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,e crucial role that fuzzy implications play in many applicable areas was our motivation to revisit the topic of them. In this paper,
we apply classical logic’s laws such as De Morgan’s laws and the classical law of double negation in known formulas of fuzzy
implications.,ese applications lead to new families of fuzzy implications. Although a duality in properties of the preliminary and
induced families is expected, we will prove that this does not hold, in general. Moreover, we will prove that it is not ensured that
these applications lead us to fuzzy implications, in general, without restrictions. We generate and study three induced families, the
so-called D′-implications, QL′-implications, and R′-implications. Each family is the “closest” to its preliminary-“creator” family,
and they both are simulating the same (or a similar) way of classical thinking.

1. Introduction

Although, in classical logic, the implication is uniquely de-
termined, in fuzzy logic, there are not only several formulas but
also families of fuzzy implications. Moreover, among fuzzy
implications, there are several properties, which a fuzzy im-
plication satisfies or violates. ,e necessity of this variety had
been addressed by many authors [1–3], and it is the election of
the proper fuzzy implication to any applied problem. More
specifically, Mas et al. in [1] addressed the following:

Of course, all these expressions for implications are
equivalent in any Boolean algebra and consequently in
classical logic. However, in fuzzy logic, these four definitions
yield to distinct classes of fuzzy implications. �us, the
following question naturally arises: why so many different
models to perform this kind of operation? �e main reason
is because they are used to represent imprecise knowledge.
Note that any “if then” rule in fuzzy systems is interpreted
through one of these implication functions. So, depending
on the context and on the proper rule and its behaviour,
different implications can be adequate in any case.

Among the families or the construction methods of fuzzy
implications, there are several types. ,ere are fuzzy impli-
cations that are constructed by generalizations of classical
tautologies, such as (S, N)-implications, QL-implications,
D-implications [1, 3–6], and (T, N)-implications [2, 7, 8]. All
these generalizations are not always an easy process. For
example, in the case of (S, N)-implications [4, 6] and
(T, N)-implications [2, 7, 8], the generalization is smooth and
direct. On the contrary, in the case of QL- and D-operations
[4, 6], the generalization holds under conditions, which need
investigation and remain an open problem, when a QL-
(respectively, D-) operation is a fuzzy implication [4]. ,ere
are generalizations from classical set theory, such as R-im-
plications [4–6]. ,ere are fuzzy implications that are con-
structed by generalizations of the aforementioned
generalizations, such as (U, N)- and RU-implications [4].
,ere are fuzzy implications that are constructed by function
generators with specific properties [4, 9–12]. Moreover, there
are generation methods of fuzzy implications from known
fuzzy implications [4, 13].

In this paper, we focus on these fuzzy implications, in
which the formula contains at least a t-norm or a t-conorm.
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Such families are (S, N)-implications, (T, N)-implications,
QL-implications, D-implications, and R-implications.

We have to remind that, in classical logic, there are De
Morgan’s laws, which are expressed by tautologies
(p∧ q)′ ≡ p′ ∨ q′ and (p∨ q)′ ≡ p′ ∧ q′ and the classical law
of double negation, which is expressed by the tautology
(p′)′ ≡ p.

So, the central idea is to apply De Morgan’s laws and, if
necessary, the classical law of double negation in known
formulas of fuzzy implications and investigate the results.
,ese are the generation of new families of fuzzy implica-
tions. As we will show in the following, each new induced
family does not generally have the same properties as its
preliminary-“creator” family. On the contrary, some duality
in the properties is remarkable and expected, but this does
not hold, in general. So, any case must be studied indi-
vidually from the beginning.

2. Preliminaries

Definition 1 (see [4, 5, 14, 15]). A decreasing function
N: [0, 1]⟶ [0, 1] is called fuzzy negation if N(0) � 1 and
N(1) � 0. Moreover, a fuzzy negation N is called

(i) Strict if it is continuous and strictly decreasing.
(ii) Strong if it is an involution, i.e.,

N(N(x)) � x, for allx ∈ [0, 1]. (1)

(iii) Nonfilling if

N(x) � 1⟺x � 0. (2)

Remark 1 (see [4])

(i) We call NC(x) � 1 − x the classical fuzzy negation,
which is a strong negation.

(ii) Moreover, we will need the following fuzzy
negations:

ND1(x) �
1, if x � 0,

0, if x> 0,
􏼨

ND2(x) �
1, if x< 1,

0, if x � 1.
􏼨

(3)

Definition 2 (see [4]). A function T: [0, 1]2⟶ [0, 1] is
called a triangular norm (shortly t-norm) if it satisfies, for all
x, y, z ∈ [0, 1], the following conditions:

T(x, y) � T(y, x), (4)

T(x, T(y, z)) � T(T(x, y), z), (5)

if y≤ z, thenT(x, y)≤T(x, z), i.e., T(x, ·) is increasing,

(6)

T(x, 1) � x. (7)

Dually, a function S: [0, 1]2⟶ [0, 1] is called a tri-
angular conorm (shortly t-conorm) if it satisfies, for all
x, y, z ∈ [0, 1], conditions (4), (5), and (6), and additionally,

S(x, 0) � x. (8)

Definition 3 (see [4]). A t-norm T (respectively, a t-conorm
S) is called

(i) Continuous if it is continuous in both arguments
(ii) Idempotent if T(x,x) � x (respectively, S(x,x) � x),

for all x ∈ [0,1]

(iii) Strict if it is continuous and strictly monotone, i.e.,
T(x, y)<T(x, z) whenever x> 0 and y< z (re-
spectively, S(x, y)< S(x, z) whenever x< 1 and
y< z)

(iv) Positive if T(x, y) � 0⟺x � 0 or y � 0 (respec-
tively, S(x, y) � 1⟺x � 1 or y � 1)

Tables 1 and 2 list a few of the common t-norms and t-
conorms, respectively (see Tables 2.1 and 2.2 of [4]).

Definition 4 (see [4]). Let S be a t-conorm and N be a fuzzy
negation. We say that the pair (S, N) satisfies the law of
excluded middle if

S(N(x), x) � 1, x ∈ [0, 1]. (9)

Definition 5 (see [4]). Let T be a t-norm and N be a fuzzy
negation. We say that the pair (T, N) satisfies the law of
contradiction if

T(N(x), x) � 0, x ∈ [0, 1]. (10)

Definition 6 (see [4]). A triple (T, S, N), where N is a strong
negation, is called a De Morgan triple if

T(x, y) � N(S(N(x), N(y))),

S(x, y) � N(T(N(x), N(y))), x, y ∈ [0, 1].
(11)

Moreover, in the first case, T is called N-dual of S, and in
the second case, S is called N-dual of T.

Definition 7 (see [4, 16]). By Φ, we denote the family of all
increasing bijections from [0, 1] to [0, 1]. We say that
functions f, g: [0, 1]n⟶ [0, 1] are Φ-conjugate if there
exists ϕ ∈ Φ such that g � fϕ, where

fϕ x1, x2, . . . , xn( 􏼁 � ϕ− 1
f ϕ x1( 􏼁, ϕ x2( 􏼁, . . . , ϕ xn( 􏼁( 􏼁( 􏼁,

x1, x2, . . . , xn ∈ [0, 1].

(12)

Remark 2 (see [4]). It is easy to prove that if ϕ ∈ Φ and T is a
t-norm, S is a t-conorm, and N is a fuzzy negation (re-
spectively, strict and strong), then Tϕ is a t-norm, Sϕ is a t-
conorm, and Nϕ is a fuzzy negation (respectively, strict and
strong).
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Definition 8 (see [4, 5]). A function I: [0, 1]2⟶ [0, 1] is
called a fuzzy implication if

I is decreasingwith respect to the first variable, (13)

I is increasingwith respect to the second variable, (14)

I(0, 0) � 1, (15)

I(1, 1) � 1, (16)

I(1, 0) � 0. (17)

Remark 3 By axioms (14) and (15), we deduce the normality
condition

I(0, 1) � 1. (18)

Furthermore, by Definition 8, it is easy to prove the left
and right boundary conditions [4]:

I(0, y) � 1, y ∈ [0, 1], (19)

I(x, 1) � 1, x ∈ [0, 1]. (20)

Table 3 lists a few of basic fuzzy implications (see Ta-
ble 1.3 and Proposition 1.1.7 of [4]).

Definition 9 (see [4]). A fuzzy implication I is said to satisfy

(i) ,e left neutrality property if

I(1, y) � y, y ∈ [0, 1]. (21)

(ii) ,e exchange principle if

I(x, I(y, z)) � I(y, I(x, z)), x, y, z ∈ [0, 1]. (22)

Remark 4 (see [4]). It is proved that if ϕ ∈ Φ and
I: [0, 1]2⟶ [0, 1] is a function, which satisfies axiom (13)
(respectively, (14), (15), (16), and (17)), then Iϕ: [0, 1]2⟶
[0, 1] is a function, which also satisfies axiom (13) (re-
spectively, (14), (15), (16), and (17)). So, if I is a fuzzy im-
plication, then Iϕ is also a fuzzy implication.

Proposition 1 (see [4]). If a function I: [0, 1]2⟶ [0, 1]

satisfies (13), (15), and (17), then the function
NI: [0, 1]⟶ [0, 1] is a fuzzy negation, where

NI(x) � I(x, 0), x ∈ [0, 1]. (23)

Definition 10 (see [4]). Let I: [0, 1]2⟶ [0, 1] be a fuzzy
implication. ,e function NI defined by Proposition 1 is
called the natural negation of I.

Definition 11 (see [4]). Let N be a fuzzy negation and I be a
fuzzy implication. A function IN: [0, 1]2⟶ [0, 1] defined
by

IN(x, y) � I(N(y), N(x)), x, y ∈ [0, 1], (24)

is called the N-reciprocal of I. When N is the classical
negation NC, then IN is called the reciprocal of I and is
denoted by I′.

Table 1: Basic t-norms.

Name Formula
Minimum TM(x, y) � min x, y􏼈 􏼉

Algebraic product TP(x, y) � x · y

Łukasiewicz TL(x, y) � max x + y − 1, 0􏼈 􏼉

Drastic product TD(x, y) �
0, if x, y ∈ [0, 1),

min x, y􏼈 􏼉, otherwise􏼨

Nilpotent minimum
TnM(x, y) �

0, if x + y≤ 1,

min x, y􏼈 􏼉, otherwise􏼨

Table 2: Basic t-conorms.

Name Formula
Maximum SM(x, y) � max x, y􏼈 􏼉

Probor SP(x, y) � x + y − x · y

Łukasiewicz SL(x, y) � min x + y, 1􏼈 􏼉

Drastic sum SD(x, y) �
1, if x, y ∈ (0, 1],

max x, y􏼈 􏼉, otherwise􏼨

Nilpotent maximum
SnM(x, y) �

1, if x + y≥ 1,

max x, y􏼈 􏼉, otherwise􏼨

Table 3: Basic fuzzy implications.

Name Formula
Łukasiewicz ILK(x, y) � min 1, 1 − x + y􏼈 􏼉.

Reichenbach IRC(x, y) � 1 − x + x · y.

Gödel IG D(x, y) �
1, if x≤y,

y, if x>y.
􏼨

Weber
IWB(x, y) �

1, if x< 1,

y, if x � 1.
􏼨

Kleene–Dienes IK D(x, y) � max 1 − x, y􏼈 􏼉.

Fodor IF D(x, y) �
1, if x≤y,

max 1 − x, y􏼈 􏼉, if x>y.
􏼨

Yager
IYG(x, y) �

1, if x � 0 andy � 0,

y
x
, if x> 0 ory> 0.

􏼨

Dubois and Prade
IDP(x, y) �

1 − x, if y � 0,

y, if x � 1,

1, otherwise.

⎧⎪⎨

⎪⎩

Goguen
IGG(x, y) �

1, if x≤y,

y/x, if x>y.
􏼨

Rescher
IRS(x, y) �

1, if x≤y,

0, if x>y.
􏼨

,e weakest
I0(x, y) �

1, if x � 0 ory � 1,

0, otherwise.􏼨

,e strongest
I1(x, y) �

0, if x � 1 ory � 0,

1, otherwise.􏼨
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In Table 4, we present the known families of fuzzy im-
plications that are generalizations from the classical logic
(except R-implications that are generalizations from the
classical set theory via the isomorphism that exists between
classical two-valued logic and classical set theory and a set
theoretic identity (see page 68 of [4])). We consider that the
reader knows these families, as well as QL- and D-operations.

3. (T, N)-Implications

(T, N)-implications are mentioned as formulas by many au-
thors [15, 17–19]. Baczyński and Jayaram in Corollary 2.5.31 of
[4] related them with R-implications when the t-norm T is left
continuous andN is a strong negation. Pradera et al. in Remark
30 of [21] mentioned the same formula, using aggregation
functions, in general. Bedregal in Proposition 2.6 of [7] defined
them for any t-norm and any fuzzy negation. ,ey obtained
their name in [2] andwere studied by Pinheiro et al. in [2, 8] for
any t-norm and any fuzzy negation.

(T, N)-implications are the “closest” to (S, N)-implications
since for strong negations, they are the same family (see p. 234
of [15], [2],eorem 3.1 of [8]). On the contrary, for nonstrong
negations, they have no common implications since unlike
(S, N)-implications (see Proposition 2.4.3 of [4]),
(T, N)-implications violate (21) (see Proposition 3.3(i) of [2]).
All these results lead us to Figure 1.

,e aforementioned lead us to the claim that these two
families simulate the same (or a similar) way of classical
thinking. Firstly, we must explain the meaning of this simu-
lation. ,e meaning is that there are tautologies in the classical
logic, which can be proved without using truth tables or other
rules, but only DeMorgan’s laws and the classical law of double
negation.

So, firstly, we work on classical logic’s tautologies, and
secondly, we generalize them in fuzzy logic. Unfortunately,
this generalization is not always an easy process, as we will
show in the following.

Let us remark that (S, N)-implications are the general-
ization of the tautology

(p⟹ q) ≡ p′ ∨ q( 􏼁, (25)

and then by applying De Morgan’s laws and the classical law
of double negation, we get the following tautology:

(p⟹ q) ≡ p′ ∨ q( 􏼁 ≡ p′( 􏼁′ ∧ q′􏼂 􏼃′ ≡ p∧ q′( 􏼁′, (26)

which leads us to (T, N)-implications.
Similarly, QL-operations (respectively, implications) are

the generalization of the tautology

(p⟹ q) ≡ p′ ∨ (p∧ q)􏼂 􏼃. (27)

At this point, let us make clear what is the meaning of
“simulate the same (or a similar) way of classical thinking”
via an example.

Example 1. Someone could claim that since

p′ ∨ q( 􏼁 ≡ (p⟹ q) ≡ p′ ∨ (p∧ q)􏼂 􏼃, (28)

(S, N)- andQL-implications simulate the same (or a similar)
way of classical thinking. ,is is not acceptable since we
cannot prove the tautology

p′ ∨ q( 􏼁 ≡ p′ ∨ (p∧ q)􏼂 􏼃, (29)

using only De Morgan’s laws and maybe the classical law of
double negation.

4. D9-Implications

Similarly, D-operations (respectively, implications) are the
generalization of the tautology

(p⟹ q) ≡ p′ ∧ q′( 􏼁∨ q􏼂 􏼃, (30)

and after the application of De Morgan’s laws and the
classical law of double negation, we get the following
tautology:

(p⟹ q) ≡ (p′ ∧ q′)∨ q􏼂 􏼃 ≡ (p∨ q)′ ∨ q􏼂 􏼃

≡ (p∨ q)′( 􏼁′ ∧ q′􏼂 􏼃′ ≡ (p∨ q)∧ q′􏼂 􏼃′,
(31)

which leads us to a new family of fuzzy operations (re-
spectively, implications) obtained by the following formula.

Definition 12. A function I: [0, 1]2⟶ [0, 1] is called a
D′-operation if there exist a t-norm T, a t-conorm S, and a
fuzzy negation N such that

I(x, y) � N(T(S(x, y), N(y))), x, y ∈ [0, 1]. (32)

If I is a D′-operation generated by the triple (T, S, N),
then we denote it by IN,T,S.

Theorem 1. Let IN,T,S be a D′-operation; then, IN,T,S satisfies
(13)–(18) and (20), and if N is a strong negation, then IN,T,S

satisfies (21). Furthermore, NIN,T,S � N, where NIN,T,S (x) �

IN,T,S(x, 0), x ∈ [0, 1].

Table 4: Known families of fuzzy implications.

Name Formula
(S, N) [1, 3–6] IS,N(x, y) � S(N(x), y)

(T, N)

[2, 7, 8, 15, 17–19] IN
T (x, y) � N(T(x, N(y)))

QL [1, 3–6] IT,S,N(x, y) � S(N(x), T(x, y)),
which satisfies (13)

D [3, 4, 6, 20] IT,S,N(x, y) � S(T(N(x), N(y)), y),
which satisfies (14)

R [3–6] IT( x, y ) � sup t ∈ [ 0, 1 ]|T( x, t )≤y􏼈 􏼉

N is not a strong
negation, and (21)

is satisfied
N is a strong 

negation
N is not a strong

negation, and (21)
is not satisfield

IS,N

IN
T

Figure 1: Intersection between (S, N)- and (T, N)-implications.
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Proof. Let IN,T,S be a D′-operation; then, for x, y, z ∈ [0, 1],
if

x≤y⟹ S(x, z)≤ S(y, z)

⟹T(S(x, z), N(z))≤T(S(y, z), N(z))

⟹N(T(S(x, z), N(z))) ≥N(T(S(y, z), N(z)))

⟹ I
N,T,S

(x, z)≥ I
N,T,S

(y, z),

(33)

which means that IN,T,S satisfies (13).
IN,T,S satisfies (15) since

I
N,T,S

(0, 0) � N(T(S(0, 0), N(0))) � N(T(0, 1))

� N(0) � 1.
(34)

IN,T,S satisfies (16) since

I
N,T,S

(1, 1) � N(T(S(1, 1), N(1))) � N(T(1, 0))

� N(0) � 1.
(35)

IN,T,S satisfies (17) since

I
N,T,S

(1, 0) � N(T(S(1, 0), N(0))) � N(T(1, 1))

� N(1) � 0.
(36)

IN,T,S satisfies (18) since

I
N,T,S

(0, 1) � N(T(S(0, 1), N(1))) � N(T(1, 0))

� N(0) � 1.
(37)

IN,T,S satisfies (20) since ∀x ∈ [0, 1], it is

I
N,T,S

(x, 1) � N(T(S(x, 1), N(1))) � N(T(1, 0))

� N(0) � 1.
(38)

(21) is satisfied if N is a strong negation since ∀x ∈ [0, 1],
it is

I
N,T,S

(1, x) � N(T(S(1, x), N(x)))

� N(T(1, N(x)))

� N(N(x)) � x.

(39)

Lastly, we have

NIN,T,S (x) � IN,T,S(x, 0)

� N(T(S(x, 0), N(0)))

� N(T(x, 1))

� N(x), ∀x ∈ [0, 1].

(40)

By,eorem 1, it follows that a D′-operation is generated
by a unique negation. ,e reason for which we use the name
D′-operations instead of D′-implications is that they do not
generally satisfy (14), so they are not always increasing with
respect to the second variable, as it can be seen in the next
example.

Example 2. Consider the triple (TM, SP, NC). ,e obtained
D′-operation is

I
NC,TM,SP (x, y) � NC TM SP(x, y), NC(y)( 􏼁( 􏼁

� 1 − min x + y − x · y, 1 − y􏼈 􏼉

� max 1 − x − y + x · y, y􏼈 􏼉,

(41)

which does not satisfy (14) since

0.1≤ 0.2⟹ I
NC,TM,SP (0.1, 0.1) � 0.81> 0.72

� I
NC,TM,SP (0.1, 0.2).

(42)

,erefore, the first main problem is the characterization
of those D′-operations, which satisfy (14). In this paper, we
try to characterize these triples (T, S, N) that produce
D′-operations, which satisfy (14). In the following, we will
give only partial results as partial results are known in the
literature for QL- and D-operations, too [4]. Following the
terminology [8, 16], only if the D′-operation is a fuzzy
implication, we use the term D′-implication. So, we have the
following proposition, without proof.

Proposition 2. A function I: [0, 1]2⟶ [0, 1] is called a
D′-implication if it is a D′-operation and satisfies (14).

All the above are useful, but they do not ensure that the
set of D′-implications is nonempty. ,is is ensured by the
next example.

Example 3. Consider the triple (TL, SM, NC). ,e obtained
D′-operation is

I
NC,TL,SM (x, y) � NC TL SM(x, y), NC(y)( 􏼁( 􏼁 �

� 1 − max min x, y􏼈 􏼉 + 1 − y − 1, 0􏼈 􏼉

� min 1 − x + y, 1􏼈 􏼉 � ILK(x, y),

(43)

which is a D′-implication.

By Example 3, someone could automatically prove that
the set of D′-implications is nonempty. Furthermore, it is
very easy to observe and prove the following lemma. ,e
proof is omitted due to its simplicity.

Lemma 1. Let T1, T2, T be t-norms, S1, S2, S be t-conorms,
and N be a fuzzy negation.

(i) If T1 ≤T2, then IN,T1 ,S(x, y)≥ IN,T2 ,S(x, y)

(ii) If S1 ≤ S2, then IN,T,S1(x, y)≥ IN,T,S2(x, y)

(iii) If T1 ≤T2 and S1 ≤ S2, then IN,T1 ,S1(x, y)≥
IN,T2 ,S2(x, y)

Although Lemma 1 is simple, it is very useful for the
following. It is TD ≤T, for all t-norms T (see Remark
2.1.4.(ix), page 43, of [4]) and SM ≤ S, for all t-conorms S (see
Remark 2.2.5.(viii), page 46, of [4]). ,us, it is easy to prove
that the strongest D′-operation, which can be obtained by
the fuzzy negation ND2, is
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I
ND2 ,TD,SM (x, y) �

0, if x � 1 andy< 1,

1, otherwise,
􏼨

� I4(x, y), (see [4]),

(44)

which is a D′-implication, too. By this result, we can con-
clude that I1 is not a D′-implication. ,at is, because its
natural negation is ND2 and, furthermore, there are
x, y ∈ [0, 1], such that IND2 ,TD,SM (x, y) � I4(x, y)< I1(x, y).
I1 is stronger than the strongest D′-implication that has ND2
as its natural negation, meaning that is not a D′-implication.

,e formula of D′-operations is complicated. Moreover,
we have to check every time if axiom (14) is satisfied. If we
use a nonfilling negation, the following theorem will be a
useful tool to overcome these difficulties.

Theorem 2. Let IN,T,S be a D′-implication and N be a
nonfilling negation; then, it is T(N(x), x) � 0, x ∈ [0, 1], that
is, the pair (T, N) satisfies the law of contradiction (10).

Proof. If IN,T,S is a D′-implication, then it satisfies (19), that
is, for all y ∈ [0, 1],

I
N,T,S

(0, y) � 1⟹N(T(S(0, y), N(y))) � 1

⟹N(T(y, N(y))) � 1

⟹T(N(y), y) � 0

(45)

since N is a nonfilling negation. So,
T(N(x), x) � 0, x ∈ [0, 1].

Remark 5. By ,eorem 2, it is obvious that if N is a non-
filling negation and the pair (T, N) does not satisfy the law of
contradiction (10), i.e., T(N(x), x)≠ 0, for some x ∈ [0, 1],
then the obtained IN,T,S D′-operation, for any t-conorm S, is
not a fuzzy implication.

Theorem 3. If ϕ ∈ Φ and IN,T,S is a D′-operation (respec-
tively, implication), then (IN,T,S)ϕ is a D′-operation (re-
spectively, implication), and moreover,

I
N,T,S

􏼐 􏼑ϕ � I
Nϕ,Tϕ ,Sϕ . (46)

Proof. Let IN,T,S be a D′-operation (respectively, implica-
tion); then, (IN,T,S)ϕ is a D′-operation (respectively, im-
plication) according to Remark 4. Moreover, for all
x, y ∈ [0, 1], we deduce that

I
N,T,S

􏼐 􏼑ϕ(x,y) � ϕ− 1
I

N,T,S
(ϕ(x),ϕ(y))􏼐 􏼑

� ϕ− 1
(N(T(S(ϕ(x),ϕ(y)),N(ϕ(y)))))

� ϕ− 1
N ϕ ϕ− 1

(T(S(ϕ(x),ϕ(y)),N(ϕ(y))))􏼐 􏼑􏼐 􏼑􏼐 􏼑

� Nϕ(ϕ− 1
(T(ϕ(ϕ− 1

(S(ϕ(x),ϕ(y)))),

ϕ(ϕ− 1
(N(ϕ(y)))))))

� Nϕ Tϕ Sϕ(x,y),Nϕ(y)􏼐 􏼑􏼐 􏼑

� I
Nϕ ,Tϕ ,Sϕ(x,y).

(47)

Since we have studied some general results for D′-oper-
ations (respectively, implications), we are going to study some
more specific cases. ,is family has no interest if we use strong
negations. ,is is explained by ,eorem 4 after the following
Proposition 3.

Proposition 3 (see Proposition 5 of [6]). Let T be a t-norm,
S be a t-conorm, and N be a strong negation. �en, the
corresponding QL-operator, IT,S,N, is a QL-implication if and
only if the corresponding D-operator, IT,S,N, is a
D-implication.

Theorem 4. If N is a strong negation and IN,T,S′ is a
D′-operation, then

(i) IN,T,S′ � IT′ ,S,N � (IT′,S,N)N, where S, T′ are N-dual
of T, S′, respectively, IT′ ,S,N is a D-operation, and
(IT′,S,N)N is N-reciprocal of the QL-operation IT′,S,N

(ii) Moreover, if one of IN,T,S′ , IT′ ,S,N, and IT′ ,S,N is a fuzzy
implication, then the other two are fuzzy implications,
too

Proof

(i) Let IN,T,S′ be a D′-operation. ,en,

I
N,T,S′

(x, y) � N T S′(x, y), N(y)( 􏼁( 􏼁

� N(T N T′(N(x), N(y))), N(y)( 􏼁( 􏼁

� S T′(N(x), N(y)), y( 􏼁

� I
T′ ,S,N

(x, y).

(48)

On the contrary,

I
N,T,S′

(x, y) � N T S′(x, y), N(y)( 􏼁( 􏼁

� S N S′(x, y)( 􏼁, N(N(y))( 􏼁

� S N N T′(N(x), N(y))( 􏼁( 􏼁, y( 􏼁

� S T′(N(x), N(y)), y( 􏼁

� S(y, T′(N(x), N(y)))

� S(N(N(y)), T′(N(y), N(x)))

� IT′ ,S,N(N(y), N(x))

� IT′ ,S,N􏼐 􏼑
N

(x, y).

(49)

(ii) If one of IT′ ,S,N and IT′ ,S,N is a fuzzy implication, then
the other one is a fuzzy implication too, according to
Proposition 3. If IN,T,S′ is a fuzzy implication, then
because of (i), where IN,T,S′ � IT′ ,S,N, we conclude
that IT′ ,S,N is a fuzzy implication and vice versa.

Remark 6. By ,eorem 4, it is obvious that if (T, S, N) is a
De Morgan triple and IN,T,S is a D′-operation (respectively,
implication), then IN,T,S � IT,S,N � (IT,S,N)N, where IT,S,N is
a D-operation (respectively, implication) and (IT,S,N)N is N-
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reciprocal of the QL-operation (respectively, implication)
IT,S,N. ,e (IT,S,N)N N-reciprocal of the QL-operation IT,S,N is
defined, respectively, to theN-reciprocal of the QL-implication
IT,S,N.

So, the first question arising is whether D′-operations
(respectively,, implications) are or not a new family of
operations (respectively, implications) or they are simply
D-operations (respectively, implications). Although we have
mentioned so many theorems and we have presented the
whole rationale of our study, this is a question that seems not
to have been answered yet.

It is known that if IT,S,N is a D-operation (respectively,
implication), then the pair (S, N) must satisfy (9) (see
Lemma 3 of [20]). Additionally, there does not exist any t-
conorm S such that the pair (S, ND1) satisfies (9) (see Re-
mark 2.3.10(iii) of [4]). ,us, there is no D-implication
generated by any triple (T, S, ND1). Furthermore, it is easy to
prove that if IT,S,N is a D-implication, then N is its natural
negation. ,is proof is easy and similar to the proof of
,eorem 1. To sum up, there is no D-implication which has
ND1 as its natural negation. On the contrary, we have the
following proposition.

Proposition 4. By a triple of the form (T, S, ND1), where T is
any t-norm and S is any t-conorm, a D′-implication is ob-
tained, which is I3 (see [22]).

Proof. By a triple of the form (T, S, ND1), where T is any t-
norm and S is any t-conorm, we obtain

I
ND1,T,S

(x, y) � ND1(T(S(x, y), ND1(y)))

�
ND1(T(S(x, 0), ND1(0))), if y � 0,

ND1(T(S(x, y), ND1(y))), if y> 0,
􏼨

�
ND1(T(x, 1)), if y � 0,

ND1(T(S(x, y), 0)), if y> 0,
􏼨

�
ND1(x), if y � 0,

ND1(0), if y> 0,
􏼨

�
0, if x> 0 andy � 0,

1, otherwise,
􏼨

� I3(x, y).

(50)

Remark 7. ,e aforementioned Proposition 4 is very im-
portant, although it seems simple. Because of it, we conclude
that the only D′-implication which has ND1 as its natural
negation is I3. So, automatically, we conclude that I0, IGG,
IG D, IRS, and IYG are not D′-implications since all of them
have ND1 as their natural negation.

Proposition 4 is the answer of this first question. I3 is a
D′-implication, which is obviously not a D-implication since
its natural negation is ND1. So, it is proved that the family of
D′-implications is not the same with D-implications’ family.

Furthermore, due to tautology (5) and by our intuition, we
expected duality properties ofD′-operations andD-operations.
So, the second question arising is whether or not this is true.
For example, we mentioned that if IT,S,N is a D-operation
(respectively, implication), then the pair (S, N) must satisfy (9).
Does this imply that if IN,T,S is a D′-operation, then the pair
(T, N) must satisfy (10)?

,e answer seems to be negative, as we show in,eorem
2, since (10) is satisfied if we have a nonfilling negation N

and not for sure, for any negation N. Finally, the answer is
negative, according to the following proposition.

Proposition 5. By a triple of the form (T, S, ND2), where T is
any t-norm and S is any idempotent, positive, or strict t-
conorm, a D′-implication is obtained, which is I4 (see [22]).

Proof. It is known and easy to prove that the only idem-
potent t-conorm is SM (see Remark 2.2.5(ii) of [4]), which is
also positive (see Table 2.2, page 46, of [4]). ,erefore,
anything is proved for positive t-conorms is valid and for the
idempotent too. ,us, by the triple (T, S, ND2), where S is
any positive or strict t-conorm, we obtain

I
ND2 ,T,S

(x, y) � ND2(T(S(x, y), ND2(y)))

�
ND2(T(S(x, 1), ND2(1))), if y � 1,

ND2(T(S(x, y), ND2(y))), if y< 1,

⎧⎨

⎩

�
ND2(T(x, 0)), if y � 1,

ND2(T(S(x, y), 1)), if y< 1,

⎧⎨

⎩

�
ND2(0), if y � 1,

ND2(S(x, y)), if y< 1,

⎧⎨

⎩

�

1, if y � 1,

1, if S(x, y)< 1 andy< 1,

0, if S(x, y) � 1 andy< 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

�

0, if x � 1 andy< 1,

1, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

� I4(x, y).

(51)

According to Proposition 5, I4 is aD′-implication, which
does not satisfy (10) since for any t-norm T, it is
T(ND2(x), x) � x≠ 0, for any x ∈ (0, 1). ,is fact is exactly
the reason why we have to study any new family generated
by De Morgan’s laws and, if necessary, the classical law of
double negation from the beginning.

,e third question arising is what is the relation between
these families (D and D′). ,e answer is given partially in
,eorem 1, where we proved that if N is a strong negation,
then IN,T,S satisfies (21). Also, it is easy to prove the next
proposition.

Proposition 6. Let IN,T,S be a D′-operation, which satisfies
(21); then, N is a strong negation.
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Proof. Since the D′-operation IN,T,S satisfies (21), we have

I
N,T,S

(1, x) � x⟹N(T(S(1, x), N(x))) � x

⟹N(T(1, N(x))) � x

⟹N(N(x)) � x, ∀x ∈ [0, 1].

(52)

,us, N is a strong negation.
Clearly then, if N is a strong negation, then the

corresponding D′-operation (respectively, implication) is
a D-operation (respectively, implication) too, and vice
versa. ,erefore, in this case, every property of D-im-
plications is valid to D′-implications. Since the properties
are similar in both families, due to the duality of
S, S′, T, T′, respectively, the existing theorems and prop-
ositions that have been studied so far (see [6]) are valid
too, with some simple changes due to the mentioned
duality.

For nonstrong negations, we have that D-operations
(respectively, implications) are the operations (respectively,
implications), which satisfy (21) (see Remark 1 of [6]), and
on the contrary, D′-operations (respectively, implications)
do not satisfy (21). All these results lead us to Figure 2.

In the following of this section, we present a useful
theorem for the disqualification of some triples (T, S, N)

that do not generate D′-implications.

Theorem 5. By any triple (T, S, N), where S is any t-conorm,
N is any continuous nonfilling fuzzy negation, and T is any
idempotent, strict, or positive t-norm, any D′-implication
cannot be obtained.

Proof. Firstly, we have to mention that it is easy to prove
that every continuous fuzzy negation N has a unique fixed
point (see ,eorem 1.4.7, page 15, of [4]). So, for any
continuous fuzzy negation N, there exists exactly one
e ∈ (0, 1) such that N(e) � e.

Moreover, the only idempotent t- norm is TM (see
Proposition 1.9 of [15]), and for any continuous nonfilling
fuzzy negation N, we have TM(N(e), e) � TM(e, e) � e≠ 0.
,erefore, according to Remark 5, any D′-implication
cannot be obtained.

Even if T is a strict t-norm, then T(N(e), e) � T(e, e)≠ 0
because if T(e, e) � 0⟺T(e, e) � T(e, 0), a contradiction
because e> 0⟹T(e, e)>T(e, 0). ,erefore, according to
Remark 5, any D′-implication cannot be obtained.

Finally, if T is any positive t-norm, then

T(x, y) � 0⟺x � 0 ory � 0. (53)

So, T(N(e), e) � T(e, e)≠ 0, since e> 0, and again,
according to Remark 5, any D′- implication cannot be
obtained.

A very useful proposition is as follows.

Proposition 7. By a triple of the form (TD, S, NC), where S is
any idempotent or positive t-conorm, a D′-implication is
obtained, which is IDP.

Proof. ,e only idempotent t-conorm is SM (see Remark
2.2.5(ii) of [4]), which is also positive (see Table 2.2, page 46,
of [4]). ,erefore, by the triple (TD, S, NC), where S is any
positive t-conorm, we obtain

I
NC,TD,S

(x, y) � NC(TD(S(x, y), NC(y)))

� 1 − TD(S(x, y), 1 − y)

� 1 −

0, if S(x, y)< 1 andy> 0,

1 − y, if x � 1 ory � 1,

S(x, y), if y � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

� 1 −

1 − y, if x � 1,

S(x, 0), if y � 0,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

�

y, if x � 1,

1 − x, if y � 0,

1, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

� IDP(x, y).

(54)

Remark 8. It is easy to calculate D′-operations, which are
obtained by their natural negation ND2. ,ey are always
two-valued of the form

IND2 ,T,S(x, y) �
0, if S(x, y) � 1 andy< 1,

1, otherwise.
􏼨 (55)

So, IWB, which has ND2 as its natural negation, is not a
D′-implication since it is not two-valued.

At the end of this section, we present Table 5, which
contains basic D′-implications.

5. QL9-Implications

Similarly, QL-operations (respectively, implications) are the
generalization of the tautology

(p⟹ q) ≡ p′ ∨ (p∧ q)􏼂 􏼃, (56)

and after the application of De Morgan’s laws and the
classical law of double negation, we get the following
tautology:

N is not a strong
negation, and (21)

is satisfied
N is a strong

negation N is not a strong
negation, and (21)

is not satisfied

IT,S,N

IN,T,S

Figure 2: Intersection between families of D- and D′-operations
(respectively, implications).
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(p⟹ q) ≡ p′ ∨ (p∧ q)􏼂 􏼃 ≡ p′( 􏼁′ ∧ p′ ∨ q′( 􏼁􏼂 􏼃′

≡ [ p∧ p′ ∨ q′( 􏼁 ]′,
(57)

which leads us to a new family of fuzzy operations (re-
spectively, implications) obtained by the following formula.

Definition 13. A function I: [0, 1]2⟶ [0, 1] is called a
QL′-operation if there exist a t-norm, a t-conorm S, and a
fuzzy negation N such that

I(x, y) � N(T(x, S(N(x), N(y)))), x, y ∈ [0, 1].

(58)

If I is a QL′-operation generated by the triple (T, S, N),
then we denote it by IN,T,S.

Theorem 6. Let IN,T,S be a QL′-operation; then, IN,T,S

satisfies (14), (15), (16), (17), and (18), and if N is a strong
negation, then IN,T,S satisfies (21). Furthermore, NIN,T,S

� N,
where NIN,T,S

(x) � IN,T,S(x, 0), x ∈ [0, 1].

Proof. Let IN,T,S be a QL′-operation; then, for
x, y, z ∈ [0, 1], if

y≤ z⟹N(y)≥N(z)

⟹ S(N(x), N(y))≥ S(N(x), N(z))

⟹T(x, S(N(x), N(y)))≥T(x, S(N(x), N(z)))

⟹N(T(x, S(N(x), N(y))))

≤N(T(x, S(N(x), N(z))))

⟹ IN,T,S(x, y)≤ IN,T,S(x, z),

(59)

which means that IN,T,S satisfies (14).
IN,T,S satisfies (15) since

IN,T,S(0, 0) � N(T(0, S(N(0), N(0))))

� N(T(0, S(1, 1)))

� N(T(0, 1)) � N(0) � 1.

(60)

IN,T,S satisfies (16) since

IN,T,S(1, 1) � N(T(1, S(N(1), N(1))))

� N(T(1, S(0, 0)))

� N(T(1, 0))

� N(0) � 1.

(61)

IN,T,S satisfies (17) since

IN,T,S(1, 0) � N(T(1, S(N(1), N(0))))

� N(T(1, S(0, 1)))

� N(T(1, 1))

� N(1) � 0.

(62)

IN,T,S satisfies (18) since

IN,T,S(0, 1) � N(T(0, S(N(0), N(1))))

� N(T(0, S(1, 0)))

� N(T(0, 1))

� N(0) � 1.

(63)

(21) is satisfied if N is a strong negation since

IN,T,S(1, x) � N(T(1, S(N(1), N(x))))

� N(T(1, S(0, N(x))))

� N(T(1, N(x)))

� N(N(x)) � x, ∀x ∈ [0, 1].

(64)

Lastly, we have

NIN,T,S
(x) � IN,T,S(x, 0)

� N(T(x, S(N(x), N(0))))

� N(T(x, S(N(x), 1)))

� N(T(x, 1))

� N(x), ∀x ∈ [0, 1].

(65)

By ,eorem 6, it follows that a QL′-operation is gen-
erated by a unique negation. Although it is not proved that
IN,T,S satisfies (13), NIN,T,S

is obviously a fuzzy negation since
NIN,T,S

� N. Moreover, we use the name QL′-operations
instead of QL′-implications because they do not generally
satisfy (13), so they are not always decreasing with respect to
the first variable, as it can be seen in the next example.

Example 4. Consider the triple (TM, SP, NC). ,e obtained
QL′-operation is

INC,TM,SP
(x, y) � NC TM x, SP NC(x), NC(y)( 􏼁( 􏼁( 􏼁

� 1 − min x, NC(x) + NC(y) − NC(x) · NC(y)􏼈 􏼉

� 1 − min x, 1 − x + 1 − y − (1 − x) · (1 − y)􏼈 􏼉

� 1 − min x, 1 − x · y􏼈 􏼉

� max 1 − x, x · y􏼈 􏼉,

(66)

which does not satisfy (13) since

Table 5: Basic D′-implications.

T S N Formula
TL SM NC ILK

TL SP NC IRC

TL SL NC IK D

TD Any idempotent or positive S NC IDP

TnM SM NC IF D

Any T Any S ND1 I3
Any T Any idempotent, strict, or positive S ND2 I4
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0.2≤ 0.9⟹ INC,TM,SP
(0.2, 1) � 0.8< 0.9 � INC,TM,SP

(0.9, 1).

(67)

,erefore, the first main problem is the characterization
of those QL′-operations, which satisfy (13). Similar to the
previous section, only partial results will be proved.

Proposition 8. A function I: [0, 1]2⟶ [0, 1] is called a
QL′-implication if it is a QL′-operation and satisfies (13).

Proposition 9. Let IN,T,S be a QL′-operation, which satisfies
(21); then, N is a strong negation.

Proof. ,e proof is similar to the proof of Proposition 6.

Proposition 10. Let IN,T,S be a QL′-operation. IN,T,S satisfies
(20) if the pair (T, N) satisfies the law of contradiction (10).

Proof. We assume that the pair (T, N) satisfies the law of
contradiction (10). Hence, IN,T,S satisfies (20) since

IN,T,S(x, 1) � N(T(x, S(N(x), N(1))))

� N(T(x, S(N(x), 0)))

� N(T(x, N(x)))

� N(0) � 1, ∀x ∈ [0, 1].

(68)

Proposition 11. Let IN,T,S be a QL′-operation generated by a
nonfilling negation N. Moreover, if IN,T,S satisfies (20), then
the pair (T, N) satisfies the law of contradiction (10).

Proof. Let IN,T,S be a QL′-operation generated by a non-
filling negation N and satisfy (20). ,erefore, it is

IN,T,S(x, 1) � 1⟹N(T(x, S(N(x), N(1)))) � 1

⟹N(T(x, S(N(x), 0))) � 1

⟹N(T(x, N(x))) � 1

⟹T(x, N(x)) � 0,∀x ∈ [0, 1]

(69)

since N is a nonfilling negation. ,us, the pair (T, N)

satisfies (10).
,e set of QL′-implications is nonempty.,is is ensured

with the next theorem and some remarks.

Theorem 7. If N is a strong negation and IN,T,S′ is a
QL′-operation, then

(i) IN,T,S′ � IT′,S,N � (IT′ ,S,N)N � (IN,T,S′)N, where S, T′
are N-dual of T, S′, respectively, IT′ ,S,N is a QL-oper-
ation, and (IT′ ,S,N)N is the N-reciprocal of the QL-
operation IT′,S,N.

(ii) Moreover, if one of IN,T,S′ , IN,T,S′ , IT′,S,N, and IT′ ,S,N is
a fuzzy implication, then the other three are fuzzy
implications, too.

Proof

(i) Let IN,T,S′ be a QL′-operation. ,en,

IN,T,S′(x, y) � N T x, S′(N(x), N(y))( 􏼁( 􏼁

� N T(N(N(x)), N T′(x, y)( 􏼁( 􏼁

� S N(x), T′(x, y)( 􏼁

� S T′(x, y), N(x)( 􏼁

� S T′(N(N(x)), N(N(y))), N(x)( 􏼁

� S T′(N(N(y)), N(N(x))), N(x)( 􏼁

� I
T′ ,S,N

(N(y), N(x))

� I
T′,S,N

􏼒 􏼓
N

(x, y).

(70)

By ,eorem 4, we deduce that

IN,T,S′ � I
T′,S,N

􏼒 􏼓
N

� I
N,T,S′

􏼒 􏼓
N

� IT′ ,S,N􏼐 􏼑
N

􏼐 􏼑
N

� IT′,S,N,

(see [1](1.18)).

(71)

(ii) If one of IN,T,S′ , IT′ ,S,N, and IT′ ,S,N is a fuzzy im-
plication, then the other two are also fuzzy impli-
cations, according to,eorem 4 (ii). Moreover, since
IT′ ,S,N � IN,T,S′ , IN,T,S′ is a fuzzy implication. Vice
versa, if IN,T,S′ is a fuzzy implication, then IT′,S,N is
also a fuzzy implication, so IT′ ,S,N and IN,T,S′ are
fuzzy implications.

Remark 9

(i) By ,eorem 7, it is obvious that if (T, S, N) is a De
Morgan triple and IN,T,S is the corresponding
QL′-operation (respectively, implication), then

IN,T,S � IT,S,N � I
T,S,N

􏼐 􏼑
N

� I
N,T,S

􏼐 􏼑
N

. (72)

(ii) By (i) and Table 5, we deduce that INC,TL,SL
�

(INC,TL,SL )NC
� (IK D
′)′ � IK D. ,us, the set of

QL′-implications is nonempty.

Theorem 8. Let IN,T,S be a QL′-implication and N be a
nonfilling negation; then, it is T(N(x), x) � 0, x ∈ [0, 1], that
is, the pair (T, N) satisfies the law of contradiction (10).

Proof. If IN,T,S is a QL′-implication, then it satisfies (20),
and if N is a nonfilling negation, then the proof is given by
Proposition 10.

Remark 10. By ,eorem 8, it is obvious that if N is a
nonfilling negation and the pair (T, N) does not satisfy the
law of contradiction (10), i.e., T(N(x), x)≠ 0, for some
x ∈ [0, 1], then the corresponding QL′-operation, for any t-
conorm S, is not a fuzzy implication.
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Theorem 9. If ϕ ∈ Φ and IN,T,S is a QL′-operation (re-
spectively, implication), then (IN,T,S)ϕ is a QL′-operation
(respectively, implication), and moreover, (IN,T,S)ϕ �

INϕ ,Tϕ ,Sϕ
.

Proof. Let IN,T,S be a QL′-operation (respectively, impli-
cation); then, (IN,T,S)ϕ is a QL′-operation (respectively,
implication), according to Remark 4. Moreover, for all
x, y ∈ [0, 1], we deduce that

IN,T,S􏼐 􏼑ϕ(x, y) � ϕ− 1
IN,T,S(ϕ(x), ϕ(y))􏼐 􏼑

� ϕ− 1
(N(T(ϕ(x), S(N(ϕ(x)), N(ϕ(y))))))

� ϕ− 1
(N(ϕ(ϕ− 1

(T(ϕ(x), S(ϕ(ϕ− 1
(N(ϕ(x)))), ϕ(ϕ− 1

(N(ϕ(y))))))))))

� Nϕ(ϕ− 1
(T(ϕ(x), ϕ(ϕ− 1

(S(ϕ(Nϕ(x)), ϕ(Nϕ(y))))))))

� Nϕ Tϕ x, Sϕ Nϕ(x), Nϕ(y)􏼐 􏼑􏼐 􏼑􏼐 􏼑

� INϕ ,Tϕ ,Sϕ
(x, y).

(73)

Since we have studied some general results for
QL′-operations (respectively, implications), we are going to
study some more specific cases. Several questions arising are
similar to those we answer for D′-operations (respectively,
implications). Answers to many of them are given above,
and they are similar to previous answers we gave for
D′-operations (respectively, implications). Finally, we have
to answer the next question. Are QL′-operations (respec-
tively, implications) a new family of operations (respectively,
implications)? It is known that there is no QL-implication
generated by ND1. Moreover, there is no QL-implication
which has ND1 as its natural negation (see Remark 2.6.6(i) of
[4]). On the contrary, we have the next proposition.

Proposition 12. By a triple of the form (T, S, ND1), where T

is any t-norm and S is any t-conorm, a QL′-implication is
obtained, which is I3 (see [22]).

Proof. By a triple of the form (T, S, ND1), where T is any t-
norm and S is any t-conorm, we obtain

IND1,T,S(x, y) � ND1(T(x, S(ND1(x), ND1(y))))

�
ND1(T(x, S(ND1(x), 1))), if y � 0,

ND1(T(x, S(ND1(x), 0))), if y> 0,
􏼨

�
ND1(T(x, 1)), if y � 0,

ND1(T(x, ND1(x))), if y> 0,
􏼨

�
ND1(x), if y � 0,

ND1(0), if y> 0,
􏼨

�
ND1(x), if y � 0,

1, if y> 0,
􏼨

�
0, if x> 0 andy � 0,

1, otherwise,
􏼨

� I3(x, y).

(74)

Remark 11. Because of Proposition 12, we conclude that the
only QL′-implication, which has ND1 as its natural negation,
is I3. So, automatically, we conclude that I0, IGG, IG D, IRS,

and IYG are not QL′-implications since all of them have ND1
as their natural negation.

Although it seems simple, Proposition 12 is very im-
portant. I3 is a QL′-implication, which is obviously not a
QL-implication since its natural negation is ND1. So, it is
proved that the family of QL′-implications is not the same
with the QL-implications’ family.

Proposition 13. By a triple of the form (T, S, ND2), where T

is any t-norm and S is any t-conorm, a QL′-implication is
obtained, which is I4 (see [22]).

Proof. By a triple of the form (T, S, ND2), where T is any t-
norm and S is any t-conorm, we obtain

IND2 ,T,S(x, y) � ND2(T(x, S(ND2(x), ND2(y))))

�
ND2(T(x, S(ND2(x), 1))), if y< 1,

ND2(T(x, S(ND2(x), 0))), if y � 1,
􏼨

�
ND2(T(x, 1)), if y< 1,

ND2(T(x, ND2(x))), if y � 1,
􏼨

�
ND2(0), if x � 1 andy � 1,

ND2(x), otherwise,
􏼨

�

1, if x � 1 andy � 1,

1, if x< 1,

0, if x � 1 andy< 1,

⎧⎪⎪⎨

⎪⎪⎩

�
0, if x � 1 andy< 1,

1, otherwise.
􏼨

� I4(x, y).

(75)

Remark 12. Because of Proposition 13, we conclude that the
only QL′-implication, which has ND2 as its natural negation,
is I4. So, automatically, we conclude that I1 and IWB are not
QL′-implications since all of them have ND2 as their natural
negation.

,e question we need to answer is the relation between
these families (QL and QL′). An answer is given partially in
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Proposition 9 where it is proved that if IN,T,S satisfies (21),
then N is a strong negation. Clearly by ,eorem 7, if N is a
strong negation, then the corresponding QL′-operation
(respectively, implication) is also a QL-operation (respec-
tively, implication) and vice versa. Moreover, for nonstrong
negations, the corresponding QL-operations (respectively,
implications) satisfy (21) (see Proposition 2.6.2 of [4]), and
the corresponding QL′-operations (respectively, implica-
tions) do not satisfy (21). All these results lead to Figure 3.

In the following of this section, we present a useful
theorem for the disqualification of some triples (T, S, N)

that do not generate QL′-implications.

Theorem 10. By any triple (T, S, N), where S is any t-
conorm, N is any continuous nonfilling fuzzy negation, and T

is any idempotent, strict, or positive t-norm, any QL′-im-
plication cannot be obtained.

Proof. ,e proof is similar to the proof of ,eorem 5. It
results by Remark 10.

A very useful proposition is as follows.

Proposition 14. By a triple of the form (TD, S, NC), where S

is any idempotent or positive t-conorm, a QL′-implication is
obtained, which is IDP.

Proof. As we mentioned before, the only idempotent t-
conorm is SM, which is also positive. By the triple
(TD, S, NC), where S is any positive t-conorm, we obtain

INC,TD,S(x, y) � NC(TD(x, S(NC(x)), NC(y))))

� 1 − TD(x, S(1 − x, 1 − y))

� 1 −

0, if x< 1 and S(1 − x, 1 − y)< 1,

x, if S(1 − x, 1 − y) � 1,

S(1 − x, 1 − y), if x � 1,

⎧⎪⎨

⎪⎩

� 1 −

0, if x< 1 and S(1 − x, 1 − y)< 1,

x, if 1 − x � 1 or 1 − y � 1,

S(0, 1 − y), if x � 1,

⎧⎪⎨

⎪⎩

� 1 −

0, if x< 1 and S(1 − x, 1 − y)< 1,

x, if x � 0 ory � 0,

1 − y, if x � 1,

⎧⎪⎨

⎪⎩

� 1 −

1 − y, if x � 1,

x, if y � 0,

0, otherwise,

⎧⎪⎨

⎪⎩

�

y, if x � 1,

1 − x, if y � 0,

1, otherwise,

⎧⎪⎨

⎪⎩
� IDP(x, y).

(76)

Lastly, in this section, we present Table 6, which contains
basic QL′-implications.

6. R9-Implications

,e obtained generalization via De Morgan’s laws of
R-implications leads to the next definition, which refers to
the family of R′-operations. ,is generalization is a coun-
terexample for the fact that axioms (13)–(17) are not in-
variant via an application of De Morgan’s laws. To be more
precise, axiom (17) is not invariant since R′-operations
violate it, as we will show in the following. ,is is the reason
we use the term operations, rather than implications.

Definition 14. A function I: [0, 1]2⟶ [0, 1] is called an
R′-operation if there exist a t-conorm S and a fuzzy negation
N such that

I(x, y) � sup t ∈ [0, 1]|N(S(N(x), N(t))) ≤y􏼈 􏼉,

x, y ∈ [0, 1].
(77)

If I is an R′-operation generated by a t-conorm S and a
fuzzy negation N, then we denote it by IN

S .
,e induced family of R′-operations is a special case of

residual implicator of the conjuctor C(x, y) �

N(S(N(x), N(y)), where N is a fuzzy negation and S is a t-
conorm (see [23]). Also, this formula is a special case of

N is not a strong
negation, and (21)

is satisfied
N is a strong

negation N is not a strong
negation, and (21)

is not satisfied

IT,S,N

IN,T,S

Figure 3: Intersection between families ofQL- and QL′-operations
(respectively, implications).
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formula (2) in Lemma 1 of [24]. However, we will study this
special family because of the crucial results we will obtain.

Theorem 11. Let IN
S be an R′-operation; then, IN

S satisfies
(13), (14), (15), and (16).

Proof. Let IN
S be an R′-implication; then, for x, y, z ∈ [0, 1],

we have to show that if x≤y, then IN
S (x, z)≥ IN

S (y, z),
which is equivalent with the inequality

sup t ∈ [0, 1]|N(S(N(x), N(t)))≤ z{ }

≥ sup t ∈ [0, 1]|N(S(N(y), N(t))) ≤ z􏼈 􏼉,
(78)

which means that we have to show the inclusion

t ∈ [0,1]|N(S(N(x), N(t)))≤z{ }I t ∈ [0,1]|N(S(N(y), N(t)))≤z􏼈 􏼉.

(79)

So, for any t ∈ [0, 1] such that N(S(N(y), N(t)) ≤ z, it is
obvious that

x≤y⟹N(x)≥N(y)

⟹ S(N(x), N(t)) ≥ S(N(y), N(t))

⟹N(S(N(x), N(t)))≤N(S(N(y), N(t))).

(80)

,erefore, IN
S satisfies (13).

Secondly, we have to prove (14); hence, for
x, y, z ∈ [0, 1], we have to show that if y≤ z, then
IN

S (x, y)≤ IN
S (x, z), which is equivalent with the inequality

sup t ∈ [0, 1]|N(S(N(x), N(t))) ≤y􏼈 􏼉

≤ sup t ∈ [0, 1]|N(S(N(x), N(t))) ≤ z{ },
(81)

which is obvious that it holds. ,erefore, IN
S satisfies (14).

IN
S satisfies (15) since

I
N
S (0, 0) � sup t ∈ [0, 1]|N(S(N(0), N(t)))≤ 0{ }

� sup t ∈ [0, 1]|N(S(1, N(t)))≤ 0{ }

� sup t ∈ [0, 1]|N(1)≤ 0{ }

� sup t ∈ [0, 1]|0≤ 0{ } � 1.

(82)

IN
S satisfies (16) since

I
N
S (1, 1) � sup t ∈ [0, 1]|N(S(N(1), N(t)))≤ 1{ }

� sup t ∈ [0, 1]|N(S(0, N(t)))≤ 1{ }

� sup t ∈ [0, 1]|N(N(t))≤ 1{ } � 1,

(83)

since N(N(1)) � N(0) � 1.
,e formula of R′-operations is very complicated and

makes their study really difficult. Furthermore, R′-operations
do not always satisfy (17) since

I
ND2
S (1, 0) � sup t ∈ [0, 1]|ND2 S ND2(1), ND2(t)( 􏼁( 􏼁≤ 0􏼈 􏼉

� sup t ∈ [0, 1]|ND2 S 0, ND2(t)( 􏼁( 􏼁≤ 0􏼈 􏼉

� sup t ∈ [0, 1]|ND2 ND2(t)( 􏼁≤ 0􏼈 􏼉

� sup t ∈ [0, 1]|ND2 ND2(t)( 􏼁 � 0􏼈 􏼉

� sup t ∈ [0, 1]|ND2(t) � 1􏼈 􏼉

� sup t ∈ [0, 1]|t< 1{ } � 1.

(84)

So, it is obvious that there does not exist anyR′-implication
generated by ND2. All these results above lead to the next
proposition without the proof because it is obvious.

Proposition 15. A function I: [0, 1]2⟶ [0, 1] is called an
R′-implication if it is an R′-operation and satisfies (17).

,e question arising is when an R′-operation is a fuzzy
implication. ,e next theorem is the answer.

Theorem 12. Let IN
S be an R′-operation. IN

S is an R′-impli-
cation if and only if the negation N satisfies the equivalence
N(N(x)) � 0⟺x � 0.

Proof. If the negation N satisfies the equivalence
N(N(x)) � 0⟺x � 0, then IN

S satisfies (17) since

I
N
S (1, 0) � sup t ∈ [0, 1]|N(S(N(1), N(t)))≤ 0{ }

� sup t ∈ [0, 1]|N(S(0, N(t)))≤ 0{ }

� sup t ∈ [0, 1]|N(N(t)) ≤ 0{ }

� sup t ∈ [0, 1]|N(N(t)) � 0{ }

� sup t ∈ [0, 1]|t � 0{ } � 0.

(85)

Hence, by Proposition 15, we deduce that IN
S is a fuzzy

implication. On the contrary, if IN
S is an R′-implication, then

(17) is satisfied. Hence,

I
N
S (1, 0) � 0⟺ sup t ∈ [0, 1]|N(S(N(1), N(t)))≤ 0{ } � 0

⟺ sup t ∈ [0, 1]|N(S(0, N(t)))≤ 0{ } � 0

⟺ sup t ∈ [0, 1]|N(N(t)) ≤ 0{ } � 0

⟺ sup t ∈ [0, 1]|N(N(t)) � 0{ } � 0,

(86)

which means N(N(x)) � 0⟺x � 0.

Remark 13. By ,eorem 12, we deduce one more time that
there does not exist any R′-implication generated by ND2
since ND2(ND2(x)) � 0⟺x< 1.

Proposition 16. �e R′- implication genrated from ND1 and
any t- conorm S is I0.

Table 6: Basic QL′-implications.

T S N Formula
TL SM NC ILK

TL SP NC IRC

TL SL NC IK D

TD Any idempotent or positive S NC IDP

TnM SM NC IF D

Any T Any S ND1 I3
Any T Any S ND2 I4

Journal of Mathematics 13



Proof. ,e R′- implication genrated from ND1 and any t-
conorm S is

I
ND1
S (x, y) � sup t ∈ [ 0, 1 ]|ND1(S(ND1(x), ND1(t)))≤y􏼈 􏼉

�
sup t ∈ [ 0, 1 ]|ND1(S(1, ND1(t))) ≤y􏼈 􏼉, if x � 0,

sup t ∈ [ 0, 1 ]|ND1(S(0, ND1(t))) ≤y􏼈 􏼉, if x> 0,
􏼨

�
sup t ∈ [ 0, 1 ]|ND1(1)≤y􏼈 􏼉, if x � 0,

sup t ∈ [ 0, 1 ]|ND1(ND1(t))≤y􏼈 􏼉, if x> 0,
􏼨

�

sup t ∈ [ 0, 1 ]|0≤y􏼈 􏼉, if x � 0,

sup t ∈ [ 0, 1 ]|ND1(ND1(t))< 1􏼈 􏼉, if x> 0 andy< 1,

sup t ∈ [ 0, 1 ]|ND1(ND1(t))≤ 1􏼈 􏼉, if x> 0 andy � 1,

⎧⎪⎪⎨

⎪⎪⎩

�

1, if x � 0,

sup t ∈ [ 0, 1 ]|ND1(t)> 0􏼈 􏼉, if x> 0 andy< 1,

sup t ∈ [ 0, 1 ]|t≥ 0{ }, if x> 0 andy � 1,

⎧⎪⎪⎨

⎪⎪⎩

�

1, if x � 0,

sup t ∈ [ 0, 1 ]|ND1(t) � 1􏼈 􏼉, if x> 0 andy< 1,

1, if x> 0 andy � 1,

⎧⎪⎪⎨

⎪⎪⎩

�

1, if x � 0,

0, if x> 0 andy< 1,

1, if x> 0 andy � 1,

⎧⎪⎪⎨

⎪⎪⎩

�
1, if x � 0 andy � 1,

0, otherwise,
􏼨

� I0(x, y).

(87)

Remark 14. By Proposition 16, we conclude that the set of
R′-implications is nonempty. Moreover, R′-implications are
a different family than the family of R-implications. ,is
happens because I0 is an R′-implication. On the contrary, it
is not an R-implication since it does not satisfy (21) (see
,eorem 2.5.4 of [4]).

Theorem 13. Let IN
S be an R′-operation. If IN

S satisfies (21),
then N(N(x)) ≤x, for any x ∈ [0, 1].

Proof. Let IN
S be an R′-operation, which satisfies (21); then,

we have

I
N
S (1, x) � x⟹ sup t ∈ [0, 1]|N(S(N(1), N(t)))≤x{ } � x

⟹N(S(N(1), N(x))) ≤x

⟹N(S(0, N(x))) ≤x

⟹N(N(x)) ≤x,

(88)

for any x ∈ [0, 1].

Theorem 14. If N is a strictly decreasing nonstrong negation,
then the obtained IN

S is an R′-implication, which does not
satisfy (21).

Proof. Let IN
S be an R′-operation. Since N is a strictly

decreasing nonstrong negation, we have that

N(N(x)) � 0⟺N(N(x)) � N(1)

⟺N(x) � 1

⟺N(x) � N(0)

⟺x � 0.

(89)

So, by,eorem 12, we deduce that IN
S is anR′-implication.

If we assume that IN
S satisfies (21), then by,eorem13, we have

N(N(x)) ≤x, for any x ∈ [0, 1]. Since N is not a strong
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negation, there is at least one x0 ∈ (0, 1) such that
N(N(x0))≠ x0, so N(N(x0))<x0. N is a strictly decreasing
function, so N(N(N(x0)))>N(x0), which means there is
y0 � N(x0) ∈ (0, 1) such that N(N(y0))>y0, which is a
contradiction. ,us, IN

S does not satisfy (21).

Theorem 15. If N is a strong negation and IN
S is an

R′-implication, then IN
S � IT, where the t-norm T is the N-

dual of t-conorm S.

Proof. ,e proof is obvious.

,eorem 15 leads us to have no interest about R′-impli-
cations generated by strong negations. Moreover, we have to

mention that R-implications always satisfy (21) (see ,eorem
2.5.4 of [4]). So, some results are visualized in Figure 4.

Theorem 16. If ϕ ∈ Φ and IN
S is an R′-implication, then

(IN
S )ϕ is an R′-implication. Moreover,

I
N
S􏼐 􏼑ϕ � I

Nϕ
Sϕ

. (90)

Proof. Let IN
S be an R′-implication; then, (IN

S )ϕ is an
R′-implication according to Remark 4. Now, from the
continuity of the bijection ϕ, we have

I
N
S􏼐 􏼑ϕ(x, y) � ϕ− 1

I
N
S (ϕ(x), ϕ(y))􏼐 􏼑

� ϕ− 1
(sup t ∈ [0, 1]|N(S(N(ϕ(x)), N(t)))≤ ϕ(y)􏼈 􏼉)

� sup ϕ− 1
(t) ∈ [0, 1]|ϕ− 1

(N(S(N(ϕ(x)), N(t))))≤y􏽮 􏽯

� sup t ∈ [0, 1]|ϕ− 1
(N(S(N(ϕ(x)), N(ϕ(t))))) ≤y􏽮 􏽯

� sup t ∈ [0, 1]|ϕ− 1
N S ϕ ϕ− 1

(N(ϕ(x)))􏼐 􏼑, ϕ ϕ− 1
(N(ϕ(t)))􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑≤y􏽮 􏽯

� sup t ∈ [0, 1]|ϕ− 1
(N(ϕ(ϕ− 1

(S(ϕ(Nϕ(x)), ϕ(Nϕ(t)))))))≤y􏽮 􏽯

� sup t ∈ [0, 1]|Nϕ Sϕ Nϕ(x), Nϕ(t)􏼐 􏼑􏼐 􏼑≤y􏽮 􏽯

� I
Nϕ
Sϕ

(x, y),

(91)

for any x, y ∈ [0, 1].

Lastly, in this section, we present Table 7, which contains
basic R′-implications. ,e formulas of R′-implications
which are generated from NC are calculated by ,eorem 15
and Table 2.6 of [4].

7. Some Results before Conclusions

According to Figures 1–3, we know that, for nonstrong
negations, (T, N)-, D′-, and QL′-implications do not satisfy
(21). ,e same result holds for R′-implications when we use
a strictly decreasing negation N according to ,eorem 14.
On the contrary, (S, N)-, D-, QL-, and R-implications al-
ways satisfy (21).

Furthermore, there are other known families of fuzzy
implications, such as

(i) Yager’s f-generated and g-generated implications as
they are defined by Yager [12] (see also [4, 9]),

(ii) h-implications as they are defined by Jayaram
[9, 25, 26],

(iii) h-implications as they are defined by Massanet and
Torrens [10], and

(iv) Fuzzy implications through fuzzy negations as they
are defined by Souliotis and Papadopoulos [11].

All these aforementioned families satisfy (21) (see
,eorems 3.1.7 and 3.2.8 of [4], ,eorem 9(i) of [9],

,eorem 5 of [10], and Proposition 6 of [11]), so it is obvious
that D′-, QL′- and R′-implications are different families
from the aforementioned.

Also, there are (U, N)- and RU-implications (see [4])
and (h, e)-implications as they are defined by Massanet
and Torrens [10]. ,ese families do not satisfy (21) (see
Remarks 5.3.8 and 5.4.6 of [4] and ,eorem 13 of [10]),
unlike D′-, QL′-, and R′-implications, which satisfy (21)
when N is a strong negation, according to ,eorems 1, 6,
and 15 (in combination with ,eorem 2.5.4 of [4]). ,us,
D′-, QL′-, and R′-implications are different families from
the aforementioned.

Lastly, we investigate the relation between the families of
(T, N)-, D′-, QL′-, and R′-implications. As sets of opera-
tions, they are different since (T, N)-implications satisfy
(13)–(17), D′-operations do not always satisfy (14),
QL′-operations do not always satisfy (13), and R′-operations
do not always satisfy (17).

Now, let SλSS be the Schweizer–Sklar t-conorm; then, for
λ � 2, it is

S
2
SS � 1 −

�������������������������

max (1 − x)
2

+(1 − y)
2

− 1, 0􏽮 􏽯

􏽱

. (92)

,e obtained QL-implication by the triple (TP, S2SS, NC) is

ITP,S2
SS

,NC
(x, y) � IPC(x, y)

� 1 −

�����������������������

max x · x + x · y
2

− 2y􏼐 􏼑, 0􏽮 􏽯

􏽱

,

(93)
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which is not an (S, N)-implication since IPC does not satisfy
(22) (see Example 2.6.15, page 135, and Figure 4.2 of [4] ).

Since the natural negation of IPC is the strong negation NC,
obviously, IPC is not a (T, N)-implication, and it is a
QL′-implication. More specifically, INC,T2

SS
,SP

� IPC, where
the t-norm T2

SS is the NC-dual of t-conorm S2SS.
Moreover, it is

I
NC,T2

SS
,SP (x, y) � ITP,S2

SS
,NC

􏼒 􏼓
NC

(x, y) � IPC
′(x, y)

� 1 −

�����������������������������������������������

max (1 − y) · (1 − y) +(1 − y) · (1 − x)
2

− 2 · (1 − x)􏽨 􏽩, 0􏽮 􏽯

􏽱

,

(94)

which does not satisfy (22) since

IPC
′ 0.7, IPC

′ (0.8, 0.2)( 􏼁 � 0.84515≠ 0.80071

� IPC
′ 0.8, IPC

′(0.7, 0.2)( 􏼁,
(95)

so the D′-implication INC,T2
SS

,SP � IPC
′ is not an

(S, N)-implication; hence, it is not a (T, N)-implication.
On the contrary, ILK belongs to all families that are

generated and defined in this paper and those that are
mentioned in Table 4 since

ISL,NC
� I

NC

TL
� ITM,SL,NC

� I
TM,SL,NC � ITL

� I
NC,TL,SM � INC,TL,SM

� I
NC

SL
� ILK.

(96)

Moreover, it is obvious that D′-implications are the
reciprocals of QL′-implications for strong negations since
they are the same sets with their preliminary families, re-
spectively. Surprisingly, sometimes, this property holds for
nonstrong negations (for example, I3 and I4 in Tables 6 and
7). ,e exact relation of these two families needs more
investigation. ,e same happens for the relation between R-
and R′-implications.

Finally, some of these results are presented in Figures 5–7,
where we can see that the intersection between (T, N)-, D′-,
QL′-, and R′-implications is nonempty. Moreover, D′-, QL′-,

and R′-implications contain at least one fuzzy implication
that (T, N)-implications do not contain.

8. Conclusions

Many families of fuzzy implications can be produced by
well-known generalizations of the notion of implication
from classical to fuzzy logic. Moreover, there are fuzzy
implications, which, in their formula, contain at least a t-
norm (such as R-implications) or a t-conorm (such as
(S, N)-implications). De Morgan’s laws and, if necessary, the
classical law of double negation are useful tools to transform
these already known families of fuzzy implications. As a
result, new families of fuzzy implications are arising. ,ese
new families are the “closest” of their preliminary-“creator”
families. At this point, we should remark that the prelimi-
nary and the induced family of fuzzy implications are dif-
ferent sets, at least in any family we mention in this paper.
,e induced family is an expansion of its preliminary family,
in a field where all these fuzzy implications simulate the
same (or a similar) way of classical thinking.

In this paper, we specifically mentioned a known family,
the so-called (T, N)-implications, and we have studied three
new families, the so-called D′-, QL′-, and R′-implications.

Table 7: Basic R′-implications.

S N Formula
SM NC IG D

SP NC IGG

SL NC ILK

SD NC IWB

SnM NC IF D

Any S ND1 I0

?

?

?

N is a strong
negation, in IN

S

N is a strictly decreasing
nonstrong negation, and 

(21) is not satisfied

IT

IN
S

Figure 4: Intersection between families of R- and R′-operations
(respectively, implications).

IN
S

IN
T

·I0

·ILK

IN,T,S

IN,T,S

Figure 5: Sets of (T, N)-, D′-, QL′-, and R′-implications.

16 Journal of Mathematics



,e first three families give us the following results. For
strong negations, the sets of (S, N)- and (T, N)-implications
are the same set. ,e same result holds for the sets of QL- and
QL′-implications and forD- and D′-implications, respectively.
However, if the negation we use is not strong, then the pre-
liminary families (S, N)-, QL-, and D-implications satisfy (21),
and the corresponding induced families (T, N)-, QL′-, and
D′-implications do not satisfy (21). Although these new
families are commonwith their preliminary families whenN is
strong, they have no common implications when N is not
strong. ,ese families are very important since they are the
“first” generalized generators from classical to fuzzy logic,
where for nonstrong negations, (21) is not satisfied.

Furthermore, the last family, the so-called R′-implications,
gives the following results. If we use a strong negation N in the
formula ofR′-implications, thenR- andR′-implications are the
same set. Moreover, for strictly decreasing and nonstrong
negations N, the obtainedR′-operations are fuzzy implications
that do not satisfy (21), a property that R-implications always
satisfy. ,is family is a counterexample that axioms (13)–(17)
are not invariant, or, more specifically, axiom (17) is surely not
invariant, via the application of De Morgan’s laws.

However, the characterization of triples (T, S, N), such
that a D′-operation or a QL′-operation is a fuzzy implication,
is still unsolved. On the contrary, the condition under which
an R′-operation is a fuzzy implication has been proved.

Another result is that the expected duality of the
properties does not hold, in general, via this application of
classical logic’s laws, but under some conditions.

Unfortunately, the induced families must be studied
individually every time since there is no general theory that
seems to hold for every induced family.
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