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In this paper, we study fuzzy deductive systems of Hilbert algebras whose truth values are in a complete lattice satisfying the
infinite meet distributive law. Several characterizations are obtained for fuzzy deductive systems generated by a fuzzy set. It is also
proved that the class of all fuzzy deductive systems of a Hilbert algebra forms an algebraic closure fuzzy set system. Furthermore,
we obtain a lattice isomorphism between the class of fuzzy deductive systems and the class of fuzzy congruence relations in the
variety of Hilbert algebras.

1. Introduction

*e pioneering work of Zadeh [1] on fuzzy subsets of a set
has been extensively applied to many scientific fields. *is
concept was adapted by Rosenfeld [2] to define fuzzy
subgroups of a group. Since then, many authors have been
studying fuzzy subalgebras of several algebraic structures
such as rings, modules, vector spaces, lattices, pseudo-
complemented semilattice, MS algebras, and universal al-
gebras (see [3–8]). More recently, fuzzy ideals of a poset were
studied by Alaba et al. [9] as a generalization of those fuzzy
ideals of lattices. However, Swamy and Raju [10, 11] have
unified all these fuzzy algebraic notions, by introducing the
general theory of algebraic fuzzy systems. Some applications
of fuzzy algebras and fuzzy points are also given in the
literature [12–14].

It was Gougen [15] who first realized that the unit in-
terval [0, 1] is insufficient to take truth values for fuzzy
statements. Swamy and Swamy [16] have suggested that
complete lattices satisfying the infinite meet distributive
property are the most suitable candidates to take truth values
of the general fuzzy statements.

On the other hand, in 1966, Diego [17] introduced the
notion of Hilbert algebras and deductive systems and

provided various properties. *e theory of Hilbert algebras
and deductive systems was further developed by Busneag in
a series of papers [18, 19]. Jun and Hong introduced the
notion fuzzy deductive system in a Hilbert algebra in [20],
and Jun constructed its extension in [21] whose truth values
are in the unit interval [0, 1] of real numbers.

Initiated by all the above results, in this paper, we define
fuzzy deductive systems of Hilbert algebras whose truth
values are in a complete lattice satisfying the infinite meet
distributive law and we obtain several equivalent conditions
for a fuzzy set to be a fuzzy deductive system. Fuzzy de-
ductive systems generated by a fuzzy subset are characterized
in different ways. It is also proved that the set of all fuzzy
deductive systems of a Hilbert algebra forms an algebraic
closure fuzzy set system with respect to the pointwise or-
dering. Furthermore, we study fuzzy congruence relations
on Hilbert algebras and we obtain a lattice isomorphism
between the set of all fuzzy deductive systems and the set of
all fuzzy congruence relations of a Hilbert algebra.

2. Preliminaries

In this section, we recall some definitions and basic prop-
erties of deductive systems of a Hilbert algebra.

Hindawi
Journal of Mathematics
Volume 2020, Article ID 6910726, 9 pages
https://doi.org/10.1155/2020/6910726

mailto:buttu412@yahoo.com
https://orcid.org/0000-0002-6735-6832
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6910726


Definition 1. An algebra (A, ∗, 1) of type (2, 0) is said to be
a Hilbert algebra if it satisfies the following conditions:

(1) x∗ (y∗ x) � 1,

(2) (x∗ (y∗ z))∗ ((x∗y)∗ (x∗ z)) � 1,

(3) if x∗y � 1 � y∗x, then x � y,

for all x, y, z ∈ H and 1 is a fixed element of H.
It was proved by Diego in [17] that the classK of Hilbert

algebras forms a variety. *e following result is also adopted
from [17].

Lemma 1. Every Hilbert algebra A satisfies the following
conditions:

(1) x∗x � 1,

(2) 1∗ x � x,

(3) x∗ 1 � 1,

(4) x∗ (y∗ z) � y∗ (x∗ z),

(5) x∗ (y∗ z) � (x∗y)∗ (x∗ z),

(6) (x∗y)∗ ((y∗ z)∗ (x∗ z)) � 1,

(7) (x∗y)∗ ((z∗ x)∗ (z∗y)) � 1, for any x, y, z ∈ A.

If A � 1{ }, then A is called trivial.*e binary relation ‵ ≤ ′
defined in a Hilbert algebra A by x≤y if and only if x∗y � 1
is a partial order on A with the greatest element 1. *is order
is called the natural ordering on A.

The concept of a deductive system on a Hilbert algebra A

was introduced by Diego [17] as follows.

Definition 2. A nonempty subset D of a Hilbert algebra A is
called a deductive system on A if it satisfies the following
conditions:

(1) 1 ∈ D,

(2) x ∈ D,

(3) x∗y ∈ D, imply y ∈ D.

In other words, a deductive system of A is a subset of A

containing 1 and closed under a deduction. One can easily
check that the lattice of deductive systems of a Hilbert al-
gebra A is closed under arbitrary intersection so that for any
subset S of A, always there exists a smallest deductive system
D(S) of A containing S. It is called the deductive system of A

generated by S. Chajda [22] has characterized D(S) in the
following way. Define sets

X1 � S∪ 1{ },

Xn � y ∈ A: x ∈ Xn−1 x∗y ∈ Xn−1􏼈 􏼉,
(1)

for each positive integer n≥ 2, inductively. *en,

D(S) � ⋃ Xn: n ∈ N􏼈 􏼉, (2)

where N denotes the set of positive integers.
*e internal structure of D(S) is also characterized by

Diego in [17] as follows: D(S) � 1{ } if S � ∅ and for S≠∅,

D(S) � y ∈ A: x1 ∗ x2 ∗ · · · ∗ xn ∗y( 􏼁 · · ·( 􏼁( 􏼁􏼈

� 1 for somex1, x2, . . . , xn ∈ S􏼉.
(3)

*roughout this paper, L stands for a complete lattice
satisfying the infinite meet distributive law and A stands for
a Hilbert algebra unless and otherwise stated.

By an L-fuzzy subset μ of A, we mean a mapping
μ: A⟶ L. *e set μ(x): x ∈ A􏼈 􏼉 is called the image of μ
and is denoted by Im(μ). An L-fuzzy subset μ of A is called
normalized or unitary if 1 ∈ Im(μ). *e class of all L-fuzzy
subsets of A is denoted by LA.

For each α ∈ L, the α-level subset of μ, which is denoted
by μα, is a subset of A given by

μα � x: μ(x)≥ α􏼈 􏼉. (4)

For any L-fuzzy subset μ of A and each x ∈ A, it was
proved in [23] that

μ(x) � ∨ α ∈ L: μ(x)≥ α􏼈 􏼉. (5)

For L-fuzzy subsets μ and σ of A, we write μ⊆ σ to mean
μ(x)≤ σ(x) for all x ∈ A in the ordering of L. It can be easily
verified that “⊆ ” is a partial order on the set LA and it is
called the pointwise ordering.

For each x in A and 0≠ α in L, we define xα ∈ LA as
follows:

xα(y) �
α if y � x,

0 otherwise,
􏼨 (6)

for each y ∈ A and we call it an L-fuzzy point of A.

3. L-Fuzzy Deductive Systems

In this section, we define L-fuzzy deductive system in a
Hilbert algebra A and investigate some of its properties.

Definition 3. An L-fuzzy subset μ of A is said to be an
L-fuzzy deductive system on A if

(1) μ(1) � 1,

(2) μ(x)∧μ(x∗y)≤ μ(y), for all x, y ∈ A.

We denote by FDL(A) the set of all L-fuzzy deductive
systems of A.

*e following lemma is a straightforward verification of
the definition, but useful to prove results in the latter section.

Lemma 2. Let μ be an L-fuzzy deductive system on A. 1en,
for any x, y, z, w ∈ A, the following hold:

(1) μ(x∗y) � 1 implies μ(x)≤ μ(y),

(2) x≤y implies μ(x)≤ μ(y),

(3) x∗ (y∗ z) � 1 implies μ(x)∧μ(y)≤ μ(z),

(4) μ(x∗ z)∧μ(z∗y)≤ μ(x∗y).
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Proof
(1) Let x, y ∈ A such that μ(x∗y) � 1. *en, we have

the following:

μ(x) � μ(x)∧ 1 � μ(x)∧ μ(x∗y)≤ μ(y). (7)

(2) Let x, y ∈ A such that x≤y. *en, x∗y � 1 and
hence, μ(x∗y) � μ(1) � 1. *us, it follows from (1)
that μ(x)≤ μ(y).

(3) Let x, y, z ∈ A such that x∗ (y∗ z) � 1. *en,
x≤y∗ z. By (2), we have μ(x)≤ μ(y∗ z). *is im-
plies that

μ(x)∧ μ(y)≤ μ(y∗ z)∧ μ(y)≤ μ(z). (8)

(4) Let x, y, z ∈ A. By Lemma 1, (x∗ z)∗
((z∗y)∗ (x∗y)) � 1. *en, it follows from (3) that
μ(x∗ z)∧ μ(z∗y)≤ μ(x∗y). □

Lemma 3. An L-fuzzy subset μ of A is an L-fuzzy deductive
system of A if and only if the α-level subset μα is a deductive
system of A, for all α ∈ L.

Proof. Let μ be an L-fuzzy deductive system of A and α ∈ L.
*en, μ(1) � 1≥ α. *us, 1 ∈ μα. Again, let x, y ∈ A such
that x ∈ μα and x∗y ∈ μα. *en,

μ(x)≥ α,

μ(x∗y)≥ α.
(9)

*is implies that α≤ μ(x)∧ μ(x∗y)≤ μ(y) and hence
y ∈ μα. So μα is a deductive system of A.

Conversely, suppose that μα is a deductive system of A

for all α ∈ L. In particular, μ1 is a deductive system. Since
1 ∈ μ1, we have μ(1)≥ 1, but μ(x)≤ 1, ∀x ∈ A, and hence
μ(1)≤ 1. *us, we have μ(1) � 1. Again, let x, y ∈ A and put
α � μ(x)∧ μ(x∗y). *is implies that x ∈ μα and x∗y ∈ μα
so we have y ∈ μα. *erefore,

μ(y)≥ α � μ(x)∧ μ(x∗y). (10)

Hence, μ is an L-fuzzy deductive system of A. □

Definition 4. For any subset S of A and each α ∈ L − 1{ },
define an L-fuzzy subset αS of A by for any x ∈ A,

αS(x) �
1 if x ∈ S,

α otherwise.
􏼨 (11)

Corollary 1. Let S be a subset of A and 1≠ α ∈ L. 1en, S is a
deductive system if and only if αS is an L-fuzzy deductive
system of A.

Proof. Suppose that S is a deductive system of A and let
α ∈ L − 1{ }.*en, 1 ∈ S and hence, αS(1) � 1. Let x, y ∈ A. If
either αS(x) � α or αS(x∗y) � α, then

αS(x)∧ αS(x∗y) � α≤ αS(y). (12)

Assume that αS(x)≠ α and αS(x∗y)≠ α. *en,
x, x∗y ∈ S. By our assumption, S is a deductive system of A

so that y ∈ S and hence,

αS(y) � 1≥ αS(x)∧ αS(x∗y). (13)

*us, αS is an L-fuzzy deductive system of A. Conversely,
suppose that αS is an L-fuzzy deductive system of A for some
α ∈ L − 1{ }. *en, αS(1) � 1 and hence, 1 ∈ S. Also, let
x, y ∈ A such that x, x∗y ∈ S. *en, αS(x) � 1 � αS(x∗y),
which gives αS(x)∧ αS(x∗y) � 1. αS being an L-fuzzy
deductive system, we obtain αS(y) � 1. Equivalently, y ∈ S

and hence S is a deductive system of A. *is completes the
proof. □

Remark 1. *e L-fuzzy deductive system αS given above is
called the α-level L-fuzzy deductive system of A corre-
sponding to the deductive system S.

Let us now define a binary operation ⊙ , called a product,
on LA as follows: for any η, σ ∈ LA, (η⊙ σ)(x) � ∨
η(a)∧ σ(b): x � a∗ b􏼈 􏼉 for all x ∈ A.

In the following theorem, we use this product and give a
Rosenfeld-type characterization for L-fuzzy subsets of A to
be an L-fuzzy deductive system.

Theorem 1. μ ∈ LA is an L-fuzzy deductive system ofA if and
only if μ(1) � 1 and for any normalized η ∈ LA and any
σ ∈ LA, η⊆ μ and η⊙ σ ⊆ μ together imply σ ⊆ μ.

Proof. Suppose that μ is an L-fuzzy deductive system of A.
Let η be a normalized L-fuzzy subset of A and σ is an L-fuzzy
subset of A such that η⊆ μ and η⊙ σ ⊆ μ. *en, η(a) � 1 for
some a ∈ A. Now, for any x ∈ A,

σ(x) � 1∧ σ(x)

� η(a)∧ σ(x)

≤ (η⊙ σ)(a∗x)

≤ μ(a∗ x)

� η(a)∧ μ(a∗ x) (since μ(y)≤ 1 � η(a),∀y ∈ A)

≤ μ(a)∧ μ(a∗ x)≤ μ(x).

(14)

*erefore, σ ⊆ μ.
Conversely, suppose that μ ∈ LA satisfies the given

condition. Now, we show that μ is an L-fuzzy deductive
system of A. By hypothesis, μ(1) � 1. Let x, y ∈ A. Define
L-fuzzy subsets η and σ of A by for any z ∈ A,

η(z) �

1, if z � 1,

μ(x), if z � x,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩

σ(z) �

1, if z � 1,

μ(x∗y), if z � y,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

(15)
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Clearly η is a normalized and η⊆ μ. Moreover, for each
z ∈ A,

(η⊙ σ)(z) �

1, if z � 1,

μ(x)∧ μ(x∗y), if z � x∗y,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(16)

which is a subset of μ. Hence, by hypothesis, we have σ ⊆ μ.
Hence, μ(x∗y) � σ(y)≤ μ(y) and so μ(x)∧ μ(x∗y)≤
μ(y). *erefore, μ is an L-fuzzy deductive system. □

Notation 1. We write F ⊂f A, to say that F is a finite subset
of A. *e following result is another characterization for
L-fuzzy deductive systems of A.

Theorem 2. An L-fuzzy subset μ of A is an L-fuzzy deductive
system of A if and only if for any F ⊂f A, μ(x)≥∧a∈Fμ(a) for
all x ∈ D(F).

Proof. Suppose that μ is an L-fuzzy deductive system of A.
Let F ⊂f A and put α � inf μ(a): a ∈ F􏼈 􏼉. *en, μ(a)≥ α for
all a ∈ F and hence F⊆ μα. Clearly, by Lemma 3, μα is a
deductive system. *erefore, D(F)⊆ μα and hence,
μ(x)≥ α � ∧a∈Fμ(a) for all x ∈ D(F).

Conversely, suppose that μ satisfies the given conditions.
Now, since D(∅) � 1{ }, by hypothesis, we have
μ(1)≥ inf μ(a): a ∈∅􏼈 􏼉 � 1 and hence μ(1) � 1.

Let x, y ∈ A. Put F � x, x∗y􏼈 􏼉. *en, it is easy to see
that y ∈ D(F). *us, by hypothesis, we have
μ(y)≥ μ(x)∧ μ(x∗y). *erefore, μ is an L-fuzzy deductive
system of A. □

4. L-Fuzzy Deductive Systems Generated by
L-Fuzzy Subset

Lemma 4. 1e class FDL(A) is closed under arbitrary
intersection.

Proof. Let μi: i ∈ Δ􏼈 􏼉 be any family of L-fuzzy deductive
systems of A. Now, we claim that ∩ i∈Δμi is an L-fuzzy
deductive system of A. If Δ � ∅, then by logical convention,
∩ i∈Δμi � 1, where 1 is an L-fuzzy subset of A defined by

1(x) � 1, (17)

for all x ∈ A, and clearly, it is an L-fuzzy deductive system of
A. Assume that Δ≠∅. Since μi(1) � 1, for all i ∈ Δ, we have
∩ i∈Δμi(1) � inf μi(1): i ∈ Δ􏼈 􏼉 � 1. Again, let x, y ∈ A. *en,

∩
i∈Δ

μi􏼒 􏼓(x)∧ ∩
i∈Δ

μi􏼒 􏼓(x∗y) � inf μi(x): i ∈ Δ􏼈 􏼉

∧ inf μi(x∗y): i ∈ Δ􏼈 􏼉

� inf μi(x)∧ μi(x∗y): i ∈ Δ􏼈 􏼉

≤ inf μi(y): i ∈ Δ􏼈 􏼉

� ∩
i∈Δ

μi􏼒 􏼓(y).

(18)

*erefore, ∩ i∈Δμi is an L-fuzzy deductive systems of A.
*is lemma confirms that the class FDL(A) of all L-fuzzy

deductive systems of A forms a closure fuzzy set system and
for any L-fuzzy subset μ of A, always there exists a smallest
L-fuzzy deductive system of A containing μ which we call it
the L-fuzzy deductive system of A generated by μ and is
denoted by DL(μ). □

Lemma 5. Let μ and η be L-fuzzy subsets of A. 1en,

(1) μ ∈ FDL(A), if and only if DL(μ) � μ,

(2) μ⊆η⇒DL(μ)⊆DL(η),

(3) DL(DL(μ)) � DL(μ).

It can be deduced from this lemma that the map
μ↦DL(μ) forms a closure operator, i.e., isotone, extensive
and idempotent on the lattice LA. Moreover, L-fuzzy de-
ductive systems of A are those closed elements of LA with
respect to this closure operator.

Lemma 6. For any subset S of A and each α ∈ L − 1{ },
αD(S) � DL(αS).

Proof. We show that αD(S) is the smallest L-fuzzy deductive
system of A containing αS. Since D(S) is a deductive system
of A containing S, it is clear that αD(S) is an L-fuzzy deductive
system of A containing αS. Suppose that λ is an L-fuzzy
deductive system of A such that αS ⊆ λ. *en, λ(s) � 1 for all
s ∈ S. Let z be any element in A. If z ∉ D(S), then
αD(S)(z) � α≤ λ(z). Let z ∈ D(S). Since αS ⊆ λ, we have
S⊆ λ1. *is implies that D(S)⊆D(λ1) � λ1. So z ∈ λ1 and
hence λ(z) � 1. *erefore, αD(S)(z) � 1 � λ(z) so that
αD(S) ⊆ λ. *erefore, αD(S) � DL(αS). □

Corollary 2. Let S be any subset of A and χS its characteristic
function. 1en, DL(χS) � χD(S).

In the following theorem, we characterize L-fuzzy de-
ductive systems generated by an L-fuzzy subset in terms of
their level sets.

Theorem 3. For an L-fuzzy subset λ of A, let 􏽢λ be an L-fuzzy
subset of A defined by

􏽢λ(x) � ∨ α ∈ L: x ∈ D λα( 􏼁􏼈 􏼉, (19)

for all x ∈ A. 1en, 􏽢λ � DL(λ).

Proof. We show that 􏽢λ is the smallest L-fuzzy deductive
system of A containing λ. Let us first show that 􏽢λ is an
L-fuzzy deductive system:

(1) 􏽢λ(1) � ∨ α ∈ L: 1 ∈ D(λα)􏼈 􏼉 � 1.

(1) Let x, y ∈ A. *en, consider
􏽢λ(x)∧􏽢λ(x∗y) �∨ α ∈ L: x ∈D λα( 􏼁􏼈 􏼉∧∨ β ∈ L: x∗y ∈D λβ􏼐 􏼑􏽮 􏽯

�∨ α∧β: x ∈D λα( 􏼁,x∗y ∈D λβ􏼐 􏼑􏽮 􏽯.

(20)
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If we put c � α∧ β, then we obtain λα ⊆ λc and λβ ⊆ λc,
which gives the following:

D λα( 􏼁⊆D λc􏼐 􏼑,

D λβ􏼐 􏼑⊆D λc􏼐 􏼑.
(21)

*erefore, x, x∗y ∈ D(λc) and hence y ∈ D(λc). Now
it follows from the above-given equality that

􏽢λ(x)∧ 􏽢λ(x∗y) � ∨ α∧ β: x ∈ D λα( 􏼁, x∗y ∈ D λβ􏼐 􏼑􏽮 􏽯

≤∨ c ∈ L: y ∈ D λc􏼐 􏼑􏽮 􏽯

� 􏽢λ(y).

(22)

*erefore, 􏽢λ is an L-fuzzy deductive system of A. It is also
clear to see that λ⊆ 􏽢λ. Suppose that μ is any other L-fuzzy
deductive system of A such that λ⊆ μ. *en, it is clear that
D(λα)⊆ μα for all α ∈ L. Now, for any x ∈ A, consider

􏽢λ(x) � ∨ α ∈ L: x ∈ D λα( 􏼁􏼈 􏼉≤∨ α ∈ L: x ∈ μα􏼈 􏼉 � μ(x).

(23)

*erefore, 􏽢λ is the smallest L-fuzzy deductive system
containing λ and hence 􏽢λ � DL(λ).

In the following theorem, we characterize L-fuzzy de-
ductive systems generated by an L-fuzzy subset using finitely
generated crisp deductive systems. □

Theorem 4. For an L-fuzzy subset λ of A, let λ be an L-fuzzy
subset of A defined by

λ(x) � ∨ ∧ a∈Fλ(a): x ∈ D(F), F ⊂ fA􏽮 􏽯, (24)

for all x ∈ A. 1en, λ � DL(λ).

Proof. By*eorem 3, it is enough if we show that λ � 􏽢λ. For
each x ∈ A, let us define two sets Hx and Gx as follows:

Hx � ∧ a∈Fλ(a): x ∈ D(F), F ⊂ fA􏽮 􏽯,

Gx � α ∈ L: x ∈ D λα( 􏼁􏼈 􏼉.
(25)

Our claim is to show that

∨ α: α ∈ Hx􏼈 􏼉 � ∨ α: α ∈ Gx􏼈 􏼉. (26)

In one way, we show that Hx ⊆Gx. If α ∈ Hx, then α �

∧ a∈Fλ(a) and x ∈ D(F) for some finite subset F of A. *at
is, a ∈ λα, for all a ∈ F and x ∈ D(F). Hence, x ∈ D(λα).
*en, α ∈ Gx and hence Hx ⊆Gx. In the other way, we prove
that, for each α ∈ Gx, there exists β ∈ Hx such that α≤ β. Let
α ∈ Gx. *en, x ∈ D(λα); that is, there exist
x1, x2, . . . , xn ∈ λα such that x1 ∗ (x2 ∗ (· · · (xn ∗
x) · · ·)) � 1. *is implies that ∧ n

i�1λ(ai)≥ α.
Moreover, if we put β � ∧ n

i�1λ(xi) and
F � x1, x2, . . . , xn􏼈 􏼉, then F is a finite subset of A such that
x ∈ D(F). *us, β ∈ Hx such that α≤ β. □

Corollary 3. For each x ∈ A and α ∈ L − 0{ }, the L-fuzzy
deductive system of A generated by the fuzzy point xα is
characterized as

DL xα( 􏼁(z) �

1, if z � 1,

α, if z ∈ D( x{ }) − 1{ },

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(27)

for all z ∈ A.
The following theorem gives a description for α−level

cuts of L-fuzzy deductive systems generated by an L-fuzzy
subset.

Theorem 5. Let μ be an L-fuzzy subset of A and α ∈ L:

DL(μ)( 􏼁α � ⋃ ∩
c∈M

D μc􏼐 􏼑: M⊆ L and α≤ supM􏼨 􏼩. (28)

Proof. Let us put

H � ⋃ ∩
c∈M

D μc􏼐 􏼑: M⊆ L and α≤ supM􏼨 􏼩. (29)

If x ∈ H, then x ∈ ∩ c∈MD(μc) for some M⊆L with
α≤ supM; i.e., x ∈ D(μc) for all c ∈M and α≤ supM. By
*eorem 3, we have the following:

DL(μ)(x) � ∨ β ∈ L: x ∈ D μβ􏼐 􏼑􏽮 􏽯. (30)

*erefore, DL(μ)(x) ≥ c for all c ∈M. *is gives
DL(μ)(x)≥ α. *us, x ∈ (DL(μ))α and hence H⊆ (DL(μ))α.
To prove the other inequality, let us take x ∈ (DL(μ))α.*en,

∨ β ∈ L: x ∈ D μβ􏼐 􏼑􏽮 􏽯≥ α. (31)

If we put M � β ∈ L: x ∈ D(μβ)􏽮 􏽯, then M⊆L such that
α≤ supM and x ∈ D(μc) for all c ∈M. *is means that
x ∈ ∩ c∈MD(μc) and α≤ supM. *us, x ∈ H, and hence, the
proof ends. □

Corollary 4. For any L-fuzzy subset μ of A and each α ∈ L,
D(μα)⊆ (DL(μ))α. Moreover, if L is a chain and μ is finite
valued or equivalently if μ has sup property, then the equality
holds.

In the following, we give an algebraic characterization
for L-fuzzy deductive systems generated by L-fuzzy subset.
Let μ be an L-fuzzy subset of A and N be a set of positive
integers. For each n ∈ N, let us define L-fuzzy subsets μn of A

as follows:

μ1(x) �
1, if x � 1,

μ(x), otherwise,
􏼨 (32)

for all x ∈ A, and for each n≥ 1 and each y ∈ A,

μn+1(y) � ∨ μn(x)∧ μn(x∗y): x ∈ A􏼈 􏼉. (33)

Then, it is immediate from the definition that μn(1) � 1
for all n≥ 1. Moreover, one can deduce that

μ1 ⊆ μ2 ⊆ μ3 ⊆ · · · ⊆ μn ⊆ · · · (34)
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Theorem 6. Let μ be an L-fuzzy subset of A. 1en,
DL(μ) � ⋃ μn: n ∈ N􏼈 􏼉.

Proof. Put μ � ⋃ μn: n ∈ N􏼈 􏼉. Now, we claim that μ is the
smallest L-fuzzy deductive system containing μ. Now, let
x ∈ A. *en,

μ(x) � ∨ μn(x): n ∈ N􏼈 􏼉

≥ μ1(x)

≥ μ(x).

(35)

*us, we have μ⊆ μ.
Since μ(1)≥ μ1(1) � 1, we have μ(1) � 1. Let x, y ∈ A

and x≠ 1.
*en

μ(x)∧ μ(x∗y) � ∨ μn(x): n ∈ N􏼈 􏼉∧∨ μm(x∗y): m ∈ N􏼈 􏼉

� ∨ μn(x)∧ μm(x∗y): n, m ∈ N􏼈 􏼉

≤∨ μk(x)∧ μk(x∗y): where􏼈

k � max m, n{ }, n, m ∈ N}

� μk+1(y)

≤∨ μn(y): n ∈ N􏼈 􏼉

� μ(y).

(36)

So μ is an L-fuzzy deductive system of A. Again, let θ be
any L-fuzzy deductive system of A such that μ⊆ θ. We show
that μn ⊆ θ for all n ∈ N. We use induction on n. Let x ∈ A.
*en, if x � 1, then θ(1) � 1 � μ1(x). If x≠ 1, then
θ(x) ≥ μ(x) � μ1(x). *is implies that μ1 ⊆ θ and hence it
holds for n � 1. Let n> 1 and assume the result to be true for
some n − 1, i.e., μn−1 ⊆ θ. Now, for any x ∈ A, we have

μn(x) � ∨ μn−1(a)∧ μn−1(a∗x)􏼈

≤∨ θ(a) ∧ θ(a∗ x)≤ θ(x).{
(37)

Hence, μn ⊆ θ. *us, by mathematical induction, we have
μn ⊆ θ for all n ∈ N. Hence, μ � ⋃ μn: n ∈ N􏼈 􏼉⊆ θ. *erefore,
μ � DL(μ).

*e following is also another algebraic characterization
of L-fuzzy deductive system generated by an L-fuzzy subset
of A. □

Theorem 7. Let λ be an L-fuzzy subset of A. 1en, the
L-fuzzy subset λ defined by: λ(1) � 1 and for x≠ 1,

λ(x) � ∨ ∧ n
i�1λ xi( 􏼁: x1 ∗ x2 ∗ · · · xn ∗ x( 􏼁 · · ·( 􏼁( 􏼁 � 1,􏼈

x1, . . . , xn ∈ A􏼉,

(38)
is the L-fuzzy deductive system of A generated by λ.

The following theorem gives a method of constructing
L-fuzzy deductive systems using crisp deductive systems in
the sense of [10].

Theorem 8. Suppose that Hα􏼈 􏼉α∈L is a family of deductive
systems of A such that

∩
α∈M

Hα � HsupM, (39)

for all M⊆L. 1en, there is a unique L-fuzzy deductive system
μ of A for which μα � Hα for all α ∈ L. Moreover, every
L-fuzzy deductive system of A is obtained in this way only.

Proof. We first show that the map α↦Hα is antitone, in
the sense that, for each α, β ∈ L, α≤ β⟹Hβ ⊆Hα. Let
α, β ∈ L such that α≤ β. Put M � α, β􏼈 􏼉. *en, supM � β. By
our hypothesis Hα ∩Hβ � HsupM � Hβ. *erefore, Hβ ⊆Hα
and hence, the map α↦Hα is antitone. Define an L-fuzzy
subset μ of A by

μ(x) � ∨ α ∈ L: x ∈ Hα􏼈 􏼉, (40)

for all x ∈ A. Clearly, μ is well defined. Our aim is to show
that μα � Hα for all α ∈ L. *e inclusion Hα ⊆ μα follows
easily from the definition of μ. To prove the other inclusion,
let x ∈ μα. *en, μ(x)≥ α, i.e.,

∨ c ∈ L: x ∈ Hc􏽮 􏽯≥ α. (41)

If we put M � c ∈ L: x ∈ Hc􏽮 􏽯, then M⊆L such that
α≤ supM and x ∈ Hc for all c ∈M, i.e.,

x ∈ ∩
c∈M

Hc. (42)

By our assumption, it follows that x ∈ HsupM. Since
α≤ supM and the map α↦Hα is antitone, we obtain
x ∈ Hα. *us, Hα � μα. *is means that μ is an L-fuzzy
subset of A for which its α-level sets are Hα’s. Each Hα being
a deductive system of A, it follows from Lemma 3 that μ is an
L-fuzzy deductive system. *e uniqueness of μ follows from
the fact μα � Hα for all α ∈ L. *e converse is
straightforward. □

5. Lattice of L-Fuzzy Deductive Systems

Let us first recall some important results from [24]. LetC be
a nonempty collection of fuzzy subsets of a nonempty set X.

Definition 5. C is said to be a closure system in LX if it is
closed under arbitrary intersection of fuzzy sets; i.e., if for
any subcollectionD of fuzzy subsets of X inC, it holds that

∩
μ∈D

μ ∈ C. (43)

A closure system of fuzzy sets is also known as the “Moor
family” of fuzzy sets.

Remark 2. IfC is a closure system in LX, then it contains the
fuzzy subset 1X of X. *is is because the fuzzy set 1X can be
expressed as the infimum of an empty collection of fuzzy
subsets of X.

Theorem 9. IfC is a closure system in LX, then (C, ⊆ ) forms
a complete lattice, where ⊆ is the inclusion ordering of fuzzy
sets.
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Definition 6. A nonempty collectionC of fuzzy subsets of X

is called inductive if every nonempty chain in C has a
supremum in C.

Definition 7. A closure system C in LX is said to be an
algebraic closure fuzzy sets system if it is inductive.

As observed in the previous section, the collection
FDL(A) of all L-fuzzy deductive systems of A is closed under
arbitrary intersection of fuzzy sets. *us, (FDL(A), ⊆ )

forms a closure fuzzy set system and hence it is a complete
lattice. *e following theorem summarizes this.

Theorem 10. 1e collection FDL(A) forms a complete lattice
with respect to the pointwise ordering, where the infimum and
supremum of any of its subfamily μi: i ∈ Δ􏼈 􏼉, respectively, are

inf
i∈Δ

μi � ∩
i∈Δ

μi,

supi∈Δμi � DL ∪
i∈Δ

μi􏼒 􏼓.
(44)

Corollary 5. 1e set FDL(A) forms the algebraic closure
fuzzy set system on A with respect to the pointwise ordering of
fuzzy sets.

Proof 13. It is enough to show that FDL(A) is inductive in
LA. Let μi􏼈 􏼉i∈Δ be a chain in FDL(A). Let us put

η � ∪
i∈Δ

μi. (45)

We show that η is an L-fuzzy deductive system of A.
Clearly, η(1) � 1. Let x, y ∈ A. First observe that, for each
i, j ∈ Δ, there exists k ∈ i, j􏼈 􏼉 such that μi ⊆ μK and μj ⊆ μk.
Now, consider the following:

η(x)∧ η(x∗y) � ∨
i∈Δ

μi(x)􏼒 􏼓∧ ∨
j∈Δ

μj(x∗y)􏼠 􏼡

� ∨
i,j∈Δ

μi(x)∧ μj(x∗y)

≤ ∨
k∈Δ

μk(x)∧ μk(x∗y)( 􏼁

≤ ∨
k∈Δ

μk(y)

� η(y).

(46)

*erefore η is an L-fuzzy deductive system of A. □

Remark 3. If L is an algebraic lattice, then FCa(A) forms an
algebraic lattice.

6. L-Fuzzy Congruences

By an L-fuzzy relation on A, we mean an L-fuzzy subset of
A × A. For any α ∈ L and an L-fuzzy relation Θ on A, the set

Θα � (x, y) ∈ A × A: Θ(x, y)≥ α􏼈 􏼉, (47)

is called the α-level relation of Θ on A.

Definition 8. An L-fuzzy relation Θ on A is said to be

(1) Reflexive if Θ(x, x) � 1 for all x ∈ A

(2) Symmetric if Θ(x, y) � Θ(y, x) for all x, y ∈ A

(3) Transitive if for each x, z ∈ A, Θ(x, z)≥Θ
(x, y)∧Θ(y, z) for all y ∈ A

A reflexive, symmetric, and transitive L-fuzzy relation on
A is called an L-fuzzy equivalence relation on A.

Definition 9. An L-fuzzy relation Θ on A is said to be
compatible, if

Θ(a∗ c, b∗ d)≥Θ(a, b)∧Θ(c, d), (48)

for all a, b, c, d ∈ A.
*is fact is often expressed in the way that Θ is said to

have the substitution property with respect to the binary
operation ∗ .

Definition 10. A compatible L-fuzzy equivalence relation on
A is called an L-fuzzy congruence relation on A.

We denote by FCon(A) the class of all L-fuzzy con-
gruence relations on A, and it is clear that FCon(A) is a
complete lattice. For any a ∈ L and Θ ∈ FCon(A), define a
fuzzy subset [a]Θ of A by

[a]Θ(x) � Θ(a, x), (49)

for all x ∈ A. We call [a]Θ an L-fuzzy congruence class of Θ
determined by a, and in particular, [1]Θ is called the kernel
of Θ. Let us put

A

Θ
� [a]Θ: a ∈ A􏼈 􏼉, (50)

and define a binary operation ⊛ on A/Θ by

[a]Θ ⊛ [b]Θ � [a∗ b]Θ. (51)

*en, it is routine to verify that ((A/Θ),⊛, [1]Θ) is a
Hilbert algebra and it is called the quotient Hilbert algebra of
A modulo Θ.

Lemma 7. For each Θ ∈ FCon(A), [1]Θ is an L-fuzzy de-
ductive system of A.

Proof. Since Θ is reflexive, we have [1]Θ(1) � Θ(1, 1) � 1.
Let x, y ∈ A. *en,

[1]Θ(x)∧ [1]Θ(x∗y) � Θ(1, x)∧Θ(1, x∗y)

� Θ(1, x)∧Θ(y, y)∧Θ(1, x∗y)

≤Θ(y, (x∗y))∧Θ(1, x∗y)

≤Θ(1∗y, (x∗y)∗ (x∗y))

≤Θ(y, 1) � [1]Θ(y).

(52)

*us, [1]Θ is an L-fuzzy deductive system of A. □

Remark 4. It is sufficient for Θ to be reflexive and com-
patible only to obtain the result of Lemma 7.
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Lemma 8. For each Θ,Φ ∈ FCon(A),

[1]Θ � [1]Φ⟹Θ � Φ. (53)

Proof. LetΘ,Φ ∈ FCon(A) such that [1]Θ � [1]Φ.*en, it is
clear that Θα[1] � Φα[1] for all α ∈ L. Let (x, y) ∈ A × A,
and putΘ(x, y) � α. *en, it is clear thatΘα is a congruence
relation on A containing (x, y) and hence (x∗y, 1) and
(y∗x, 1) belong to Θα. *is imply that
x∗y, y∗x ∈ Θα[1] � Φα[1] and so the following hold in
the quotient Hilbert algebra (A/Φα):

Φα[x]Φα[y] � Φα[x∗y] � Φα[1],

Φα[y]Φα[x] � Φα[y∗x] � Φα[1].
(54)

(A/Φα)Since the binary operations x∗y andy∗x form
a G€odel equivalence system in the variety of Hilbert algebras,
it follows that Φα[x] � Φα[y]. *erefore, (x, y) ∈ Φα and
thus, Φ(x, y)≥ α � Θ(x, y). Similarly, we can show that
Θ(x, y)≥Φ(x, y) so that the equality holds. □

Corollary 6. For each Θ,Φ ∈ FCon(A),

[1]Θ ⊆ [1]Φ⟺Θ⊆Φ. (55)

Proof. LetΘ,Φ ∈ FCon(A) such that [1]Θ ⊆ [1]Φ. *en, it is
clear that Θα[1]⊆Φα[1] for all α ∈ L. Let x, y ∈ A, and put
Θ(x, y) � α. *en, it is clear thatΘα is a congruence relation
on A containing (x, y) and hence (x∗y, 1) and (y∗x, 1)

belong to Θα. *is imply that x∗y, y∗ x ∈ Θα[1]⊆Φα[1]

and so the following hold in the quotient Hilbert algebra
(A/Φα):

Φα[x]Φα[y] � Φα[x∗y] � Φα[1],

Φα[y]Φα[x] � Φα[y∗x] � Φα[1].
(56)

(A/Φα)Since the binary operations x∗y andy∗x form
a G€odel equivalence system in the variety of Hilbert algebras,
it follows that Φα[x] � Φα[y]. *erefore, (x, y) ∈ Φα and
hence Φ(x, y)≥ α � Θ(x, y). *us Θ⊆Φ. □

Corollary 7. For each Θ,Φ ∈ FCon(A),

(1) [1]Θ∩Φ � [1]Θ ∩ [1]Φ,

(2) [1]Θ∨Φ � [1]Θ∨[1]Φ.

For any L-fuzzy subset μ of A, let us define an L-fuzzy
relation Θμ of A as follows:

Θμ(a, b) � μ(a∗ b)∧ μ(b∗ a), (57)

for all a, b ∈ A.

Lemma 9. If the fuzzy relationΘμ is reflexive, then the kernel
of Θμ is μ.

Proof. Let Θμ be reflexive. *en, for any x ∈ A,
1 � Θμ(x, x) � μ(x∗ x)∧ μ(x∗ x) � μ(1). *us, μ(1) � 1.
Now, since for any x ∈ A,

[1]Θμ(x) � Θμ(1, x)

� μ(1∗x)∧ μ(x∗ 1) � μ(x)∧ μ(1)

� μ(x)∧ 1 � μ(x).

(58)

*erefore, the kernel of Θμ is μ. □

Lemma 10. If Θμ be an L-fuzzy equivalence relation on A,
then for any a, b ∈ A with a≤ b, it holds that

μ(b)≥ μ(a)∧ μ(b∗ a). (59)

Proof. Let Θμ be an L-fuzzy equivalence relation on A and
a, b ∈ A such that a≤ b. *en, a∗ b � 1. By Lemma 9, we
have μ(1) � 1 � μ(a∗ b) and [1]Θμ � μ. *us,

μ(a)∧ μ(b∗ a) � μ(a)∧ μ(b∗ a)∧ μ(a∗ b)

� μ(a)∧Θμ(a, b)

� [1]Θμ(a)∧Θμ(a, b)

� Θμ(1, a)∧Θμ(a, b)

≤Θμ(1, b) � [1]Θμ(b) � μ(b).

(60)

*is proves the result. □

Theorem 11. If μ is an L-fuzzy deductive system of A, then
Θμ is an L-fuzzy congruence relation on A whose kernel is μ.

Proof. Let μ be an L-fuzzy deductive system of A. *en, for
any x ∈ A, Θμ(x, x) � μ(x∗x)∧ μ(x∗x) � μ(1) � 1. *us,
Θμ is reflexive. Again, for any x, y ∈ A, Θμ(x, y) �

μ(x∗y)∧ μ(y∗x) � μ(y∗x)∧ μ(x∗y) � Θμ(y, x). *us,
Θμ is symmetric. Let x, y, z ∈ A. Now,

Θμ(x, y)∧Θμ(y, z) � (μ(x∗y)∧ μ(y∗x))∧ (μ(y∗ z)

∧ μ(z∗y))

� (μ(x∗y)∧ μ(y∗ z))∧ (μ(z∗y)

∧ μ(y∗x))

≤ μ(x∗ z)∧ μ(z∗ x) (by, Lemma 2)

� Θμ(x, z).

(61)

*us, Θμ is transitive. Let x, y, a, b ∈ A. Now using
Lemma 1 and Lemma 2, we have
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Θμ(x, y)∧Θμ(a, b) � (μ(x∗y)∧ μ(y∗ x))∧ (μ(a∗ b)

∧ μ(b∗ a))

� (μ(y∗x)∧ μ(a∗ b))∧ (μ(x∗y)

∧ μ(b∗ a))

≤ ((μ(x∗ a)∗ (y∗ a))∧ μ((y∗ a)

∗ ((y∗ b))))∧ (μ((y∗ b)∗ (x∗ b))

∧ μ((x∗ b)∗ (x∗ a)))

≤ μ((x∗ a)∗ (y∗ b))∧ μ((y∗ b)

∗ (x∗ a))

� Θμ(x∗ a, y∗ b).

(62)

*us, Θμ is compatible. *erefore, Θμ is an L-fuzzy
congruence relation on A and its kernel, by Lemma 9, is
μ. □

Corollary 8. 1e map Θ↦[1]Θ is a lattice isomorphism
between FCon(A) and FDL(A).

Proof. Lemma 8 confirms that the map is one-one. More-
over, for any μ ∈ FDL(A), it is proved in the above theorem
that Θμ ∈ FCon(A) such that [1]Θμ � μ. *en, the map
Θ⟼[1]Θ is onto. Furthermore, it is proved in Corollary 7
that this map is a lattice homomorphism. *erefore, it is a
lattice isomorphism between FCon(A) and FDL(A). □

Theorem 12. For a Hilbert Algebra, the lattice (FDL(A), ⊆ )

is distributive with respect to the pointwise ordering ′ ⊆′.
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