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For the selected class of polynomial matrices of order three with one characteristic root with respect to the transformation of
semiscalar equivalence, special triangular forms are established.'e theorems of their uniqueness are proved.'is gives reason to
consider such canonical forms.

1. Introduction

In [1], it is proved that the matrix F(x) ∈M(n, C[x]) of full
rank by means of transformation:

F(x)⟶ PF(x)Q(x) � G(x), (1)

where P ∈ GL(n, C) and Q(x) ∈ GL(n, C[x]) can be re-
duced to the lower triangular form with invariant factors on
the principal diagonal. Subdiagonal elements in a matrix of
this form are ambiguously defined. 'e matrices F(x), G(x)

which are related by the transformation (1) are called
semiscalarly equivalent [1]. In [2], the specified triangular
form for polynomial 3 × 3 matrices with one characteristic
root is a little simplified. 'e resulting matrix of a simplified
triangular form is called a reduced. In [2], the invariants of
the reduced matrix are established. In particular, the in-
variance of the location of zero subdiagonal elements is
proved. In [3], the reduced matrix, if there are some zero
elements under its principal diagonal, by means of
transformations of the form (1) (i.e., by means of semi-
scalarly equivalent transformations) is reduced to such
matrices, which are uniquely defined. 'is gives grounds to
consider the obtained matrices canonical for the selected
class of matrices. 'is article introduces canonical forms

for reduced matrices with all nonzero subdiagonal
elements.

2. Previous Information

Here are some definitions and notations that will be used in
this article, which are known from [2, 3]. 'is applies to the
definitions of the younger degree, of the younger term, of the
younger coefficient, q-monomial, and q-coefficient of the
polynomial and others. For example, monomial 4x2 and its
degree 2 are, respectively, a younger term and younger
degree of polynomialf(x) � −3x7 + 6x5 − x4 + 4x2, and 4 is
the younger coefficient of this polynomial. Monomial
6x5and its coefficient 6 are, respectively, a 5-monomial and
5-coefficient of polynomial f(x).

Let all the roots of the characteristic polynomial detF(x)

(� characteristic roots) of the matrix F(x) be equal to each
other; that is, the matrix F(x) has only one (without taking
into account the multiplicity) characteristic root. Without
loss of generality, we assume that the only characteristic root
is zero and the first invariant factor of matrix F(x) is equal to
one. With such assumptions, it is proved in [2] that, by
means of semiscalarly equivalent transformations, the ma-
trix F(x) is reduced to the matrix of the form
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A(x) �

1 0 0

a1(x) x
k1 0

a3(x) a2(x) x
k2

��������������

��������������

, (2)

which satisfies the following conditions:

(1) dega1 < k1, dega2, dega3 < k2, a2(x) � xk1a2′(x) � 0,
a1(0) � a3(0) � a2′(0) � 0.

(2) codega3 ≠ codega1, codega3 ≠ codega2′, if
codega3 < codega2.

(3) codega3 ≠ 2codega1 + codega2′ and (2codega1)-mo-
nomial in a1(x) is absent if codega3 ≥ codega2.

(4) Younger coefficients in a1(x) and a2(x) are units.

'e matrix A(x) of the form (2) with conditions (1)–(4)
in [2] is called the reduced matrix. Next, we consider the
situation where the last two invariant multipliers of the
matrix A(x) do not coincide, that is, k1 < k2.'e case k1 � k2
was considered in [4].'e notation A(x) ≈ B(x) means that
the matrices A(x) and B(x) are semiscalarly equivalent. It
should be noted that the problem of classification with
respect to semiscalar equivalence of matrices of the second
order is solved in the article [5]. 'us, this article discusses
other situations that differ from [4, 5]. In [2], it is proved
that, in case A(x) ≈ B(x), we can choose the left trans-
formation matrix in the transition from A(x) to the reduced
matrix

B(x) �

1 0 0

b1(x) x
k1 0

b3(x) b2(x) x
k2

��������������

��������������

, (3)

of the lower triangular form.We will then apply semiscalarly
equivalent transforms A(x)⟶ SA(x)R(x) � B(x) to the
matrix A(x) to obtain a reduced matrix B(x) of the form (3)
with predefined properties. Let us show that, by a given
reduced matrix A(x) of form (2) and a matrix

S �

1 s12 s13

0 1 s23

0 0 1

�������������

�������������

, (4)

we can find the matrix B(x) and the right transformation
matrix R(x) so that A(x) ≈ B(x) � SA(x)R(x). Using the
method of uncertain coefficients for given elements
a1(x), a2(x), a3(x) and s12, s13, s23 of matrices A(x) and S,
respectively, with congruence

a1(x) + s23a3(x) − b1(x) 1 + s12a1(x) + s13a3(x)( 

≡ 0 modx
k1 ,

(5)

we find b1(x) ∈ C[x], degb1 < k1. We denote such elements
by r(x)uv, u, v � 1, 2:

r11(x) � 1 + s12a1(x) + s13a3(x),

r12(x) � s12x
k1 + s13a2(x),

r21(x) �
a1(x) + s23a3(x) − b1(x)r11(x)

x
k1

∈ C[x],

r22(x) � 1 + s23a2′(x) − s12b1(x) − s13b1(x)a2′(x).

(6)

Here a2′(x) � a2(x)/xk1 ∈ C[x]. We form the matrix
‖r(x)uv‖21 and consider the congruence

b3(x) b2(x)
����

���� ruv(x)
����

����
2
1 ≡ a3(x) a2(x)

����
���� modx

k2 ,

(7)

with the unknown b2(x), b3(x). Since the free member of
a matrix polynomial ‖r(x)uv‖21 is a unit matrix, we can use
the method of uncertain coefficients to solve this congruence
and find b2(x), b3(x) ∈ C[x], degb2, degb3 < k2. We can
check that b2′(x) � b2(x)/xk1 ∈ C[x]. In addition to the
above, we also denote

r13(x) � s13x
k2 ,

r23(x) � s23x
k2− k1 − b1(x)r13(x),

r31(x) �
a3(x) − b3(x)r11(x) − b2(x)r21(x)

x
k2

∈ C[x],

r32(x) �
a2(x) − b3(x)r12(x) − b2(x)r22(x)

x
k2

∈ C[x],

r33(x) �
1 − b3(x)r13(x) − b2(x)r23(x)

x
k2

∈ C[x].

(8)

By the above rij(x) i, j � 1, 2, 3, and from the congru-
ences (5) and (7) bi(x), we construct ‖rij(x)‖31 and a matrix
B(x) of the form (3), respectively. We can be convinced of
equality SA(x) � B(x)‖rij(x)‖31. 'is means that ‖rij(x)‖31 is
reversible and its inverted matrix together with the matrix S

reduces A(x) to B(x). If the matrix S (4) in the transition
from A(x) to B(x) has one of the following views:

1 0 0
0 1 s23

0 0 1

�������������

�������������

,

1 s12 0
0 1 0
0 0 1

�������������

�������������

,

or
1 0 s13

0 1 0
0 0 1

�������������

�������������

,

(9)
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then we will say that transformations of type I, trans-
formations of type II, or transformations of type III, re-
spectively, are applied to the matrix A(x). We shall use the
following notation for matricesA(x) of form (2) and B(x) of
form (3):

δA(x): � det
a1(x) 1

a3(x) a2′(x)

���������

���������
,

δB(x): � det
b1(x) 1

b3(x) b2′(x)

���������

���������
.

(10)

3. The Main Results

Theorem 1. Suppose that in the reduced matrix A(x) of the
form (2), we have a1(x), a2(x), a3(x)≠ 0, a2(x) � xk1a2′(x),
q1: � codega1, q2: � codega2′, q3: � codega3,

nj: �
q3, j � 1

q2 + q3, j � 3 , mj: � qj + q3, j � 1, 3. 0en, the

matrix A(x) is semiscalarly equivalent to the reduced matrix
B(x) of the form (3), where elements b1(x), b2(x), b3(x)≠ 0
satisfy one of the following conditions:

(1) (2q3)-monomial is absent in b3(x), if q3 < q1 and
q3 < q2.

(2) (2q3)- and (q1 + q3)-monomials are absent in b3(x)

if q3 < q1 and q3 > q2.
(3) If q3 > q1 and q3 < q2, then in the first of polynomials

bj(x), j � 1, 3, which satisfies condition nj < kj,
nj-monomial is absent, and in the first of these
polynomials, which satisfies condition mj < kj,
mj-monomial is absent.

'e matrix B(x) is uniquely defined.

Proof. Existence.

(1) If 2q3 ≥ k2, then A(x) is the desired matrix. Other-
wise, we denote by d0 and d1, respectively, the lower
coefficient and the (2q3)-coefficient of the poly-
nomial a3(x) and apply to A(x) transformations of
the type III. In the left transformation matrix (see
(9)), we put s13 � d1/d2

0. 'e elements bi(x),
i � 1, 2, 3, of the obtained in this way matrix B(x)

satisfy the congruence:

a1(x) − b1(x) − s13a3(x)b1(x) ≡ 0 modx
k1 , (11)

a2(x) − b2(x) − s13a2(x)δB(x) ≡ 0 modx
k2 , (12)

a3(x) + δB(x) + s13a3(x)δB(x)

− a1(x)b2′(x) ≡ 0 modx
k2 .

(13)

First, we obtain from (11) and (12) that the lower
terms in b1(x), b2(x) are identical with the lower
terms in b1(x), b2(x), respectively. Further note that
the younger terms in δB(x) and b3(x) coincide, the

lower degrees of the last two additions in the left-
hand side (13) exceed codegb3 � q3, and inequality
codeg(a3(x)δB(x)) � 2q3 < codeg(a1(x)b2′(x))

holds. 'erefore, by comparing the (2q3)-co-
efficients in both parts of (13), we obtain zero for
such (2q3)-coefficient in b3(x). So, there B(x) is
a desired matrix.

(2) If in matrix A(x) has 2q3 ≥ k2, then everything is
proven—this matrix is the desired one. Otherwise,
we will apply to it the transformation mentioned in
Section 1. To show the absence of the (2q3)-mo-
nomial in b3(x), one must take into account that
codeg(a1(x) − b1(x))≥ q1 + q3 (see (11)).'erefore,
in (13), we have codeg(b2′(x)(a1(x)b1(x))> 2q3).
'e remaining considerations are the same as in
paragraph 1. In order to not introduce new nota-
tions, we further assume that there is no
(2q3)-monomial in the element a3(x) of original
matrix A(x). If q1 + q3 ≥ k2, then everything is
proven—the matrix A(x) is the desired one. Oth-
erwise to A(x), we apply transformation of the type
II. At the same time, in the left transformationmatrix
(see (9)), we put s12 � d2/d0, where d0 and d2 are,
respectively, the lower coefficient and (q1 + q3)-co-
efficient of the polynomial a3(x). 'e elements
bi(x), i � 1, 2, 3, of the reducedmatrix B(x) obtained
in this way satisfy the congruence:

a1(x) − b1(x) − s12a1(x)b1(x) ≡ 0 modx
k1 , (14)

a2(x) − b2(x) + s12ΔB(x) ≡ 0 modx
k2 , (15)

a3(x) + δB(x) + s12a1(x)δB(x)

− a1(x)b2′(x) ≡ 0 modx
k2 .

(16)

It can be seen from (14) and (15) that the younger terms
in b1(x), b2(x) are the same as the lower terms in
a1(x), a2(x), respectively (their coefficients are equal to
one).
Let us write (16) as follows:

a3(x) − b3(x) + s12a1(x) b1(x)b2′(x) − b3(x)( −

− a1(x) − b1(x)( b2′(x) ≡ 0 modx
k2 .

(17)

From (14), we have codeg(a1(x) − b1(x))≥ 2q1.
Because

codeg b2′(x)a1(x)b1(x)(  � 2q1 + q2,

codeg b2′(x) a1( ( x) − b1(x)( ≥ 2q1 + q2,
(18)

and codeg(a1(x)b3(x)) � q1 + q3 < 2q1 + q2, then by
comparing the (q1 + q3)-coefficients in both parts of
(17), we find that b3(x) contains no (q1 + q3)-mo-
nomial. And because 2q3 < q1 + q3, then in b3(x), as
in a3(x), there is no (2q3)-monomial.
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(3) Suppose that conditions q3 > q1 and q3 < q2 are
satisfied in matrix A(x).

(1) If q3 ≥ k1 and 2q3 ≥ k2, then all is proved—matrix
A(x) is the desired one.

(2) Let q3 ≥ k1 and 2q3 < k2. Since q3 < codega2, then
q3 (as well as q1) is invariant (see Proposition 6
[2]). We apply to A(x) the transformation
specified in Section 1. As a result, we obtain the
matrix B(x) in the form (3). Its elements satisfy
the congruences (11)–(13). Since q1 + q3 > k1,
then from (11), we have a1(x) � b1(x). It can be
seen from (12) that a2(x) � b2(x). Now we can
represent (13) as

a3(x) − b3(x) − s13a3(x) b1(x)b2′(x) − b3(x)( 

≡ 0 modx
k2 .

(19)

From the last congruence, we have codegb3 � q3.
'erefore, B(x) is a reduced matrix. If we take into
account q1 + q2 > q3, then by comparing the
(2q3)-coefficients at both times (19), we will conclude
that, in b3(x), there is no (2q3)-monomial. If
q2 + q3 ≥ k2, then everything is proved-matrix B(x) is
the desired one. Otherwise, we take another step. In
order not to introduce new notations, we will assume
that element a3(x) of matrix A(x) does not contain
(2q3)-monomial. We apply to A(x) transformations of
the type I. In the left transformationmatrix (see (9)), we
put s23 � d2/d0, where d0 and d2 are, respectively, the
lower coefficient and the (q1 + q3) coefficient of
polynomial a3(x). 'e elements bi(x), i � 1, 2, 3 of the
resulting matrix B(x) satisfy the congruence:

a1(x) − b1(x) + s23a3(x) ≡ 0 modx
k1 , (20)

a2(x) − b2(x) − s23a2′(x)b2(x) ≡ 0 modx
k2 , (21)

a3(x) − b3(x) + b1(x) − a1(x)( b2′(x)

− s23b2′(x)a3(x) ≡ 0 modx
k2 .

(22)

From (20), we have that a1(x) � b1(x), and from (21),
it follows codega2 � codegb2. 'en, from (22), we get

a3(x) − b3(x) − s23b2′(x)a3(x) ≡ 0 modx
k2 , (23)

where we can get codegb3 � q3. Comparing the co-
efficients in both parts of (23), we conclude that there
is no the monomial of degree q1 + q3 in polynomial
b3(x). At the same time, in b3(x), as in a3(x), there is
no (2q3)-monomial.

(3) Now suppose that, in matrix A(x), we have q3 < k1
and 2q3 ≥ k2. Apply to A(x) transformations of the
type I. In the left transformation matrix (see (9)), we
put s23 � −d3/d0, where d0 and d3 are, respectively,
the lower coefficient of the polynomial a3(x) and the

q3-coefficient of the polynomial a1(x). As a result,
we obtain a matrix B(x) of the form (3) whose el-
ements bi(x), i � 1, 2, 3 satisfy the congruences
(20)–(22). From (20), we have that codegb1 � q1 and
q3-monomial in b1(x) is absent. From (21),
codegb2 � codega2, and from (22), we have
codegb3 � q3. It also follows from (20)–(22) that the
lower coefficients in ai(x) and bi(x), i � 1, 2, 3 co-
incide. 'at is, B(x) is a reduced matrix. If
q1 + q3 ≥ k1, then everything is already proven. 'en,
B(x) is the desired matrix. Otherwise, in order to not
introduce new notations, we consider the q3-co-
efficient in the element a1(x) of the matrix A(x)

null. Denote by d0 and d4, respectively, the lower
polynomial coefficient of the polynomial a3(x)and
(q1 + q3)-coefficient of the polynomial a1(x). We
perform over the matrix A(x) transformation of the
type III. For this, we put s13 � d4/d0 in the left
transformation matrix (see (9)). 'e elements of the
resulting matrix B(x) satisfy the congruences
(11)–(13). From (21), we obtain that codegb1 � q1,
the lower coefficient of the polynomial b1(x) is 1, and
its q3- and (q1 + q3)-coefficients are zero. From (12),
it is seen that the lower coefficient in b2(x), as in
a2(x), is equal to 1. 'erefore, the matrix B(x) has
the necessary properties.

(4) Let q3 < k1 and 2q3 < k2. We can assume that the
q3-coefficient in a1(x) of matrix A(x) is zero. If this
is not the case, then to A(x), we will apply trans-
formation of the type I described in Section 3. If
q1 + q3 < k1, then to A(x), we apply transformation of
the type III described in Section 3. 'en, the resulting
matrix will be zero (q1 + q3)-coefficient and will re-
main zero q3-coefficient of the polynomial in position
(2, 1). If q1 + q3 ≥ k1, then from the matrix A(x) by
means of transformations of the type III referred to in
item 1, we go to the redundant matrix B(x), in which
2q3-monomial of polynomial b3(x) is absent. 'en,
q3-factor in b1(x) will also remain zero.'is proves the
first part of the theorem (existence). □

3.1. Uniqueness of the Matrix in 0eorem 1

(1) Suppose that, for the reducible matrices A(x),
B(x)of forms (2) and (3), condition 1 of theorem
holds, and, in addition, we have A(x) ≈ B(x). 'en,
the left transformative matrix S in the equality
SA(x)R(x) � B(x) can be chosen in the form (9)
(see Corollary 1 and Remark 1 [2]) and elements
ai(x) and bi(x), i � 1, 2, 3, of these matrices satisfy
the congruence

a3(x) + δB(x) − s13a3(x)δB(x) − a1(x)b2′(x)

≡ 0 modx
k2 .

(24)

We have codeg(δB(x)a3(x)) � 2q3 < q1 + q2. If
2q3 ≥ k2, then from (24), a3(x) − b3(x) ≡ 0(modxk2)

follows. Otherwise, in (24), we have s13 � 0 since
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(2q3)-monomials in a3(x) and b3(x) are absent. In
any case, A(x) � B(x).

(2) Suppose that the reduced matrices A(x), B(x) of the
forms (2) and (3) satisfy condition 2 of theorems and
A(x) ≈ B(x). 'en, in the left transformative matrix

S (4), in the transition from A(x) to B(x), we have
s23 � 0 (see Corollary 1 and Remark 1 [2]) and the
elements ai(x) and bi(x) of the matrices A(x) and
B(x) satisfy the congruences:

a1(x) − b1(x) 1 + s12a1(x) + s13a3(x)(  ≡ 0 modx
k1 ,

a2(x) − b2(x) + s12ΔB(x) + s13a2′(x)ΔB(x) ≡ 0 modx
k2 ,

a3(x) + δB(x) + δB(x) s12a1(x) + s13a3(x)(  − a1(x)b2′(x) ≡ 0 modx
k2 .

(25)

From (25), we can write

a3(x) − b3(x) + δB(x) s12a1(x) + s13a3(x)( 

+ b2′(x) b1(x) − a1(x)(  ≡ 0 modx
k2 .

(26)

From (25), we have codeg(a1(x) − b1(x))≥ q1 + q3. It
is easy to see that

codeg δB(x)a3(x)(  � 2q3 < q1 + q3 �

� codeg δB(x)a1(x)( 

< codeg b2′( ( x) b1(x) − a1(x)( .

(27)

If 2q3 ≥ k2, then from (26), we have
a3(x) − b3(x) ≡ 0(modxk2); hence, it follows
a3(x) � b3(x).

Since 2q3 < codegΔA < codeg(a2′(x)ΔA(x)), then
from (26), a2(x) − b2(x) ≡ 0(modxk2) follows,
whence a2(x) � b2(x). From (25), taking into ac-
count 2q3 < q3 + q1 < codeg(a1(x))2, we get a1(x) −

b1(x) ≡ 0(modxk1) from where a1(x) � b1(x). So,
we have A(x) � B(x).
If 2q3 < k2, then from (25), we get s13 � 0. If
q1 + q3 ≥ k2, then taking into account
q1 + q3 < codegδA + k1 and q1 + q3 < 2q1 from (25)
and (26), we have aj(x) − bj(x) ≡ 0(modxkj ),
j � 1, 2, and a3(x) − b3(x) ≡ 0(modxk2). 'erefore,
A(x), B(x) coincide. If q1 + q3 < k2, then from (26),
we obtain s12 � 0. Hence, in this case, the matrices
A(x), B(x) also coincide.

(3) Suppose that the reduced matrices A(x), B(x) of the
forms (2) and (3) satisfy condition 3 of theorems and
A(x) ≈ B(x). 'en, for the elements of these ma-
trices, we can write the congruences:

a1(x) − b1(x) + s23a3(x) − s13a3(x)b1(x) ≡ 0 modx
k1 ,

a2(x) − b2(x) − s23a2′(x)b2(x) + s13a2(x)δB(x) ≡ 0 modx
k2 ,

a3(x) + δB(x) − a3(x) s23b2′(x) + s13δB(x)(  − a1(x)b2′(x) ≡ 0 modx
k2 .

(28)

If q3 ≥ k1, then q1 + q3 > k1, and from (28), we get
a1(x) � b1(x). 'en, (28) will take the form

a3(x) − b3(x) − a3(x) s23b2′(x) + s13δB(x)(  ≡ 0 modx
k2 .

(29)

Obviously, codeg(a3(x)δB(x)) � 2q3. If 2q3 ≥ k2, then
(29) implies a3(x) � b3(x) since codeg(a3(x) b2′(x))>
codeg(a3(x)δB(x)).

'en, from (28), we get a2(x) � b2(x) since

codeg b2(x)a2′(x)( > codeg b2′(x)a3(x)( ,

codeg ΔB(x)a2′(x)( > codeg δB(x)a3(x)( .
(30)

If 2q3 < k2, then (29) implies s13 � 0. If, moreover,
codeg(a3(x)b2′(x))< k2, then from (29), it yields s23 � 0 and
all is proved. If codeg(a3(x)b2′(x))≥ k2, then all the same
from (28) and (29), we have a3(x) � b3(x) and
a2(x) � b2(x), respectively.

If q3 < k1, then from (28), we get s23 � 0. If in addition
q1 + q3 < k1, then from (28), it follows also s13 � 0 and all is
proved. If q1 + q3 ≥ k1, then a1(x) � b1(x), and again from
(28), we go to (29). It follows from this that s13 � 0, if
codeg(a3(x)δB(x))< k2. And if codeg(a3(x)δB(x))≥ k2,
then immediately from (28) and (29), we have a3(x) �

b3(x) and a2(x) � b2(x), respectively. 'eorem is proved.
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Suppose that, in the reduced matrices A(x), B(x) of the
forms (2) and (3), we have a1(x), a2(x), a3(x), b1(x),

b2(x), b3(x)≠ 0. Let us keep the notation given in theorem:

q1:� codega1,

q2:� codega2′,

q3:� codega3,

a2′(x) �
a2(x)

x
k1 ∈ C[x]

,

b2′(x) �
b2(x)

x
k1 ∈ C[x]

.

(31)

We define polynomials:

a11(x):≡ a1(x)( 
2 modx

k1 ,

a22(x):≡ a2′(x)( 
2 modx

k2− k1 ,

a32(x):≡ a3(x)a2′(x) modx
k2 ,

a04(x):≡ δA(x) modx
k2− k1 .

a14(x):≡ a1(x)δA(x) modx
k2 ,

a34(x):≡ a3(x)δA(x) modx
k2 .

(32)

From the coefficients of each of the polynomials a1(x),
a3(x), and a11(x), we form, respectively, columns a1, a03, and
a11 of height k1 − q1. In the first place, in these columns, we put
q1-coefficients, and below in order of increasing degrees, we
place the rest of their coefficients, up to degree k1 − 1 inclusive.
We denote by a2, a22, and a04, the columns of height
k2 − k1 − q2, constructed from the coefficients of polynomials
a2(x), a22(x), and a04(x), respectively. In the first place in
each of these columns, we put q2-coefficients. Below we place
the rest of their coefficients (including zero) up to the degree
k2 − k1 − 1. Similarly, from the coefficients of polynomials
a3(x), a32(x), a34(x), and a14(x), we form columns a3, a32,
a34, and a14 and height k2 − q3. Here, we also put in the first
place q3-coefficients, and then, in the order of increasing de-
grees, we place all other coefficients. In the last places, there will
be (k2 − 1)-coefficients. For A(x), by the columns formed, we
construct the matrices of the following form:

KA �

a1

a2

a3 K0A

�������������

�������������

,

K0A �

K1A

K2A

K3A

�������������

�������������

,

(33)

K1A � −a03 0 a11

����
����,

K2A � a22 0 −a04

����
����,

K3A � a32 −a34 −a14
����

����.

(34)

In complete analogy for B(x), we construct matrices of
the following form:

KB �

b1

b2

b3 K0B

��������������

��������������

,

K0B �

K1B

K2B

K3B

�������������

�������������

,

(35)

K1B � −b03 0 b11

����
����,

K2B � b22 0 −b04

����
����,

K3B � b32 −b34 −b14

����
����.

(36)

Obviously, in these matrices, each row consists of mo-
nomial coefficients of the same degrees.

Theorem 2. Let in the reduced matrix A(x) of the form (2),
we have a1(x), a2(x), a3(x)≠ 0, q3 > q1, q3 > q2 and
n1: � q1 + q3, n2: � q2 + codegδA + k1. 0en, A(x) ≈ B(x),
where in the reduced matrix B(x) of the form (3), all elements
b1(x), b2(x), b3(x) are nonzero, polynomial b3(x) does not
contain n1-monomial if n1 < k1, and polynomial δB(x) does
not contain (n2 − k1)-monomial if n2 < k2.

In addition, one of the following conditions is true:

(1) In b1(x), n1-monomial is absent, if n1 < k1 and
n2 < k2.

(2) In b2(x), (codegδA + k1)- and n2-monomials are
absent, if n1 ≥ k1 and n2 < k2.

(3) In b1(x), q3- and n1-monomials are absent, if n1 < k1
and n2 ≥ k2.

(4) In the first column of the matrix KB (35), the co-
efficients of the polynomials b1(x), b2(x), b3(x) are
zero elements that correspond to the maximum
system of the first linearly independent rows of the
submatrix K0B, if n1 ≥ k1 and n2 ≥ k2.

'e matrix B(x) is uniquely defined.

Proof. Existence. Let n1 < k1.
We apply to A(x) transformation of the type II with the

left transformation matrix of the form (9). At the same time,
we put s12 � d1/d0, where d0 is the younger coefficient and
d1 is the n1-coefficient in a3(x). 'e elements bi(x),
i � 1, 2, 3, of the thus obtained reduced matrix B(x) satisfy
the congruences (14)–(16). We write (16) in the form

a3(x) − b3(x) − s12a1(x)b3(x) − b2(x)r21(x) ≡ 0 modx
k2 ,

(37)

where r21(x) � a1(x) − b1(x) − s12a1(x)b1(x)/xk1 ∈ C[x].
Comparing the n1-coefficients in both parts of the last
congruence, we have that b3(x) does not contain n1-mo-
nomial. We further assume that element a3(x) of the matrix
A(x) does not contain n1-monomial (if n1 < k1 ).
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Let n2 < k2. Denote by c0 and c1, respectively, the junior
and (n2 − k1)-coefficients of the polynomial δA(x). Apply to
A(x) transformations of the type I with the left trans-
formation matrix of the form (9), while putting s23 � c1/c0.

'e elements bi(x), i � 1, 2, 3, of the thus obtained re-
duced matrix B(x) satisfy the congruences (20)–(22) (with
the one listed here s23). From (21) and (22), we obtain

δA(x) − δB(x) − s23b2′(x)δA(x) ≡ 0 modx
k2− k1 . (38)

If we compare the (n2 − k1)-coefficients in both parts of
the last congruence, we will conclude that δB(x) does not
contain n2-monomial:

(1) Suppose that, in element a3(x) of matrix A(x), there
is no monomial of degree n1 < k1, and in polynomial
δA(x), there is no monomial of degree n2 < k2. De-
note by d0 and c1, respectively, the lower coefficient
in a3(x) and n1-coefficient in a1(x). With the help
transformation of the type III, we pass from A(x) to
the reduced matrix B(x). In the left transformation
matrix (see (9)), we put s13 � c1/d0. 'e elements of
the resulting matrix B(x) satisfy the congruences
(11)–(13) (with the one specified here s13). From (11),
we get that, in element b1(x), n1-monomial is
missing.
We write (13) in the form

a3(x) − b3(x) − s13a3(x)b3(x)

− b2(x)r21(x) ≡ 0 modx
k2 ,

(39)

where r21(x) � a1(x) − b1(x) − s13a3(x)b1(x)/xk1 ∈
C[x]. Since 2q3 > n1, then, as seen from the last con-
gruence, in b3(x), as in a3(x), there is no n1-monomial.
Also in δB(x), as in δA(x), there is no (n2 − k1)-mo-
nomial. 'is is evident from the congruence

δA(x) − δB(x) + s13δA(x)δB(x) ≡ 0 modx
k2− k1 ,

(40)

which is recorded on the basis of (12) and (13) since
codeg(δA(x)δB(x))> n2 − k1. 'is proves the exis-
tence of matrix B(x) with condition (1) specified in
theorem.

(2) Suppose that conditions n1 ≥ k1, n2 < k2, are satisfied
in matrix A(x), and (n2 − k1)-monomial is absent in
polynomial δA(x). We denote by c0 and d2, re-
spectively, the lower coefficient in δA(x) and the
(codegδA + k1)-coefficient in a2(x). Let us do over
matrix A(x) transformation of the type II. To do this
we put s12 � −d2/c0 in the left transformation matrix
(see (9)). We obtain a reduced matrix B(x) whose
elements satisfy the congruences of the form
(14)–(16) (with s12 indicated here). Taking into ac-
count that the lower coefficients in δA(x) and δB(x)

coincide, then from (15) we find that
(codegδA + k1)-monomial is absent in b2(x). From
(15) and (16), we have
δA(x) − δB(x) ≡ 0(modxk2− k1). It follows that, in

δB(x), as in δA(x), there are no monomials of degree
(n2 − k1).
Next, we consider the absence of
(codegδA + k1)-monomial in element a2(x) of the
matrix A(x). Denote by c0 and d3, respectively, the
lower coefficient in δA(x) and n2-coefficient in
a2(x). Above the matrix A(x), we carry out the
transformation of the type III. Here, we put s13 �

d3/c0 in the left transformation matrix (see (9)). 'e
elements of the obtained reduced matrix B(x) satisfy
the congruences of the form (11)–(13) (with s13
indicated here). It can be seen from (12) that
n2-monomial is absent in b2(x). Also
(codegδA + k1)-coefficient in b2(x) will remain zero
since codegδA < n2 − k1. As can be seen from (40), in
δB(x), as in δA(x), (n2 − k1)-monomial is absent
since codeg(δA(x)δB(x))> n2 − k1.
'e existence of the required matrix B(x) with
condition (2) is proved.

(3) Let n2 ≥ k2 for A(x) and in a3(x) be absent mo-
nomial of degree n1 < k1. In the first step, we apply to
the matrix A(x) transformation of the type I with the
left transformative matrix (see (9)), in which
s23 � −c2/d0, where d0 and c2 are, respectively, the
lower coefficient in the a3(x) and the q3-coefficient
in a1(x). As a result, we obtain a reduced matrix
B(x)of the form (3) whose elements satisfy the
conditions of the form (20)–(22) (with s23 selected
here). From (20), it is seen that, in b1(x), the
q3-monomial is absent. From (20) and (22), it can be
written as

a3(x) − b3(x) − b2(x)r21(x) ≡ 0 modx
k2 , (41)

where r21(x) � a1(x) − b1(x) + s23a3(x)/xk1 ∈
C[x]. From the last congruence, it can be seen that
n1-monomial is absent in b3(x) as in a3(x).
Let already a1(x) in A(x) not contain q3-monomial.
Denote by d0 and c3, respectively, the lower co-
efficient in a3(x) and the n1-coefficient in a1(x) and
let s13 � c3/d0. In the second step, with the help of the
transformation of the type III with the specified s13 in
the left transformative matrix (see (9)), we pass from
A(x) to some reducedmatrixB(x) of the form (3). For
elements of the matrix B(x), conditions (11)–(13)
(with the specified here s13) are satisfied. From (11), it
follows that, in b1(x), there is no n1-monomial. In
addition, b1(x) does not contain q3-monomial. On the
basis of (11) and (13), we can write the congruence of
the form (41) in which
r21(x) � a1(x) − b1(x) − s13a3(x)b1(x)/xk1 ∈ C[x].
It shows that, in b3(x), in comparison with a3(x), the
zero coefficient of n1-monomial is preserved. 'is
proves the existence for the matrix A(x) a semiscalarly
equivalent reduced matrix B(x) with condition 3.

(4) Suppose that conditions n1 ≥ k1, n2 ≥ k2, are satisfied
in the reduced matrix A(x). If K0A � 0 in KA (33),
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then the desired matrix is A(x) and everything is
already proven. Otherwise, in the first step, we fix in
the matrix K0A the first nonzero row
u1 � d11 d12 d13

����
���� and the corresponding row

d1 d11 d12 d13
����

���� in KA. Let u1 consist of h1-co-
efficients and be the l1-rd row in K0A. We find an
arbitrary solution x10 x20 x30

����
����

t of the equation

d11 d12 d13
����

���� x1 x2 x3
����

����
t

� d1. (42)

We apply to A(x) a semiscalarly equivalent trans-
formation with the left transformative matrix S of the form
(4). At the same time, in S, we put s23 � x10, s13 � x20, and
s12 � x30. 'e elements bi(x), i � 1, 2, 3, of the obtained
reduced matrix B(x) of the form (3) satisfy the congruence:

a1(x) − b1(x) + s23a3(x) − s12a1(x)b1(x) ≡ 0 modx
k1 ,

a2′(x) − b2′(x) − s23a2′(x)b2′(x) + s12δB(x) ≡ 0 modx
k2− k1 ,

a3(x) − b3(x) − s23a3(x)b2′(x) + s12a1(x) + s13a3(x)( δB(x) ≡ 0 modx
k2 .

(43)

Depending on which of the matrices K1A, K2A, or K3A

(see (34)) row u1 belongs, let us consider the congruence
(43), respectively. By comparing the h1-coefficients in both
parts of that congruence, we conclude that the l1-th element
of the first column of matrix KB (35) is zero. In addition, all
rows in KB, which precede the l1-th, coincide with the
corresponding rows of the matrix KA.

If rankK0A � 1, then everything is already proven.
Matrix B(x) is the desired one. Otherwise, we assume that
the l1-th element of the first column of the matrix KA is zero.
In the second step, we fix in K0A the first linearly in-
dependent of u1 row u2 � d21 d22 d23

����
����, as well as the

corresponding to it row d2 d21 d22 d23
����

���� in KA and the
degree h2 of monomials, the coefficients of which form these
rows. Also let u2 be the l2-th row in K0A l2 > l1.

We find some solution y10 y20 y30
����

����
t of the equation

d11 d12 d13

d21 d22 d23

���������

���������
y1 y2 y3

����
����

t
� 0 d2

����
����

t
. (44)

We apply to A(x) a semiscalarly equivalent trans-
formation with the left transformative matrix S of the form
(4), putting s23 � y10, s13 � y20, and s12 � y30. We obtain
a reduced matrix B(x) of the form (3).

Again, as in the previous step, we consider one of the
congruences (43) depending on which of the matrices K1A,
K2A, or K3A (see (34)) contains row u2. In both parts of this
congruence, we compare the coefficients of the h2-mono-
mials and conclude that the l2-th element of the first column
of the matrix KB (34) is equal to zero. Also from this and the
previous congruences, we get that every row preceding the
l2-th in KA coincides with the corresponding row in KB. If
rankK0A � 2, then everything is already proven. 'en,
matrix B(x) is the desired one. Otherwise, in order to not
introduce new designations, we assume that the first column
of matrix KA has zero l1-th and l2-th elements. In matrix
K0A, we fix the l3-th row, which is the first linearly in-
dependent of u1, u2 (l3 > l2 > l1). Let this be line
u3 � d31 d32 d33

����
����. To him, KA corresponds to

d3 d31 d32 d33
����

����. Also let h3 be the exponent that cor-
responds to these rows. We find the (unique) solution

z10 z20 z30
����

����
t of the equation

d11 d12 d13

d21 d22 d23

d31 d32 d33

�������������

�������������

z1 z2 z3
����

����
t

� 0 0 d3
����

����
t
. (45)

We apply to A(x) a semiscalarly equivalent trans-
formation with the left transformation matrix S of the form
(4) putting s23 � z10, s13 � z20, and s12 � z30. We obtain the
matrix B(x). 'e above considerations show that B(x) is the
desired matrix. □

3.2. Uniqueness of the Matrix in0eorem 2. Suppose that, for
the reduced matrices A(x), B(x) of forms (2) and (3), we have
A(x) ≈ B(x). Suppose also that elements a3(x), b3(x) of these
matrices do not contain n1-monomials if n1 < k1, and in
polynomials δA(x), δB(x), there are no (n2 − k1)-monomials
if n2 < k2. Let us first show that the matrix S in the transition
from A(x) to B(x) can be selected in the form

S �

1 0 s13

0 1 s23

0 0 1

�������������

�������������

, (46)

if n1 < k1, or in the form

S �

1 s12 s13

0 1 0

0 0 1

�������������

�������������

, (47)

if n2 < k2.
Indeed, the elements of the matrices A(x), B(x) satisfy

the congruence

a3(x) − b3(x) − s12a1(x) + s13a3(x)( b3(x) − b2(x)r21(x)

≡ 0 modx
k2 .

(48)
If we compare the coefficients of themonomers of degree

n1 < k1 in both parts of this congruence, we get s12 � 0. Also,
from equivalence A(x) ≈ B(x), it is easy to get congruence

δA(x) − δB(x) + s13δA(x)δB(x) − s23δA(x)b2′(x)

≡ 0 modx
k2− k1 .

(49)
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If we compare the coefficients of themonomers of degree
n2 < k2 in both parts of the last congruence, then we come to
s23 � 0:

(1) In case n1 < k1, n2 < k2, the transition matrix S from
A(x) to B(x) has the form (46) and (47) simulta-
neously. 'erefore, we have s12 � s23 � 0. Elements
a1(x), b1(x) in A(x), B(x) satisfy (11). From here,
we get s13 � 0. For this reason, matrices 1 and 2
coincide.

(2) Since n2 < k2, then matrix S of the transition from
A(x) to B(x) has the form (47), and the elements
a2(x), b2(x) in A(x), B(x) satisfy (25). In a2(x),
b2(x), there are no (codegδA + k1)- and n2-mono-
mials, so from (25), we get s12 � s13 � 0. So,
A(x) � B(x).

(3) If n1 < k1, then the matrix S of the transition from
A(x) to B(x) has the form (46). Elements a1(x),
b1(x) in A(x), B(x) satisfy the congruence (28).
From it, we have s23 � s13 � 0, since in a1(x), as in
b1(x), there are no q3-and n1-monomials. 'erefore,
in this case, A(x), B(x) coincide.

(4) Suppose that matrix B(x) satisfies condition 4, that
is, in KB, the elements of the first column corre-
sponding to the maximum system of the first linearly
independent rows of the submatrix K0B are zero.
Suppose that matrix A(x) also has the same prop-
erty, and in addition, condition A(x) ≈ B(x) holds.
'en, the elements ai(x), bi(x), i � 1, 2, 3, of these
matrices satisfy the congruences (43). If in KA, we
have K0A � 0, then

min q3, q
2
1 ≥ k1,

min q
2
1, codegδA ≥ k2 − k1,

min q2 + q3, codeg a1(x)δA(x)( ( ≥ k2.

(50)

'erefore, as can be seen from (43), ai(x) � bi(x),
i � 1, 2, 3.

If in KA, we have K0A ≠ 0, and l1 is the number of the first
nonzero row u1 in K0A, then the first l1 elements in the first
column of the matrix KA coincide with the corresponding
elements in the matrix KB; moreover, l1-th elements are
zero.'erefore, in K0A, the first l1 + 1 rows coincide with the
corresponding rows of the matrix K0B. In addition, from
congruences (43), we have u1 s23 s13 s12

����
����

t
� 0. If the next

after u1 row v in K0A (or in K0B) is linearly dependent on u1,
then

v s23 s13 s12
����

����
t

� 0. (51)

'en, from (43), we obtain that the first l1 + 1 elements
in the first column of the matrix KA coincide with the
corresponding elements in KB. If u1 and v are linearly in-
dependent, then (51) is still satisfied since in this case, the
(l1 + 1)-th elements in the first columns of matrices KA and
KB are zero.'en, the l1 + 2 th row in K0A coincides with the
corresponding row of the matrix K0B. We think of this row

in the same way as it was done above with row v. Let u2 be
the first linearly independent of row u1 and l2 be its number
in K0A. 'en, this row coincides with the l2-th row in K0B,
and the first l2 elements of the first column in KA coincide
with the corresponding elements in KB, with l2th elements
being zero.'en from (43), we have u2 s23 s13 s12

����
����

t
� 0. If

w is the (l2 + 1)-th row in K0A, then the corresponding
(l2 + 1)-th row in K0B is also w. If w is linearly dependent on
the system u1, u2, then

w s23 s13 s12
����

����
t

� 0, (52)

and the (l2 + 1)-th elements in the first columns of matrices
KA,KB coincide. Otherwise, these elements also coincide
because they are null. Continuing our considerations, we
show that, in KA, KB, the first columns coincide, or at some
steps, we will get s12 � s13 � s23 � 0. In each case,
A(x) � B(x). 'eorem is proved.

Example 1. Matrices A(x) �

1 0 0
x
3

x
4 0

x
6

+ x
4

+ x
2

x
7

x
8

�����������

�����������
, B(x) �

1 0 0
x
3

x
4 0

x
2

x
7

x
8

�����������

�����������
, and C(x) �

x
4

− x
2

x
2

− 1 −x

0 x
3 0

x
4

x
2

x
5

+ x
2

�����������

�����������
are

semiscalarly equivalent. In this case, A(x) is a reduced, and

B(x) is a canonical matrix for C(x).

4. Conclusion

'e matrices B(x), whose existence is established in 'e-
orems 1 and 2, can be considered canonical in the class of
semiscalarly equivalent matrices. 'e method of their
construction follows from the proof of the first parts of these
theorems. 'is completes the study of semiscalar equiva-
lence of third-order polynomial matrices with one charac-
teristic root, started in the previous works of the author.

'e results obtained in this article, as well as the results of
the works cited here, are applicable to the study of the si-
multaneous similarity of sets of numerical matrices. In this
context, the works of [6–9] should be noted. 'ese results
also have utility in solving Sylvester-type matrix equations
over polynomial rings. Such equations often arise in applied
problems.
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