
= E”(x” -r,Mx,) - (u—- rnMu)" + E“Vﬂ - u"
1
_ EH(xn -r,Mx,) - (u—r,Mu) - (v, - u)“z (28)

<3 [l + I =l -,

1
"2

- o, - Mul? ]

- 2r,(Mzx, - Mu)| ]

[t =l =l [ = + 20, = v, M, = M)



It follows that

||vn - u"z < ||xn - u“z —||x,, - vn”Z +2r,{x, =V, Mx,, — Mu).

(29)
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From (19) and (29), we find that

[t =l =1 = B.)Sy, + BTz, ~ i’
< (1=B)Syn—ul + BTz~ ulf
< (U= By~ + Bl - ul’
< (1= B) [, -l + 22,0l - 2, 0

+ /3n<||x,, - u||2 —”xn - vnllz +2r,{x, — V,, Mx,, — Mu))

< ||xn - u"2 + ZAnanIIuIIHu - zn"

Bt =l 20, G, v M, ~ M) )

From (14) and the last inequality, we conclude that

”xwr1 - u“z = ||anx0 +b,x, +c,t, - u"2

< an"xo - u"2 + bn"xn - u”z + cn”tn - u”2

2 2
< an"xo - u" + bn"xn - u”

+ cn[nxn - u"z + ZAnanllullnu - zn" + ﬁn<—||xn - vn"2 +2r,{x, —v,, Mx, — Mu))]

(31)

< an"xo - u"2 +(1- an)"x,, - u"2 - cnﬁn"xn - vn"2

+c, [Z)LnocnlluH”u - zn" + 2r,{x,, = V,, Mx, — Mu)).

This yields that
Cnﬁn"xn - Vn”z = a,,”xo - ””2 +(1- an)”xn - ”"2 —”an - ””2
+c, [Z)Lnocnllullnu - z,,” +2r,{x, = v,, Mx, — Mu)].
(32)

It follows from condition (a) and lim,,_,llx, — x4/ =

lim, |, IMx, — Mu| = 0 that

Jim [, = v, | = 0. (33)
Since |lx, — z,ll < lIx, = v, + v, = 2, 1Tz, — 2, <

”Tnzn - xn” + "xn - Zn"’ "Tnzn - xn" < "Tnzn - tn" + ||tn_

X 1Tz, = t,ll = (1 = BIIT .2, — Sy,ll, we obtain ||T,z, —

t,ll — 0asn — oo. Note that 1 — 8, > 0. This implies that

Jim [Tz, -z, = 0. (34)

Also, from |y, -x,lI<ly,—-z.l+lz,-x,, ISy,—

xn” < ”S)’n - tn” + "tn - xn”’ "Syn - tn" = ﬂn"syn - Tnzn”’
and [Sy,, — v, <SSy, — x|l + Ix,, — ¥,.l, we get

lim [[Sy,, - y,[ =o. (35)

Since Vf = A*(I — Py)A is Lipschitz continuous, we
obtain lim, , IIVf(z,)-Vf(y)l=0.
Next, we show that

limsup{x, — u, x,, — u) <0, (36)

n—~oo

where u = P (x,). To show it, choose a subsequence {xnk} of
{x,} such that

linris)gop<xo - U, X, — Uy = kli_r)n()()(xo X, U (37)

Since {xn } is bounded, there exists a subsequence {xnk}
of {xnk}, converges weakly to x*. Without loss of generalit]y,
we assume that x, — x". Since lx, —v,Il — 0,
Ix, = v, — 0, ]x, — z,| — 0asn — 00, we obtain that
Y —x" v, =X, 2, —x". Since {ynk} c C and C is closed
and convex, we obtain x* € C. First, we show that
x* € F(T)NF(S). Then, from (34), (35), Lemma 6, and
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Lemma 4, we have that x* € F(T) N F(S). We now show that
x* € GEP(F,M). By v, =T, (x, —r,Mx,), we know that

F(v,, y) +{Mx,, y —v,) +i<y—vn,vn—xn>20,
T (38)

Vy eC.
It follows from (A,) that
(Mx, y = v, +ri (V=Y va— %) 2F(pv,), VyeC.
" (39)

Hence,

v

- X
nj nj

>2F(;V, an>’ Yy eC.

(40)

<Mxnj’y - Vn}-> +<y - an’ r
1

For t with 0<t<1 and y € C, let v, =ty + (1 —t)x".
Since y € Cand x* € C, we obtain v, € C. So, from (74), we
have

v = vnj,Mvt> > <Vt - vnj,Mvt> -, - Vi Mxnj)

:(vt - vnj,Mvt —Mvn])

+<vt = Vi Mvnj - Mxnj>

(P~ Yuo ¥ 2P~ ¥ VF ()

2P =Y V(D)) ~{P~ Y
24P = Yo V(D)) <P~ Yy

==Y V(D) =V(3, )

Since |lv, — x, | — 0, we have |[Mv, — Mx, || — 0.
Furthermore, from the inverse strongly monotonicity of M,
we have (v, —v, , Mv, — Mv, > >0. It follows from condi-
tion (A,) and (énj - xnj/rnj) ~>0and vn]_Ax*, we have

vy =x",Mv,)>F(v,,x"), (42)
as j — oo. From (A,) and (A,), we have
0=F(v,v)
<tF(v, y) + (1 —t)F (v, x"
StFEv:,j§+E1 —t;(v(t t—x*,)Mvt) (43)
=tF(v, y) +(1 =)t (y — x", Mv,),
and hence,
0<F(v,y)+(1-t){y—x", Mv,). (44)
Letting t — 0, we have, for each y € C,
F(x",y)+<{y - x",Mx") >0. (45)

This implies that x* € GEP(F, M). Next, we show that
x* € Q (1). Let

T’p:={

Then, T’ is maximal monotone and 0 € T' p if and only if
p e VI(C,Vf) [29]. Let G(T') be the graph of T', let
(p,v) € G(T"). Then, we have ve T (p) =Vf(p)+ Ncp
and hence v — V£ (p) € N p. Therefore, we have {p — w, v —
V£ (p)) =0 for all w e C. By the property of metric pro-
jection, from y, = P-(v,—A,Vf, z,) and p € C, we have
PV In— V=AM Vfoz,))2 0, and hence,
Yn = Vn

A

Vf(p)+ Ncp,
@)

peC,

46
pecC (49

P~V +Vfo 2,020 (47)

n

From (p-w,v-Vf(p))>0foralw e Cand y, €C,
we have

+<P - )’nk’ vf(ynk) - Vf(z”k)>

Z <p = Vo Vf(ynk) - vf(znk)> _<p Vo

Y, = Vi,
\Y
Ank + fzxnznk
Ve = Vn
k/‘ £+ Vf(an)> - "‘nk<P - ynk’znk
3
(48)
Y, = Vn
_<p_ynk’ k/\ k> _‘xnk<p_ynk’znk>
Mk
Vg = Vi,

1 > - ‘xnk<p_ynk’znk :

3
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Thus, we obtain (p —x*,v) >0 as k — . Since T' is
maximal monotone, we have x* €T’ O and hence,
x* € VI(C,Vf). This implies x* € Q. This implies that
x* € T. Thanks to (37), we arrive at

—u)

limsup x, -
n—aoo

U,x, —uy = kli_r)n()()(x0 — U, X,

(49)

={xy—u,x" —uy<0.
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Next, we show that x, — u as n — 00. Observe that

w =)

S 1 - ﬁn)"syn - u“ + ﬁn"Tnzn - I/l“
< (L=Byu—ul + Bullzn - ul

(50)
< (1= B,)(Jlx, - u + 24,0, l1ul)
+ B[ = v + Anet, lul)
< ||xn - u|| +2A, 0, lull.
With the help of (14), we obtain
||xn+1 - u"2 ={a,xy +b,x, +c,t, — U, X, —u)
<a,(xg— U, X, —uy +<b, (x, —u) +c,(t, —u), X, —uy
<a, Xy — Uy Xy — U +(bnnxn - un + cn"t,, - u")”xn+1 - u”
<a, Xy — Uy Xy — U +(bn||xn —ul| + ¢, |lx, — uf + 24,0, ull) [,y - u] (51)

<a,(xg = 1 %, ) +((1-a,)|x,

—ul| + 2)tnocn||u||)||xn+1 —u

<a,{xy— U, X, — Uy + 24,0, |lul ||xn+1 - u||

) (e, ot ),

which implies that
%1 — u”2 <(1-a,)|x, - u"2 +2a,{xy — U, X, — U

+ 4d, 00, [ull|x,0y — .

(52)
It follows from condition (a) and Lemma 9 that
Jim [lx, - uf =0 (53)

Therefore, from |[x, -z, — 0, ||lx, -y, — 0, we
can conclude that {x,}, {z,}, {v,}, and {y,} converge
strongly to the same point u = Pp(x,). The proof is
complete. O

In the following, we will discuss the weak convergence of
the sequence of the new iteration.

Theorem 2. Assume that C and Q are 2 nonempty, closed,
and convex subsets of real Hilbert spaces H, and H,, re-
spectively. Let A: H, — H, be a bounded linear operator
andf: H — R be a continuous differentiable function.
Assume that C and Q are 2 nonempty, closed, and convex
subsets of real Hilbert spaces H, and H,, respectively. Let
A;: H — H, bounded linear operators, f;: H — R bea
continuous differentiable function, i=1,2, and F be a
bifunction from C x C to R satisfying (A,) — (A,), M be an
a-inverse strongly monotone mapping from C into H,,
S: C — C be a nonexpansive mapping, and T: C — C be
a strictly pseudocontractive mapping with constant k such
that I = F(T) N F(S)NGEP(F, M) N (NZ,Q;) # . Suppose
{x,} and {z,} are sequences generated by the following
extragradient algorithm:
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xy=x €C,

Suppose the following conditions are satisfied:

(@) Y020 0y <00, Y205, < 00

(b) {B,} < [k, 7] for some r,k € (0,1), {A,} C [e,d] for
some e, d € (0, (1/]| Al*))

(©) {yn} c [t,m] for some t,m € (0,1), {8,} c [6},85]
for some 67,8, € (0,1)

(d) 0<a<a,<a <1, 0<bs<b,<b <1 and
0<c<c,<c'<landa,+b,+c,=1

(e) 0<q,<r,<q, <2«

Then, {x,} converges weakly to an element u € I.

Proof. For any fixed u € I, we find that u = P (I - AV f)u
for Ae (0, (1/|AJ*)) and Su=wu. Let Y, =Pc(I-
MV i) t,=Pc(I-4Vfy)x,, and T,=(1-
B+ B, T. We see from Lemma 8 that T, is nonexpansive
and F(T,) = F(T). From (54) and Lemma 3, it follows that

“yn - ”“ < “PC(I - Anvflan)xn - PC(I - Anvflan)u"
| Pe(1=2,9f 10 Ju = Po (I = AV £ )u
< ||xn - u" +“(I - Aanhxn)u -(I- )Lanl)u“

< ||xn - u" + A0 lull.
(55)

In a similar way, we have
It = ull < [Pe(T = AV £, )%, = Po(I =1,V £ Ju
#Pe(1 =2, f2 Ju = P (1= 1,V £,)u
<o = uf) + (1= 2,9 f2 Ju = (1= 1,V £,)u

< ||x,, - u" + A8, lull.
(56)

{ Xpt1 = ApXy T bn ((1 - ﬁn)zn + ﬁnTzn) T ¢ ((1 - 8n)vn + 6nsvn)’

Zy = anc(xn - /lnvflanxn) + (1 - Yn)PC(xn - AanZSnxn)’

1
F(v,, y) +{Mz,t,nyqg —hv,y + —y - tv,n,qv,h — z,) >0, Vy €C,
r

11
(54)
Vn>0.
This implies that
2 =l <vallys = ul + (=)0 = ]
< yn(“xn - u" + AnanIIuH) +(1-y,) (7)

(I = ] + Ay, )
< [ = ] + Al (t, +5,):
Observe  that v, can be  rewritten as

v, =T, (z,-1,Mz,), n>0. From (e) and Lemma 1, we
have

T, (z,~-r,Mz,) - u”z

v, -l =
:(Tr” (z,—r,Mz,) =T, (u- rnMu))2
<||(z, - r,Mz,) - (u- rnMu)“2 (58)

=|z. - u”z +1,(r, - 20)|Mz, - Mu”2

<[z~ ulf

<||x, = uf| + Al (o, + s,)-

We find from (54) and the last inequality that
- u” s “nllxn - “" + bn”TnZn B u“

+ Cn((l - 6n)|lvn - ”” + 57!“8"" - u”)

”xn+1
< an“xn - u|| +(1- an)"zn - u”
<a,|x, —ul +(1- an)(”xn = uf| + A, llull (o, + sn))
<%, = uf) + Al (e, + 5,)-
(59)
Consequently, from condition (a) and Lemma 7, we
deduce that, for every u € T, lim,__, [lx,, — ull exists and the

sequences {x,} and{z,} are bounded. It follows from (55),
(56), and Lemma 5 that
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”zn - u"2 SYn”yn - u”Z + (1 - Yn)”tn - u“Z ~Vn (1 - Yn)“yn - tn"2

<Y = ul + Al + (1 =y, ) ([ = 2] + Ayl

2

- yn(l - yn)”yn - tn“

(60)
< yn<2||xn - u"2 + 2Aiai||u||2> + (1 - yn)<2||xn - u”2 + 2Aisfl||u||2>
- Vn(l - yn)”yn - tnllz
<[ = + 22000 (@5 + 53) = v (L= v [y — -
Let S,v,= (1-6,)v, +3,Sv,. We find from (54), (58),
and Lemma 5 and the last inequality that
||xn+1 - u"2 = ||anxn +b,T,z,+c,((1-6,)v,+9,5v,) - u||2
< an"xn - u"2 + bn"Tnzn - u“z + cn[(l - 6n)||vn - u"2 + 6n||Svn - u"2
- (1 - é\n)é\n"Vn - Svn“z - anbnnxn - Tnzn"2 - ancn“xn - Snvnuz
<a,|x, - u"2 +(1-a,)|z, - u||2 +1,(r, - 20)|Mz, - Mu||2
—Cy (1 - 6n)8n||vn - Svnuz - anbn"xn - Tnzrl"2 - ancn"xn - SnVn"2
< an"xn - u"2 +(1-a,) ”xn - u||2 + 2/1f,||u||2(ocfl + sfl) (61)

~Vn (1 - Yn)"yn - tn||2 —Cy (1 - 8n)6n||vn - Svn“z

- a,b,||x, - Tnzn"2 - a,c,|x, - Snvn”2 +1,(r, - 2a)|Mz, - Mu”2
< "xn - uuz + ZAft"u"2<a2 + Sfl) - (1 - an)Yn (1 - yn)"yn - tn"Z
— Gy (1 - (Sn)anllvn - Svnuz - anbn"xn - Tnzn||2

- ancnnxn - Snvnn2 +1,(r, - Zoc)ann - Mu||2.

From conditions (b)-(e) and (61), we also obtain
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(1=a")t (1 =m)||y, -t + ab||x, - Tz, +c (1= 8,)8 v, - v,
v aclxy Syl + 1 (20— 1) [ Mz, - Mul
< (1=a,)y, (L= p)|yn = tul +ca(1=8,)8, v, = v, (62)
va b~ T+ 0,6, - S+ 1 2 )|z, - M

< ”xn - u||2 —||xn+1 - u"2 + 2Ai||u||2(oci + sfl)

Since lim,_,|lx,, — ul| existsand Y2 (a,, + s,,) < 00, we Since |x,.; — x,1<b,lx, - T,z +c,lx, - S,v,| and

see that Iz, = vl <y, = t,ll Iz, = t, I <lly, —t,ll, it follows that

Jim o, =S = i =T, = i 1y, ] im e, -] = tim [y, -2 = tim Je, -2, =0
= lim |x, = S,v,| = lim |Mz, - Mu| = 0. (64)

n—=aoo n—~oo
(63) Using Lemma 1 and (58), we have
2
v, - u"2 =\T, (z, - r,Mz,) =T, (u~ rnMu)“

<{(z,-r,Mz,) - (u—r,Mu),v, — u)

1 1
=z = rz,) = = r M)+ S, -l

1 , (65)
- E”(zn - rann) - (u - rnMu) - (vn - u)"
<3 [l =l #l =l =l = ) - 2, (M2, - Mw)[]
1
= ["zn - u||2 +||v,, - u"2 —“zn - vn"z +2r,{z, = v, Mz, — Mu) — rfl”Mxn - Mu"z].
It follows that We find from (54) and (66) that
||vn - u||2 < ||zn - u||2 —||zn - vn"z +2r,{z, = v,, Mz, — Mu).
(66)
||xn+1 - u"2 = ”anxn +b,T,z,+c,((1-6,)v,+9,5v,) - u||2
<al, - ul + BTz~ ul + e, (1= 8~ ul + 8, fsv, — ul
< annxn - u“z +(1- an)nzn - u"2 - cn”zn - Vn“2 +2r,{z, — v, Mz, — Mu)
< annxn - u||2 +(1- an)["xn - u"2 + ZAﬁIIuIIZ((xi + si)] (67)

- cn"zn - vn"2 +2r,{z, = v,, Mz, — Mu)
< ||xn - u"2 +(1- an)ZAiHuIIZ((xi + si)

- cn"zn - vn"2 +2r,{z, — v,, Mz, — Mu).



14

This yields that
Jou =5l <t =l s~ + 20 (<)

+2r,{z, = v,, Mz, — Mu).

(68)

It follows from condition (a), lim,_, . [IMz, — Mu]|| = 0,
and lim, | [lx, — u|| exists that

ngnoonzn B Vn" =0. (69)

Also, from |T,z,-z,<IT,z, - x,| +lx, —z,Il, |v,—

xpll < llv, = Spvull + llx,, = S, vl and v, = Sy, [l < v, = Sv,
we get
lim ||Tnzn - zn" = lim ”vn - xn" =0. (70)
n—~oo n—aoo

Note that ||x, — y,l < lx, — 2z, + Iz, = ¥, Ix, — £, <

lx, — z,ll + lz,, = t, I, BTz, — z,ll = IT 2z, — z,,Il. This im-
plies that
Tim -l = lim 6] = lim [Tz, -2, =0
(71)

Since Vf = A" (I - Py)A is Lipschitz continuous, we
obtain lim, , [IVf(x,)-Vf(y,)Il=0.

Since {x,} is bounded, there exists a subsequence {xnk}
of {x,} such that it converges weakly to some x*. Since
Ix, =yl — 0, llx, — 2, — 0, and |x, - v, — 0 as
n —> 00, we obtain that y, —x",z, —x", and v, —x".
Since { ynk} c C and C is closed and convex, we obtain
x* € C. First, we show that x* € F(T)NF(S). Then, from
(63), (71), Lemma 6, and Lemma 4, we have that
x* € F(T)NF(S). We now show x* e GEP(F,M). By
v, =T, (z,-r,Mz,), we know that

1
F(vn,y)+<Mz,,,y—vn>+r—(y—vn,vn—zn>20, vy eC.

(72)

It follows from (A,) that

1
Mz, y-v,) +r_<J’_Van -x,y>F(y,v,), VyeC.
(73)
Hence,

Vy, —

z,
(Mznj,y—vnj) +<y—vnj, ])2F<y,vnj), VyeC.

Tnj

(74)

For t with 0<t<1 and y € C, let v, =ty + (1 —t)x".
Since y € C and x* € C, we obtain v, € C. So, from (74), we
have
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vy — Vi Mv,y >{v, - Vi Myv,y — v, - Vi Mznj>

v, — 2
nj nj

- <Vt - an)

>+ F<vt,vnj)

={v, - vnj,Mvt - Mvn])

nj

+<{v, — an)Man - Mzn])

-z
nj nj

>+ F<vt, vn]_>.
(75)

- <vt - an:

-
nj

Since ||v, -z, | — 0, we have |Mv, - Mz, | — 0.
Furthermore, from the inverse strongly monotonicity of M,
we have (v, —v, ,Mv, — Mv, ) >0. It follows from A, and
(an - z,,j/rnj) — 0 and vnjix*, and we have

vy =v,Mv,) >F(v;,x"), (76)

as j — oo. From (A4,) and (A,), we have

0="F(v,v)
<tF(v, y) + (1 =t)F (v, x")
. (77)
<tF (v, y) + (1 = t)<v, — x*, Mv,)
=tF (v, y) +(1 =)ty — x", Mv,),
and hence,
0<F(v,y)+(1-t){y—x", Mv,). (78)
Letting t — 0, we have, for each y € C,
F(x", y)+{(y —x",Mx") >0. (79)

This implies that x* € GEP(F, M). Next, we show that
x* €Nz, Q; (1). Fori=1,2, let

/ {Vfi(P)*'NCP’ peC
Tp::

, 80
’ @, p¢C. (50

Then, T' is maximal monotone and 0 € T'p if and only if

p € VI(C,Vf,) [29]. Let G(T;) be the graph of T}, and
(p,v) € G(T?). Then, we have v € T;(p) = Vf,;(p) + Ncp,
and hence, v-Vf;(p) € Ncop. Therefore, we have
(p-w,v=Vf;(p))=0 for all we C. By the property of
metric projection, from y,=P-(x,-1,Vf,, x,) and
peC, we have {p—-y,,y,— (x, -1, Vfi, x,)) =0, and
hence, '
Yn = %n

<p_yn’ A

+Vf1%xn>20. (81)

n

From (p—w,v—Vfl(p)>20forallweCandynk e C,
we have
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P~ Yo 24P = up V1 (PD)

2P = Yo VI (D)) =P = Y
24P = Yup VI (P)) =P = Y

:<p_ynk’vfl(p)_vfl(ynk)>_<p_ynk’ 2

15
Ve = %n
kA “+ Vfloz,,xnk>
My
Y, = Xn,
An + Vfl(xnk)> - “nk<p = Vo Xy
(82)

Y, = Xn,

) - "‘nk<P = Ve X,

3

+<P = Vnp Vfl(ynk) - Vfl(x"k)>

2<P_ynk’vfl(ynk)_vfl(xnk)>_<p_ynk’ 2

Thus, we obtain {p — x*,v) >0 as k — oo. Since T is
maximal monotone, we have x* € T;'0, and hence,
x* € VI(C, Vf,). Similarly, we have x* € VI(C, Vf,). This
implies x* € (; for i=1,2. This implies that x* eT.
Therefore, from |x, — z,|l — 0, we can conclude that {x,},
{z,,}, and {v,} converge weakly to a point u € I'. The proof is
complete. O

Theorem 3. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H, and H,, respectively. Let
A: H, — H, be a bounded linear operator, S: C — Cbea
nonexpansive map, and T: C — C be a strictly pseudo-
contractive mapping with  constant k such that
I'=F(I)NF(S)NQ+@. Suppose {x,}, {v,}, and {z,} are
sequences generated by the following extragradient algorithm:

xy=x €C,
Vp =X, T &, (xn - xn—l)’
12, =Pc(I-A,Yfy Vo (83)

Xyl = ApXy + bn ((1 _ﬁn)zn + ﬁnTzn)
| +6,SPc(v, — A,V S, 2,), Vnz0.

Suppose the following conditions are satisfied:
(a) Y320 &y <00, 320 b, <00

(b) {B,} c [k,r] for some r,k € (0,1)

(c) {A,} < [e.d] for some e,d € (0, (1/|Al*))

Y = Xn,

)= ank<p = Yo Xy 7+

My

(d)0<a<a,<a' <1,0<b,<b' <1,0<c<c,<c' <1
anda,+b,+c, =1

(e) {e,} c [0,€] and € € [0,1), Y2 € llx, — x4l <00

Then, {x,} converges weakly to an element u € I.

Proof. For any fixed u € I', we find that u = P (I - AV f)u
for Ae (0, (1/JAI?) and Su=u. Putting T, = (1-
B + B, T, we see from Lemma 8 that T, is nonexpansive
and F(T,) = F(T). We observe that

v =l =l + 0 o = ) = ]

(84)
o e |

From (83) and Lemma 3, it follows that

Iz = ull = |Pe(1 = AV £, ) = Pe (T =, 9 f)u|
<[Pe(1 =AY fo ) = Pe(T= AV £ )
| Pe(1= 1,9 f 4, Ju = P (1= 1,9 )u
<[ = ] (1= 1,9 f o Ju = (1= A,V f)u
< ||v,, - u" + A, llul.
(85)

Put y, = Pc(v,-1,Vf, (z,) for all n>0. Then, by
property of metric projection, we have
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2
Vi = /\nvftxnzn ~Vn

Vi = Aan(xn (Zn) - u"Z -

= uf <
<[ =] =7 = 2l + 2AC f, (Z) = 3,
<[ =] =7 =yl + 20 f, (20) = Vo, W) - 2,)
+ 2,(V fo, W= 2, +<V fo (2,): 2, = V)
<=l =7 =yl + 20T o (1= 2,
+ 20,V f o (20): 20 = ¥
<[ = el = = vl + 200 (@] + Vs u = 2, 56
+ 20,V f o (20)s 20 = ¥
<y = sl = =2l + 2he i1 = 2,)
+ 20,V f o (20)s 20 = V)
= v = sl v = zall” = 200 = 20020 = 3> |2 = 2l
20, [0, = 2,) + (Vo (2): 20— )]
= v = ] v = 2l + 2400 = 1,V f o (2) = 2o Y = 20

+2M,0,{u,u — z,,) _"Zn - )’n"z-

Furthermore, by property of metric projection, we have

V=MV o, (20) = 20 Y — 20

= = AV f o, (V) = 2 V= 200 + AV fo, (V) = AV fo (20)s Y = 200

<V fa, (V) =2V o, (20)s Y — 200 (87)
Vfa, (va) = Vo, (20)|[yn — 2l
<A, AP ) v, = 2ol = 2l

<A,

Hence, we have
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Ly =l <[vn =l =9 = 2l + 2€00 = AV f o, (20) = 20 Y = 20
20 = vl + 220t — 2,
<[y =l v = 2l + 20 (a0 +1AI) [, = 20~ 2
Nz = 3l + 20l e~ 2,
<[ =l == zall”+ W2 (0 1A Y 7, = 2 +170 = 2l
Nz = yall” + 2000, il - 2, (88)
==l + (X3 +1AP) = 1), = 20l + 20,0 bl - 2,
<|v, - u||2 + 24,0, llull|[u - z,|
<[v =]} + 2,0, (v — 1] + Ayl
<|v, =l + A lull|v, - ] + A2l

= ([ = uf + 20, ).

We find from (83), (84), and (85) and the last inequality
that

|1 — u| =||la,x, + b, Tz, + cnSPc(vn -ALVfo (zn)) - u"

< an"xn - u" + bn"Tnzn - u” + cn”Syn - u"

<ay|x, = ul + bz, v + ey~
(89)

<a,|x, = u| + b,(|v, — ] + Apeylluall) + ¢, (||, = uf) + 24,0, lual)

<ay|x, —ul + (1= a,)([|v. - ] + 22, ]lul)

< = ) + el = x| + 24,01l

Consequently, from conditions (a) and (e) and Lemma
10, we deduce that, for every u € I, lim,__, llx,, — ull exists
and the sequences {x,}, {z,}, and {y,} are bounded. We find
from (83), (84), (85), (88), Lemma 5, and Lemma 11 that
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s =]} =8 + BTz + €uSPC(v~ AV f o (2)) — |
<y, = ull + BTz, ] + Sy, — ]’
B e R
<a v, =~ + ble, —ull + ey, - ul
—ab,x, =Tz~ ae v, =Sy’
<y, = ull + b, (v — ] + Lyt )’
[ R CH O FUD I T o
= a5 =Tzl = gl =Syl + 260,z - u]
<a ey~ + b, (2w, - ] + 22’
# 6ol =ull + (A3, +1AP) = 1) v, = 2, + 28,0, bulz, - u]

- ab %, - Tz - ae,|x, - Sy,

< (14 B, =t + 20202 1ull” +2(2b,, + €)% = Xop_1s Vg — 1) (90)
+ e (o ALY = D)= 20 + o (Robul? 4]z, - o)
— b %, - Tz - ae,|x, - Sy,

n'n-n

# e (Mo HBAPY = D) = 20 + ()1l + (v, = ] + 2,0t

<(1+b,)|x, - u"2 +2b L |ull® +2(2b, + cn)Enllxn = % |||V — 4|

—a,b%, = Tzl - ase,x, = Syl
< (1+B,) |, — ] + 26, 2 ull> +2(2b,, + €)% — Xt || — 1]
# (A2 +VAPY = 1), = 2l + (A0l + 2], =+ 22 hul?)
= a,blx, =Tz - ase %, = Syl
< (146, 4+ 2a,)x, -l + ¢, (e, +141°) = 1), - 2,
F ANl (1 + 26,0, + 262) = @b, %, — Tozol = ancall, - Syl

+2(2b, + ¢, + 2at,)e,||x,, — x4 |||V = |-

From conditions (b) and (d), we obtain

(1= d(a, +1AP) )l = 2 + b, ~ T + acl, - 7,
<c(1-22(a 1AL Y = 2 + @b, = Tzl + e, = Syl o
< (1+b,+2a,)|x, - u“2 %1 = u"z + ocn/\f,||u||2<l + 20(31)

+2(2b, + ¢, + 20,)8,|x, = x4 ||V — 1))

From conditions (a) and (e), we also obtain
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lim ”xn - Syn” = lim "xn - Tnzn"

n—oo n—~oo
= lim |v, - z,| =0.
n—~oo

By the definition of {v,} and (e), we have

lim ”vn - xn" = lim sn”xn - x,H" =0. (93)

n—~oo n—~oo
This implies that
Iz, = x| < |20 = V|| + [0 = %] — 0, asn —> 0.
(94)

It is observe that
1 = 2all = |Pc(vn = 2V fa, (20)) = Pe(v = 2V fo, ()]
Vo= AV fo (20) = (Vo = 1Y o, (v)]
= M|V, (20) = Vo, (V)

S)Ln(ocn +||A||2)Hzn - vn" — 0, asn— 00.
(95)

<

Also, from |T,z, - z,I< Tz, — x| + Ix,, — 2, Iy, —
x <y, =zl + 1z, = x,I, and |y, - v, I <y, -z, +lz,
—v,ll, we get

lim ||Tnzn - zn“ = lim ||yn - xn“ = lim ||yn - vn” =0.
(96)
Note that ISy, — vl < Sy, — x, 0l + lIx, — v,

BTz, - z,|l =Tz, — z,|. This implies that

(P~ Yuo ¥ 2P~ ¥ VF ()

2= Yuo V(D)) P~ Y
24P = Yuo V(D)) =P~ V>

=<p_ynk’vf(p)_vf(ynk)>_<p_ynk’ 2
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Jim [y, =y, = lim [Tz, -z, =0 (97)

Since Vf = A*(I — Py)A is Lipschitz continuous, we
obtain lim, , IVf(z,)-Vf(y,)l=0.

Since, {x,} is bounded, there exists a subsequence {xnk}
of {x,} such that it converges weakly to some x*. Since
lx, =yl — 0, lIx, — 2z, — 0, and |[x,—- v, — 0 as
n — ©o, we obtain that y, —x",z, —x*, and v, —x".
Since {ynk} c C and C is closed and convex, we obtain
x* € C. First, we show that x* € F(T)NF(S). Then, from
(97), Lemma 6, and Lemma 4, we have that
x* € F(T)NF(S). We now show x* € Q (1). Let

peC,

T’p — {Vf(P)+NCP: (98)

2, pécC.

Then, T’ is maximal monotone and 0 € T' p if and only if
p € VI(C,Vf) [29]. Let G(T") be the graph of T', and let
(p,v) € G(T"). Then, we have v € T' (p) = Vf(p) + Ncp,
and hence, v-Vf(p) € Ncp. Therefore, we have
(p—w,v=Vf(p))=0 forall w € C. By property of metric
projection, from y, =P (v,-1,Vf,z,) and peC, we
have {p - y,, y, = (v, =4,V f, 2,)> 20, and hence,

Yn=Vn

<P_yn> 1

From (p-w,v-Vf(p))=20forallweCand y, €C,
we have

+Vf 2,020, (99)

n

Ve =™V,

1 + Vf‘xnkznk

My

Yn, = Vi,

2 + Vf(znk)> - “nk<P = Vo Zn,
3
(100)
Y, =V,

> - (Xnk<p = Vo 2y

Lo

P = Yo VI (30) ~Vf(2,)

= <P = Vupo Vf(ynk) - Vf(znk)> _<P Vo

Thus, we obtain (p — x*,v) >0 as k — 0. Since T is
maximal monotone, we have x* € T' 0, and hence,
x* € VI(C, V). This implies that x* € Q. This implies that

Yn, = Vn
k/l k> - ank<P_ynk’an .

3

x* eT. Therefore, from lx, -z, — 0 and
Ix, — v, — 0, we can conclude that {x,}, {z,}, and {v,}
converge weakly to a point u € I'. The proofis complete. [
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4. Applications

If, in Theorem 3 and Theorem 1, we assume that C = H,
then we can get the following theorems.

Theorem 4. Let H, and H, be real Hilbert spaces,
A;: H — H, be a bounded linear operator, for i = 1,2,
S:H, — H, be a nonexpansive mapping, and
T: H, — H, a strictly pseudocontractive mappmg with
constant k such that T =F(T)NF(S)N2,(Vf) '0+@.
Suppose {x,} and {z,} are sequences generated by the fol-
lowing extragradient algorithm:

xy =x €C,
Zy = YH(xn - /\nvfltxnxn) + (1 - yn)(xn - /\nvaS,‘xn)’
Xp1 = pXy + bn ((1 - /';n)zn + ﬁnTZn)
+c,((1-9,)z,+9,52,), VYn>0.

(101)

If conditions (a) — (d) are satisfied, then {x,} converges
weakly to an element u € I

Proof. We have (Vf,)"'0=VI(H,,Vf,) for i=1,2 and
Py, =I; by Theorem 3, we obtain the desired result. O

Theorem 5. Let H, and H, be real Hilbert spaces,
A: H, — H, be a bounded linear operator, S: H, — H,
be a nonexpansive map, and T: H, — H, be a strictly
pseudocontractive mapping with constants k such that
I'=F(MNE®S)N(Vf)'0#3. Suppose {x,}, {v,}, and
{z,} are sequences generated by the following extragradient
algorithm:

[ x,=x€C,
Vo = X+ 8, (%, = %,0),
{20 =(I= AV f o )V (102)
Xps1 = 8%, + b, (1= B,)2, + B.T7,)
| + cnS(vn - )Lanaﬂzn), Vn=0.

If conditions (a) — (e) are satisfied, then {
weakly to an element u € I

x,} converges

Proof. We have (Vf)™'0=VI(H,,Vf) and Py =1I; by
Theorem 3, we obtain the desired result. O

Theorem 6. Let H, and H, be real Hilbert spaces,
A: H, — H, be a bounded linear operator, S: H, — H,
be a nonexpansive map, and T: H — H, be a strictly
pseudocontractive mapping with constant k such that
I'=F(T)NE®S)N (Vf) '0#3. Suppose {x,}, {y,}, and
{z,} are sequences generated by the following extragradient
algorithm:
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xo=x €C,
2, =(I-1,9f, )%,
Yn = Xn— Anvfotnzw

xn+1 = anxO + bn‘xn + Cn ((1 - ﬁn)syn + ﬁnTnzn)’ Vi’l = O’

(103)

where T, = (1 -y, ) +y,T and vy, c (k,1). If conditions
(a) — (d) are satisfied, then {x,} converges strongly to the
point u = Pr(x,).

Proof. We have (Vf)™'0=VI(H,,Vf) and Py =1 by
Theorem 1, we obtain the desired result.

Let B: H — 2H be a maximal monotone mapping.
Then, for any x€H and >0, consider
JBx ={y € H: x = y + rBy}. Likewise, a J® is called the
resolvent of B and is denoted by J? = (I + rB)"!

Theorem 7. Let H, and H, be real Hilbert spaces,
B;: H, — 281 be maximal monotone mappings, fori = 1, 2

A H — H, be bounded linear operators, fori=1,2, P

be the resolvents of B, for each r >0, and T: H, — H, be a
strictly pseudocontractive mapping with constant k such that
I'=F(T)NE(S)NB'on (Vf;) '0#S. Suppose {x,} and
{z,} are sequences generated by the following extragradient
algorithm:

xy=x€C,
Zp = Yn]fl (xn - Anvflanxn) + (1 - yn)]fz (xn - AanZS,,xn)’
Xpp1 = ApXpy + bn ((1 - ﬁn)zn + ﬂnTZn) + €2, VN0

(104)

If conditions (a) — (d) are satisfied, then {x,} converges
weakly to an element u € I

Proof. We have F(J5) = B0, (Vf)'0=VI(H,,Vf,) for
i=1,2 and Py =I; by Theorem 3, we obtain the desired
result. .

Theorem 8. Let H, and H, be real Hilbert spaces,
A: H, — H, be a bounded linear operator, B: H; — 2H:
be a maximal monotone mapping, ]2 be the resolvent of B for
eachr>0, and T: H, — H, be a strictly pseudocontractive
mapping with constant k such that
I'=F(T)nB'0n (Vf) '0#&. Suppose {x,}, {v,}, and
{z,} are sequences generated by the following extragradient
algorithm:

[ xy =x€C,
- xn—l)’
12, =(I-1Vf, IV

Xn+1 = Xy + bn ((1

v, = x, +&,(x,
(105)

= Bu)z, + BTz,)

[ + C,Jf(vn ~AVfoz,), ¥n=0.

If conditions (a) — (e) are satisfied, then {x,} converges
weakly to an element u € I.
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Proof. We have F(JB) = B~10, (Vf)"'0 = VI(H,,Vf), and
PHl = I; by Theorem 3, we obtain the desired result. O

Theorem 9. Let H, and H, be real Hilbert spaces,
A: H, — H, be a bounded linear operator, B: H;, — 2
be a maximal monotone mapping, J® be the resolvent of B for
each r>0, and T: H, — H, be a strictly pseudocontractive
mapping  with  constant 'k such that I =F(T)n
B 10N (Vf) '0+ . Suppose {x,}, {y,}, and {z,} are se-
quences generated by the following extragradient algorithm:

xy=x€C,

2, =(I1- 1,V f, )%,

= T7 (%0 = AV f o, 20):

X1 = @y X + by, + ¢, (1= B)y, + BuTuz,), V120,
(106)

where T, = (1-y)I+y,T and y, c (k,1). If conditions
(a) — (d) are satisfied, then {x,} converges strongly to the
point u = Pr(xg).

Proof. We have F(J8) = B~'0, (Vf)"'0 = VI(H}, V), and
Py = I; by Theorem 1, we obtain the desired result. [0

If in Theorems 3 and 1 we assume that T is non-
expansive, then we have that T is strictly pseudocontractive
with k = 1, and hence, we get the following corollaries.

Corollary 1. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H, and H,, respectively. Let
A; Hy — H, be bounded linear operators for i=1,2,
S: C — C be a nonexpansive mapping, and T: C — C be
a nonexpansive  mapping such that I =F(T)N
F(SNE ,0#D. Suppose {x,} and {z,} are sequences
generated by the following extragradient algorithm:

[ x, =x €C,
Zy = YnPC(xn - Anvflanxn)
1t (1 - yn)pC(xn - /\nvaS,,xn)’
Xpp1 = ApX, + b, ((1 - ﬁn)zn + ﬁnTzn)

[ +¢,((1-9,)z, +9,52,),

(107)

Vn=>0.

If conditions (a) — (d) are satisfied, then {x,} converges
weakly to an element u € I

Corollary 2. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H, and H,, respectively. Let
A: H, — H, be a bounded linear operator, S: C — Cbea
nonexpansive mapping, and T: C — C be a nonexpansive
mapping such that I = F(T)NF(S)NQ+ . Suppose that
{x,}, {v,}, and {z,} are sequences generated by the following
extragradient algorithm:
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[ x, =x€C,
Vy =X, + &, (X, — X,_1),
12, =Pc(I-1Vfo )Vu (108)

Xpy1 = GpXy + bn ((1 - ﬁn)zn + ﬁnTZn)
| +6,SPe(v, =N,V S, z,), VYn=0.

If conditions (a) — (e) are satisfied, then {x,} converges
weakly to an element u € I

Corollary 3. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H, and H,, respectively. Let
A: H, — H, be a bounded linear operator, S: C — Cbea
nonexpansive map, and T: C — C be nonexpansive such
thatT = F(T)NF(S)NQ# @. Let {x,} and {z,,} be sequences
generated by the following extragradient algorithm:

xy=x€C,
2, = Pc(1- 1,V f, )%,
Yn = PC(xn - Anvfanzn)’

xn+1 = aVl'xO + bnxn + Cn ((1 - ﬁn)syn + ﬂﬂTVlZVI)’ vn 2 0’

(109)

where T, = (1L -y, ) +y,T and vy, C (k,1). If conditions
(a) — (d) are satisfied, then {x,} converges strongly to the
point u = Pr(x,).
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