Hindawi

Journal of Mathematics

Volume 2020, Article ID 7805730, 9 pages
https://doi.org/10.1155/2020/7805730

Research Article

Hindawi

The Zeros of Orthogonal Polynomials and Markov-Bernstein
Inequalities for Jacobi-Exponential Weights on (-1,1)

Rong Liu

College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China

Correspondence should be addressed to Rong Liu; chensil983@163.com

Received 18 January 2020; Revised 26 June 2020; Accepted 30 July 2020; Published 24 August 2020

Academic Editor: Markos Koutras

Copyright © 2020 Rong Liu. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let U(x) =[], Ix=t;7, 0<p<oo, -1 =t,<t, <. <t,<t;=1,r>2, p;>-1/p,i=12,..

7, and W = e Q%) where

Q: (-1,1) — [0, 00). We give the estimates of the zeros of orthogonal polynomials for the Jacobi-Exponential weight WU on
(-1, 1). In addition, Markov-Bernstein inequalities for the weight WU are also obtained.

1. Introduction and Results

Let w be a weight in I= (a,b), —co<a<0<b<oo, for
which the moment problem possesses an unique solution. P,
stands for the set of polynomials of degree at most n. |||,y
is an usual (weighted) L, (quasi) norm on interval I.
Assume that W = e Q where Q: I — [0,00) is con-
tinuous. W is an exponential weight on I. Also, let 0< p <

00,a<t, <t, ;< - <t,<t;<b,p;>-1/p,i=1,2,...,1,
and
T
Ul(x) = Hlx—ti|P’, (1)
i=1

where U is a generalized Jacobi weight on I. The combi-
nation WU is called a Jacobi-exponential weight on I. This
paper deals with the zeros of orthogonal polynomials and
Markov-Bernstein inequalities for Jacobi-exponential
weights.

The letters ¢,C,,C,,... stand for positive constants
independent of variables and indices, unless otherwise in-
dicated and their values may be different at different oc-
currences, even in subsequent formulas. Moreover, C, ~ D,
means that there are two constants ¢, and ¢, such that
¢, £C, /D, <c, for the relevant range of n. We write ¢ = ¢ (1)
or ¢ #¢(A) to indicate dependence on or independence of a
parameter A.

Definition 1 (see [1], Definition 1.7, p. 14). Givenc, t >0 and
a non-negative Borel measure v with compact support in C
and total mass <t, we say that

P(z) = ceXp(J Injz - sIdv(s)), 2)

is an exponential of a potential of mass <t. We denote the set
of all such P by &,.
We note that for P € P, |P| € 2,, t >n.

Definition 2 (see [1], p. 19). Let w be a weight in I. For
0 < p <00, generalized Christoffel functions with respect to
w for z € C are defined by

[Pwl P
Ay (w3 2) = inf (7“’(”) . (3)

2, \ [P(2)|

For p = 0o, generalized Christoffel functions with re-
spect to w for z € C are defined by

| Pwl
Aoy (w3 2) = inf —— el

pep, |P(2)| )

Moreover, for the classical Christoffel function A, (w?; x)
with respect to w?, we have

, (Pw)’ (t)dt
W) = g |y et O
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A function f: (c,d) — (0,00) is said to be quasi-in-
creasing (or quasidecreasing) if there exists C >0 such that
fx)<(or=)Cf(y),c<x<y<d.

Definition 3. (see [1], pp. 10-12). Let a < 0 <b. Assume that
W =eQ where Q:1— [0,00) satisfies the following
properties:
(a) Q' e C(I) and Q(0) = 0.
(b) Q' is nondecreasing in 1.
() lim,__,,Q(x) =lim,__;, Q(x) = co.
(d) The function
xQ' (x)
T(x) = X
=0

x#0, (6)

is quasidecreasing in (a,0) and quasi-increasing in
(0,b), respectively. Moreover, T(x)>A>1, x €
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(f) Furthermore, assume that there exist C,e; >0 such
that for all x € I\{0},

x i ey 1/2
J Q- | clg/z(x)ldssC|Q'(x)|[T(x)] .
X

x—e xIT(x)  |s— | x|
(8)
Then, we write W € & (Lip (1/2)).
In addition, let W € . Assume that there exist C,e; >0
such that for all x € I\{0},

xeldIT ) Q' (5) - Q' (x)
oo

x—€,|x|/T (x) S

ds<ClQ’ (x)| 9)

Then, we write W € & (Dini).

For W e % and t>0, the Mhaskar-Rahmanov-Saft
numbers a_, :=a_,(Q)<0<a, = a,(Q) are defined by the
equations

o). - 1 Jat xQ' (x) dx
= 12 &%
(e) There exists €, € (0, 1) such that for y € I\{0}, mta, [(x~a.)(a — x)] (10)
10
T(y)~T<y[1— & D (7) A Q () dx.
T g e l—a)(@-x""
Then, we write W € &F. Put for t >0,
A= 47(Q) = [aa,],
) (11)
0, =6,(Q) = E(at +|a7t|))
-2/3
_ _ |2 (12)
Nar = N1 (Q) tT (att) 5 >
|x = a_y||x — ay xelapal
t\/Hx - a—t| +|a—t|’7—t] ['x - at| + “t’?t]
¢ (%) = ¢, (Q; x) = 1
9 (a,), x € (a,b), (13)
| Pt (a—t)’ X € (a, a_t),

Jie =T (Q) = [a_ (1+Ln).a(1+Ly)],
K, =K ,(Q=[-1+L(1+a_),1-L(1-a,)],

In 1994 and 2001, Levin and Lubinsky [1, 2] discussed
orthogonal polynomials for exponential weights W2 on
[-1,1] and (a,b), a<0<b, respectively. Then, they [3, 4]
dealt with exponential weights x**W (x)%, a>-1/2,in [0, b).
Kasuga and Sakai [5] considered generalized Freud weights
|x]**W (x)? in (—00, ). Recently, we discussed generalized
Jacobi-exponential weights UW[6, 7], which centered on the
distribution of zeros and the estimates of the generalized
Christoftel functions, respectively. Shi [8] also considered

L>0,
L>1.

Jacobi-exponential weights UW and subsequently dealt with
a particular case (1 - x2)Pe" ™ on (=1,1) in [9].

For the weight UW on (-1,1), its n™ orthogonal
polynomial p,((UW)* x) has zeros {x};_,, where
“1<x,, <X, 1,< " <Xy, <xp, <L

The estimates of the zeros [6] are based on the condition
a<t,<t,_,;<--- <t,<t,<b.In [6], we did not consider the
case when a=t, and t, =b, which is different from
a<t,t;<b. In this paper, we discuss orthogonal
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polynomials for generalized Jacobi-exponential weights in
the case -1 =¢,<t,_ ;< --- <t,<t; =1.

Mastroianni and Totik in [10] gave the estimates of the
spacing of zeros for doubling weights; in general, however,
Jacobi-exponential weights UW are not doubling weights, so
our main result (Theorem 4) cannot follow from it. The
distribution of the zeros of orthogonal polynomials plays an
important role in weighted approximation, for example,
Mastroianni and Notarangelo [11, 12] applied the zeros for
exponential weight on (-1, 1) and the real semiaxis to deal
with Lagrange interpolation processes on corresponding
interval, respectively.

We construct the following weight:

Q" (x) = Q(x) + pyq(x),

q(x)= - ln(l - xz),w* (x) = e QW)
14
Py = min{p,, p,,0}, (14)
U* (x) = (1 _ xz)_an(x),

Some corresponding notations for W*(x) are also
needed:

ay,=a,(Q)
M =1 (Q"),
A=A (QY)
8 =6,(Q%),
¢/ (x) =9, (Q";x),
* o (15)

p*=p(U") = py +p, = 2py + ) max{p;, 0},
i=2

IL*,t =Lt (Q*)’
_ r 1\?i
U= T(Je-el+3)
-2py
U (x) = [(1 -2) H U, (x).

In all that follows, I denotes the open interval (-1, 1).

Theorem 1 (see [7], Theorem 1.7). Let W € & (Lip(1/2))
and 0 < p <oo. Assume that

lim 0 x /\<A—1 o0 (16)
— = > >
Q) " 2A]p[ 7
and for some constant u satisfying
1
2\ po| <u<1-=, (17)

A
the function Q(x) = uQ' (x) + poq' (x) is nondecreasing in 1.

(a) Then there exists ny>0 such that for n>n, and
x €], with L>0, the relation

LpuUW: ) ~ 9 ()T, (P W (). (18)

uniformly holds.

(b) Furthermore, there exists n, >0 such that for n>n,
and x € 1, the relation

Apn (UW; x) >Co, (x)U, (x)PW™ (x)?, (19)
uniformly holds.

By specializing to p = 2 of Theorem 1, we obtain esti-
mates for the classical Christoffel functions.

Corollary 1. Assume that the conditions of Theorem 1 hold.

(a) Then, there exists n,>0 such that for n>n, and
x €J;, with L>0, the relation

L((UW)%x) ~ ¢y (0T, (x)°W (x)°

* * 2yp7% 2 (20)
~ ¢, (DU, ()" W" (x)7,
uniformly holds.
(b) Furthermore, if p, <0, there exists C, n; > 0 such that
for n>n; and x € I, the relation

L,((UW)*;x) 2 C}, ()T, (x)°W (x)%, (21)

uniformly holds.

Our results will mainly center on the zeros of orthogonal
polynomials for Jacobi-exponential weights UW and Mar-
kov-Bernstein inequalities.

Theorem 2. Let W =e 2, where Q: 1 — [0,00) is
convex with Q(a+) =Q(b-)=0c0 and Q(x)>Q(0) =
0, x e I\{0}. Let 0<p<oo, PeP . ,,\{0}, p;>0,
i=2,...,vr— 1. Assume that relation (16) is valid and Q is
nondecreasing in 1. Then,

IPUWI, (o) <IPUWI () (22)

In particular, this holds for not identically vanishing
polynomials P of degree <t — p* — (2/p). For p = oo, (22)
holds with < replaced by <.

Theorem 3. Let 0<p<co and p;20,i=2,...,r - L. As-
sume that relation (16) is valid and Q is nondecreasing in 1.

(a) Let W € &# (Lip(1/2)). Then, fort>1and P € &
|(PUW) /"

t—p*>
)< C”PUW”LP(I)' (23)

L, (I

(b) Let 0<a<1 and W € & (Dini). Then, for t>1 and
Pe? .,

|(PUW) o,

L, (8%) SCllPUWlle(I). (24)



Theorem 4. Let W € F (Lip1/2) and p;> (-1/2), 1<i<r.
Assume that relation (16) is valid, Q is nondecreasing in 1, and

¢, (x)=0(1), t—> oo. (25)

(a) Then, for large enough n and 1<k<n -1,

Xkn =~ Xk+1n S C‘P: (xkn)' (26)

(b) Furthermore, if r = 2, then for large enough » and
1<k<n-1,

Xin = Xktln ~ (P; (xkn)' (27)

Remark 1. By [7], (Lemma 2.12), for zeros x,, X, € K;,
with L > 1, the statement (a) of Theorem 4 is valid and < can
be replaced by ~.

Theorem 5. Assume that the assumptions of Theorem 2 hold.
Then,

* *

a—n—p*—l/z <Xy, < xn—l,n < eee <X, <X, < an+p*+1/2' (28)

Theorem 6. Let W € F (Lip(1/2)). Assume that relation
(16) is valid and Q is nondecreasing in 1.

(a) Then,

X, za, (1-cn,),

Sl (1= c’,)

nn —

(29)

(b) Furthermore, if p; >0,i =2,...,r — 1, then for large

enough n,
X1in *
1- x >
. n
(30)
1=~ 1,

We prove Theorems 2-4 and Theorem 6 in Section 3, but
first we need some auxiliary lemmas and the proofs of
Corollary 1 and Theorem 5, which are presented in Section 2.

2. Auxiliary Lemmas

Lemma 1 (see [1], Theorem 4.1, p. 95). Let W = e~ QW)
where Q: I — [0, 00) is convex with Q(a+) = Q(b-) = 00
and Q(x)>Q(0)=0,x e I\{0}. Let 0<p<oco and
Pe P 5,\{0}. Then,

IPWI, (1) <IPWIL, () (31)

In particular, this holds for not identically vanishing
polynomials P of degree <t —2/p. For p = 0o, (31) holds
with < replaced by <.

Lemma 2 (see [1], Theorem 10.1, p. 293). Let 0< p <oo.

(a) Let W € & (Lip(1/2)). Then, for t>1 and P € &,,
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[PWY g, < CIPWIL, (32)

(b) Let W € & (Dini) and 0 < a< 1. Then, for ¢ >1 and
Pe,

[ (PW)lq)t"LP(Am) <CIPWIIL qy (33)

Lemma 3 (see [7], Lemma 2.13). Let I=(-1,1) and
W e F(Lip(1/2)). Assume that (16) is valid and Q is non-
decreasing in 1. Then, W* € & (Lip (1/2)).

Lemma 4. For fixed index k,1<k<n-1, let
I = [Xp,10 Xk)- Let j, 1< j<r, satisfy
minx—tj| =minmin|x—ti|. (34)

xel 1<i<r xel

Then,

H |%n _tilpi ~ H <|xm -ty +%>

i#j i#]

Ppi

(35)

~ H|x—ti|P", xel,k=kk+1.
i#]

Proof. Following the argument in the proof of Lemma 2.5 in
[6], we get (35) by replacing §,/n with 1/n. O

Lemma 5. Let W € & and (25) be valid. Then, there exists
ty >0 such that for t >t, and for each index j, 2<j<r -1,

|x—tj‘+%~'x—tj|+%~|x—tj|+<pt(x), (36)
holds uniformly for x € L

Proof. By (1.55) in [1], we see that there exists ;>0 such
that for t>t,, |a,,| ~ 1, so we have §, ~ 1 for t>¢,. Also,
notice that —1<t,_;<--- <t, <1, and (36) follows from
Lemma 2.7 in [6]. O

Lemma 6. Let W € F (Lip(1/2)). Assume that relation (16)
is valid and Q is nondecreasing in 1. Then, there exists L >0
such that for t large enough,

atip*+(1/2) < at* (1 + L’7t* ) (37)

Proof. By Lemma 3.11(a) in [1], for £ >0,

a; :
t+p :(1/2) 1~ 1 . p + (1/2). (38)
a, T(a,) t
Fix t, = (p* + 1/2)%; for t >t,, we have
1 p +(12)  opin, s
. <t °°T . 39
CON: SR

On the other hand, using Definition 2 of 7,*, we obtain
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T’]t* >CT~ 1 (at* )t_ 2/3, (40)

asa ~6, and T(a;)>1.
Thus, by (38), for large enough t,

a’ .
B P T (41)

t

This yields (37).

Since the last lemma is based on the results of Corollary 1
and Theorem 5, we present the proofs of Corollary 1 and
Theorem 5 first. t

Proof of Corollary 1. It is the special case of Theorem 1 when
p = 2weuse (5) and the relation ¢, ~ ¢, | in I from Lemma
9.7 [1]. We also see that U,, ~ U,,_, for n large enough. O

Proof of Theorem 5. By Lemma 3, W* satisfies the conditions
of W. For U* = |x+ 1|Pr Polx — 1| P |x — 57, we
have p, — py=0, p, — py=0. Meanwhile, p;>0,i=2,...,
r —1, so (28) follows directly from Theorem 1.9 in [6]. O

Lemma 7. Let W € & (Lip(1/2)) and r = 2. Assume that
relation (17) is valid and Q is nondecreasing in 1. Let
¢, €P,, be the fundamental polynomials of Lagrange
Interpolation at the zeros p,((UW)* x) satisfying
€, (xy,) = Oy;j. Then, for each index j, 1< j<n and large
enough n,

£,WU|(x) (WU () (42)
+

£, WU| () (WU) ! (x),1,,) <C, x €1,

Proof. Notice that

K, (% %;0)
K, (%) %)
where K, (x,1) = Y_o Pr (x)pi (t) is the nth reproducing

kernel function. Applying the Cauchy-Schwarz inequality to
K, (x,t), we obtain

£, (x) = (43)

1/2
K, (x, x) (WU)* (x) >

-1
£WU| ) WU () < <Kn(xjn’xjn)(WU)2(xj”)

( B(E) e |
S\ (WO, ) WO (xy,) )

(44)

By Lemma 6 and (28), we see I; CJ;, 1< j<n. Now

applying the Christoffel function bounds of Corollary 1 (a)
and (b), it follows from the above relation that

5
£, WU|(x)(WU)™!(x;,)
12
o (¥in)
<C
- < 0; () >
. (T, () U () el
* * -2 2 > J
(U Gein)W* ()~ WU (1)
(45)
According to the definition of W*,
W (x) =(1- %)W (%), (46)
and then
x £y 2\Po IR
U W () =(1-2)"[(1-22) "+ ] T, 0w o),
(47)
which by (2.23) in [7] for x € J}, gives
U, (x)W"(x) ~ U, (x)W (x). (48)

It follows from (48) that for large enough n,

. 0; ()" (@0 0
€, WU|(x)(WU)"(x;,) <C ( Ene

¢a (%) U, x;)) (xjn)
1/2
D)
SC< o ) > N erj,
(49)
as when r = 2,
— -2
U U
(U, (%) (x) (50)

(Ta(x)) U (1)

Further, applying Theorem 5.7(b) in [1], we conclude for
x el
])

9 (xn) ~ ¢, (), (51)
so that
6, WU|(x)(WU) '(x;,)<C, xel,  (52)
and with a similar discussion, we also have
|01, WU| () (WU) ! (x},1,) <C, x €1, (53)
This proves (42). O

3. Proof of Theorems

3.1. Proof of Theorem 2. 1t is easy to check that
Q*: T — [0,00) is convex with Q* (a+) = Q*(b-) = 0
and Q*(x)>Q"(0) =0, x € I\{0}, so by considering
Lemma 3, W* satisfies the assumptions about W. Fur-

thermore, for P € &,_,._ (/)



PU" € Py, (54)

Observe that
U(x)W (x) =U" (x)W™ (x). (55)

Then, applying Lemma 1, we obtain the results.

3.2. Proof of Theorem 3

(a) By Lemma 3, W* € & (Lip(1/2)). For P € (@t,p*, we
have PU* € &,. Thus, by (55), relation (23) follows
from (32).

(b) If W* € & (Dini), then with the similar discussion as
(a) and using (33), we prove that the statement of (b)

is valid. So, it is necessary to prove that if
W € % (Dini), then W* € % (Dini).
The properties of (a) — (e) in Definition 3 hold for W* if
W e % (Dini) because of the same argument as in the proof
of Lemma 2.13 in [7] since properties of (a)-(e) in Definition
3 are the same for both & (Lip (1/2)) and & (Dini). We will
prove that the property of (f) in Definition 3 also holds for
W*.
By (2.38) in [7], we have
x+e, |x|/T* (x) ()*! —_ 0"
S J QL -Q ()

x—€,|x|/T* (x) S§—X

- Q' (9-Q" (),
—das

<
x—€, x|/ [(1-p)T (x)] s§—X
Jxﬂllxl/[(lfu)T(x)] Q*’ (s) - Q*’ (x) q (56)
= —_— S
x—€; x|/ [(1-)T (x)] S—=X
e IV A-0T ] g () — g (x
o 49)-q ()
x—e€q x|/ [(1=)T (x)] S$—X
=S§ +8S,.

According to Definition 3 (f),
$,=ClQ' (x)|. (57)

Meanwhile, using Corollary 2.1 (a) in [7], for s € [x—
€ lxl/[(1 = w)T (x)]x + € xl/[(1 — )T (x)]], we see

2 2

1 s —x - 2|s — x|
1-5 1_x2_(1_x2)(1_52)—(1_x2)(1_52)
- 2¢€, | x|
T A-wT@(1-x7)(1-5%)
2¢, 1

Se(l —y)(l - 52) - 2(1 _52)’
(58)

where €, = €(1 — u)/4 and € and y are shown in (2.29) and
(1.23) in [7], respectively, and hence
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! 5 < 2 5 (59)

1-s" 1-x

Using this relation and

q' (x) = 2 - (60)

1-x

we obtain
xte x|/ [(1-p)T (x)] 2(1 + xs)
%= L—ellxv[u—u)nxn -2)1-5)"

8|p0| x+e x|/ [(1-w)T (x)]

S—= ds 61
(1 - x2)2 J X, [xl/ [(1=)T ()] (61)

- Clx| _ 1
_(1—x2) (l—xz)T(x).
By (2.30) and (2.35) in [7], we further get
82£C|q' (x)|SC|Q' (x)|. (62)

Substituting S, and S, into S gives

$<ClQ' (x)]. (63)
Thus, by (2.35) in [7], we infer that

S<ClQ™ (x)]. (64)

This proves property (f) of Definition 3.

3.3. Proof of Theorem 4. (a) The proof is similar to Theorem
1.7 in [6], but we provide the details with modification.
Denote by {£,};., the fundamental polynomials of
Lagrange interpolation at the zeros {x,};_, of the orthog-
onal polynomials p, ((WU)?% x) for the weight (WU)>.

Recall (5); the infimum is actually attained when we take
P to be ¢, € P,_; satistying £, (x;,) = §;;. So, a classical
Gauss quadrature formula for the weight (WU)? is

A((WUYx,,) = Le,in (WO (65)

By Lemma 11.8 in [1], (pp. 320-321) and relation (55),
we infer that

-2

An( (WU)Z; xkn)W* (xkn)_2 + )Ln( (WU)Z; xk+1,n)W* (xk+1,n)

= .[I [ekn (t)ZW* (xkn)72 + ek+1,n (t)ZW* (xkﬂ,n)_z]
W (U (1)*dt

Xkn « _ « -2
2 j [gkn (t)ZW (xkn) ? +€k+1,n (t)ZW (xk+1,n) ]

Xk+1n
W)U (1)dt
1 (*kn
>= J U* (t)*de.
2 xk+1,n

(66)
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On the other hand, according to Lemma 6 and Theorem
5, I ¢ J[, so that by (20),

An((WU; x )W* (1)
<cor (U () + 95 (5600)U5 (i) |
(67)

Let j = j(k) be j defined by (34); then by (51) and
Lemma 4, we get

* * * 2
Py (xkn)[Un (xkn)2 +Un (xk+1,n) ]
Xkn Xn * r *
> J YUt ()dt ~ J ’ |t—tj|2pf dt I |-t
Xies1,n Xl 1n i=L,i#j
(68)
where p
Py =pr -
* * 2
Un (xkn) + Un (xk+1,n)

; 1\ 2P} , 1\2?;
o T A (S o N B
r

[T (1=t +2)"
I (emsl+)

i=1,i#j

=Piwp P = ppif2<i<r—1,p; = p, - pp,and

po- Also, we have

and by (35), we further get

U: (‘xkn)2 + U: ('xk+1,n)2

1\2P; 1\2P}
~ |:(|xkn_tj|+ﬁ> +<'xk+l,n_tj|+;> :| (70)

r

. 1_[ |xkn_t|Pz

i=1,i%]
By (68) and (70), we get the following relation after
simplifying by H: Vit 1%k = 1 AP

[ e fa

Xkt1n

. 1\?P/ 1\%P}
=co, (xkn)|:<|xkn_tj.+;) +<'xk+1,n_tj'+;> :|
(71)

In fact, for x, y € I, using (2.8) in [6] and following the
argument in the proof of Lemma 5 in [6], we can obtain (1-
X)PI_PU ~(1-x+ (l/n))Pl‘Po ~ (1 _y)Pl_PO ~ (1 - y+ (1/
n)P P and (1+x)P P~ (1+x+ (1/n)PrFo~ (1+ y)Pr=Po
~ (1+y+ (1/n))P"Po, 50 (71) can be written as

»'ijdt

Xkn
J |t_tJ
Xk+1n
2p; 2p;
<co, (xkn)[(|xkn - tj| +%> P +<|xk+1)n - tj| +%) PJ],

(72)

+ An( (WU)za "Ckﬂ,n)‘/v)k (xk+1,n)_2

where 2<j<r - 1.
Further, by (36),

JXk" |t_tj'2pjdtsc¢: (xkn){[|xkn_tj| +(P: (xkn)]zpj

xk+l,n

* 2p;
+|:|xk+1,n_tj|+(Pn (xkn)] ]}'

(73)
By calculation from (73), we get
1 2pi+l 2pi+l
2pj+1“xkn_tj' ! +G|xk+1,n_tj' !
Xkn .
- J = tj|2pjdt
Xie1,n
(74)
. . 2p;
<cg, (x| [t =t + 01 (v00)]
« 2p;
+ [|xk+1,n - tj' T, (xkn)] }’
where
1, t.el,
o= Sk (75)
-1, t ¢

We distinguish two cases.

Case 1. p;>0. By Lemma 2.6 in [6], we assert that if
p>0,B,5A,>0,C,>0,0= +1,and BY" + 0AL* <
Cn[(Bn+C )p+(A +C,)], then B, + 0A,<cC,,.

Using this inequality, it follows from (74) that

Xin = Xk+ln < Cq): (‘xkn)' (76)

Case 2. -1/2< p;<0. By (74),

2p;+1 2p;+1
+ U'xkﬂ,n - tj|

5,71l

»|2P"dt

Xkn
:j |e-t;
Xkt1n

<cg, (ximin{g,; (3,

2p;
i .

. |xk)n —t
(77)

2p
Xkt1n ~ tj‘

Case 2.1. t; € I;.. Inequality (77) gives

P <cp? (x), k=K1, (78)

x,m - t]

which yields (76).

Case 2.2. t; ¢ Ii. In this case, we distinguish two
subcases. Suppose without loss of generality that
xk+1,n>tj'

Case 2.2.1. If |xp,,, —
given by (77), then

til>2¢cyp, (x1,), where ¢ is



rkn (t—tj)zl’fdt=rk" (t—tj)(t—tj)zf’fldt

Xkt1n Xkt1n

> (xia=t,) |

Xkn

Xkt+1n

(t =) dt = (k- 1))
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1 . ,
M [(ka - fj)zp] = (% = ff)zp]] (79)

S 0@ (¥in) [(xk+1,n B tj)ZPj ~ (o - tj)ZPj],

Pj'

which by (77) gives
-1 _ .
(xeern 1) < (1 B |PJ‘D (k= £7)7" <200 = 1)
(80)
On the other hand, by (77)-(80),

* 2p;
Co®y (xkn)(xkﬂ,n - tj) !

> J:k (t- tj)zpjdt > (3 - fj)zpj(xk" ~%esn)
k+1,n

1 .
a5,

(81)
and hence (76) follows.
Case 2.2.2. X1, — 11 <2¢09, (x,). By (77),
* 2p.+1
Py (xkn) Pr
1 2pi+l 2p;+1
ZZP]- +1 [(xkn - tj) ! _(xk+1,n - tj) ! ]
1 2p;+l * 2p+1
ZZP] 11 [(xkn - t]) b= (zco‘Pn (xkn)) ! ]
(82)

S0, xp, —t;<cg, (xy,) and (76) follows.

(b) Now, let us prove (27). We must prove that for some
constant ¢ >0 and #n large enough, we have

X = Xper1n 269, (Xp,), k=1,2,...,n—1 (83)

First, by our Markov-Bernstein inequality (23) and
Lemma 7, we have that

" (gknWU) ' (P:

) (WU)_l (xkn)

L. B (84)
<G ”ekﬂWU"Lm %) (WU)™ (xg) <C.

Then, by the mean value theorem, for some & between
Xp and gy s

1= (6,WU) (x5,) (WU) ™ (31,,)
= (CeWU) (Xes1,0) WU) ™ (x4)
= (£, WU)" (&) (WU) ™ (30,) (X100 = X110
<Clgn )" (O~ e

(85)

Thus, by (51), we get the lower bound and finish the
proof of (b).

3.4. Proof of Theorem 6. By Lemma 3, W* € & (Lip(1/2)).
Then, following the argument in the proof of Theorem 5, the
statements of Theorem 6 follow directly from Theorem 1.10
in [6].
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