Research Article

A_{α}-Spectral Characterizations of Some Joins

Tingzeng Wu © and Tian Zhou
School of Mathematics and Statistics, Qinghai Nationalities University, Xining, Qinghai 810007, China
Correspondence should be addressed to Tingzeng Wu; mathtzwu@163.com

Received 24 July 2020; Revised 16 November 2020; Accepted 20 November 2020; Published 7 December 2020
Academic Editor: Naihuan Jing
Copyright © 2020 Tingzeng Wu and Tian Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let G be a graph with n vertices. For every real $\alpha \in[0,1]$, write $A_{\alpha}(G)$ for the matrix $A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)$, where $A(G)$ and $D(G)$ denote the adjacency matrix and the degree matrix of G, respectively. The collection of eigenvalues of $A_{\alpha}(G)$ together with multiplicities are called the A_{α}-spectrum of G. A graph G is said to be determined by its A_{α}-spectrum if all graphs having the same A_{α}-spectrum as G are isomorphic to G. In this paper, we show that some joins are determined by their A_{α}-spectra for $\alpha \in(0,1 / 2)$ or $(1 / 2, t 1)$.

1. Introduction

We use G to denote a simple graph with vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. The degree of a vertex $v \in V(G)$ is denoted by $\mathrm{d}(v)$. For a subgraph H of G, let $G-E(H)$ denote the subgraph obtained from G by deleting the edges of H. Let $c_{i}(G)$ and $p_{i}(G)$ denote, respectively, the numbers of i-cycles and i-vertex paths in G. Let $c_{3}\left(G_{v}\right)$ denote the number of triangles containing the vertex v of G. Let $G \cup H$ be the union of two graphs G and H which have no common vertices. For any positive integer l, let $l G$ denote be the union of l disjoint copies of graph G. The join of two disjoint graphs G and H, denoted by $G \vee H$, is the graph obtained by joining each vertex of G to each vertex of H. For convenience, the complete graph, path, cycle and star on n vertices are denoted by K_{n}, P_{n}, C_{n}, and $K_{1, n-1}$, respectively.

Let $A(G)$ and $D(G)$ denote, respectively, the adjacency matrix and degree matrix of G. For every real $\alpha \in[0,1]$, write $A_{\alpha}(G)$ for the matrix $A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)$. Note that $A_{0}(G)=A(G)$ and $2 A_{1 / 2}(G)=Q(G)$, where $Q(G)$ is the signless Laplacian matrix of G. The polynomial

$$
\begin{equation*}
\phi(G)=\phi(G, x)=\operatorname{det}\left(x I-A_{\alpha}(G)\right)=\sum_{i=1}^{n} c_{\alpha i}(G) x^{n-i} \tag{1}
\end{equation*}
$$

is called A_{α}-characteristic polynomial, where I is the identity matrix of order n. The theory of A_{α}-characteristic polynomial of a graph is well elaborated [1-8].

The A_{α}-spectrum of G is a collection of roots of $\phi(G)$ together with multiplicities. Two graphs are said to be A_{α}-cospectral if they have the same A_{α}-spectrum. A graph is called an A_{α}-DS graph if it is determined by its A_{α}-spectrum, meaning that there exists no other graph that is nonisomorphic to it but A_{α}-cospectral with it.

It is interesting to characterize which graph is determined by some graph spectrum [9-11]. The problem was raised by Günthard and Primas [12] in 1956 with motivations from chemistry. In recent years, although many graphs have been proved to be DS graphs, the problem of determining DS graphs is still far from being completely solved [13, 14]. Recently, Lin et al. [15] considered the problem which graph is determined by its A_{α}-spectrum? And they gave some characterizing properties of A_{α}-spectrum and proposed the following problem.

Problem 1. Characterizing graphs G determined by their A_{α}-spectra such that $G \vee K_{m}(m \geq 1)$ is also determined by their A_{α}-spectra for $\alpha \in(0,1 / 2)$ or $(1 / 2, t 1)$.

Liu and Lu [16] discussed the problem which join graph is determined by its Q-spectrum? And they pointed out the following problem.

Problem 2. Prove or disprove that $\overline{K_{n}} \vee K_{m}$ is determined by its Q-spectrum for $m \geq 3$.

In this paper, we focus on Problem 1 above, and we prove that some join graphs are $A_{\alpha}-\mathrm{DS}$ graphs. Furthermore, we also give a special solution for Problem 2. The rest of this paper is organized as follows. In Section 2, we present some characterizing properties of the A_{α}-spectrum of graphs and give the formula to compute $c_{3}\left(G_{v}\right)$ in $K_{n}-E(H)$, where H is a subgraph of K_{n} with l edges. In Section 3, we give a solution for Problem 1.

2. Preliminaries

Let G_{n} denote the set of graphs each of which is obtained from K_{n} by removing five or fewer edges. For $n \geq 10$, there exist exactly 45 nonisomorphic graphs each of which is obtained from K_{n} by removing five or fewer edges [17]. These graphs are labeled by $G_{i j}, 1 \leq i \leq 5$ and $0 \leq j \leq 25$ and illustrated in Figure 1. Checking the structure of $G_{i j}$, we know that $G_{i j}=H \vee K_{m}$, where H is a graph obtained form K_{t} deleting some edges, and $t+m=n$, e.g., $G_{44}=\left(K_{4}-\right.$ $\left.E\left(C_{4}\right)\right) \vee K_{n-4}$.

Cámara and Haemers [18] discussed the problem which $G_{i j} \in \mathrm{G}_{n}$ is determined by its A_{0}-spectrum. And they gave the following result.

Theorem 1 (see [18]). Let $G \in \mathrm{G}_{n}$ be a graph with $n \neq 7$ vertices. Then, G is A_{0}-DS graph.

Lemma 1 (see [19]). Let $H \subseteq K_{n}$ be a graph with l edges and let $G=K_{n}-E(H)$. Then,

$$
\begin{equation*}
c_{3}(G)=\binom{n}{3}-l(n-2)+\sum_{v \in V(H)}\binom{\mathrm{d}(v)}{2}-c_{3}(H) . \tag{2}
\end{equation*}
$$

By Lemma 1, the number of triangles of some $G \in G_{n}$ is calculated [17], see Table 1.

Lemma 2 (see [17]). Let $H \subseteq K_{n}$ be a graph with l edges and let $G=K_{n}-E(H)$. Then,

$$
\begin{align*}
c_{4}(G)= & 3\binom{n}{4}-2 l\binom{n-2}{2} \\
& +\left[2\binom{l}{2}+(n-5) \sum_{v \in V(H)}\binom{\mathrm{d}(v)}{2}\right]-p_{4}(H)+c_{4}(H) . \tag{3}
\end{align*}
$$

By Lemma 2, the number of quadrangles of some $G \in G_{n}$ is calculated [17], see Table 2.

Using the Principle of Inclusion-Exclusion, we can obtain the following result.

Lemma 3. Let $H \subseteq K_{n}$ be a graph with k edges and let $G=K_{n}-E(H)$. Let $v \in V(G)$, and let v be an endpoint of $l(\leq k)$ edges in $E(H)$. Then,

$$
\begin{equation*}
c_{3}\left(G_{v}\right)=\binom{n-1}{2}-(k-l)-l(n-1-l)+c_{3}\left(\bar{G}_{v}\right)+\left|P_{3}\right|-\binom{l}{2} . \tag{4}
\end{equation*}
$$

Proof. Let $E(H)=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$. Let S_{i} denote the set of triangles of K_{n} containing $e_{i}(i=1,2, \ldots, k)$ and v. Thus, there exists exactly $\binom{n-1}{2}$ triangles containing v in K_{n}. By the Inclusion-Exclusion Principle, we have

$$
\begin{equation*}
c_{3}\left(G_{v}\right)=\binom{n-1}{2}-\sum_{i=1}^{l}\left|S_{i}\right|+\sum_{i<j}\left|S_{i} \cap S_{j}\right|-\sum_{i<j<k}\left|S_{i} \cap S_{j} \cap S_{k}\right| . \tag{5}
\end{equation*}
$$

For any edge e_{i}, if v is an endpoint of e_{i}, then there exists $n-1-l$ triangles containing e_{i}. Otherwise, there exists $k-l$ triangles containing e_{i}. So, $\sum_{i=1}^{l}\left|S_{i}\right|=l(n-1-l)+k-l$. For any given e_{i} and e_{j}, if \underline{v} is a common endpoint of e_{i} and e_{j}, then there exists $c_{3}\left(\bar{G}_{v}\right)$ triangles containing e_{i} and e_{j}. Otherwise, there exists $\left|P_{3}\right|$ triangles containing e_{i} and e_{j} in \bar{G}, where P_{3} is a path which v is origin endpoint and $\left|P_{3}\right|$ is the number of vertices with length 2 to v. Thus, $\sum_{i<j}\left|S_{i} \cap S_{j}\right|=c_{3}\left(\bar{G}_{v}\right)+\left|P_{3}\right|$. Since any two edges in l edges induce a triangle, $\sum_{i<j<k}\left|S_{i} \cap S_{j} \cap S_{k}\right|=\binom{l}{2}$. By the above arguments, we arrive in equation (4).

Lemma 4 (see [20] and [5]). Let G be a graph with n vertices and m edges, and let $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the degree sequence of G. Suppose that $\phi\left(A_{\alpha}(G), x\right)=\sum_{j} c_{\alpha j} x^{n-j}$. Then,
(i) $c_{\alpha 0}=1$
(ii) $c_{\alpha 1}=-2 \alpha m$
(iii) $c_{\alpha 2}=2 \alpha^{2} m^{2}-(1-\alpha)^{2} m-1 / 2 \alpha^{2} \sum_{i} d_{i}^{2}$
(iv) $c_{\alpha 3}=-2(1-\alpha)^{3} c_{3}(G)+2 \alpha(1-\alpha)^{2} m^{2}-\alpha(1-\alpha)^{2}$ $\sum_{i} d_{i}^{2}-1 / 3 \alpha^{3}\left(4 m^{3}-3 m \sum_{i} d_{i}^{2}+\sum_{i} d_{i}^{3}\right)$
(v) $c_{\alpha 4}=-1 / 4 \alpha^{4} \sum_{i} d_{i}^{4}-\alpha^{2}(1-\alpha)^{2} \sum_{i} d_{i}^{3}+2 / 3 \alpha^{4} m \sum_{i} d_{i}^{3}+$ $5 / 2 \alpha^{2}(1-\alpha)^{2} m \sum_{i} d_{i}^{2}-\alpha^{4} m^{2} \sum_{i} d_{i}^{2}-1 / 2(1-\alpha)^{4} \sum_{i} d_{i}^{2}+$ $1 / 8 \alpha^{4}\left(\sum_{i} d_{i}^{2}\right)^{2}-\alpha^{2}(1-\alpha)^{2} \sum_{\left(v_{i}, v_{j}\right) \in E(G)} d_{i} d_{j}-2 \alpha(1-\alpha)^{3}$ $\sum_{i} d_{i} c_{3}\left(G_{v_{i}}\right)+4 \alpha(1-\alpha)^{3} m c_{3}(G)-2(1-\alpha)^{4} c_{4}(G)+$ $2 / 3 \alpha^{4} m^{4}-2 \alpha^{2}(1-\alpha)^{2} m^{3}+1 / 2(1-\alpha)^{4} m^{2}+1 / 2(1-$ $\alpha)^{4} m$

For convenience, by Lemmas 3 and 4 , we calculate the value $\sum_{i} d_{i} c_{3}\left(G_{v_{i}}\right)$ of some graphs in G_{n}, see Table 3.

Lemma 5 (see [21]). Let G and H be two graphs with n vertices. For $\alpha \in[0,1]$, if G and H are A_{α}-cospectral, then the following statements hold:
(i) $|V(G)|=|V(H)|$.
(ii) $|E(G)|=|E(H)|$.
(iii) If G is r-regular, then H is r-regular.

Figure 1: The graphs obtained from K_{n} by deleting five or fewer edges drawn as lines in a disk.

Table 1: The numbers of triangles of some graphs in G_{n}.

Graph	$c_{3}(G)$	Graph	$c_{3}(G)$
G_{30}	$\binom{n}{3}-3 n+9$	G_{59}, G_{524}	$\binom{n}{3}-5 n+17$
G_{31}	$\binom{n}{3}-3 n+7$	G_{42}, G_{45}, G_{48}	$\binom{n}{3}-4 n+10$
G_{40}	$\binom{n}{3}-4 n+14$	G_{44}, G_{46}, G_{410}	$\binom{n}{3}-4 n+12$
G_{43}	$\binom{n}{3}-4 n+9$	G_{50}, G_{51}, G_{514}	$\binom{n}{3}-5 n+12$
G_{52}	$\binom{n}{3}-5 n+11$	$G_{55}, G_{512}, G_{520}, G_{523}$	$\binom{n}{3}-5 n+15$
G_{54}	$\binom{n}{3}-5 n+20$	$G_{58}, G_{511}, G_{513}, G_{517}$	$\binom{n}{3}-5 n+13$
G_{32}, G_{33}	$\binom{n}{3}-3 n+8$	$G_{53}, G_{57}, G_{518}, G_{519}, G_{522}$	$\binom{n}{3}-5 n+14$
G_{41}, G_{47}	$\binom{n}{3}-4 n+11$	$G_{56}, G_{510}, G_{515}, G_{516}, G_{525}$	$\binom{n}{3}-5 n+16$

Table 2: The numbers of quadrangles of some graphs in G_{n}.

Graph	$c_{4}(G)$	Graph	$c_{4}(G)$
G_{42}	$3\binom{n}{4}-4 n^{2}+22 n-22$	G_{48}	$3\binom{n}{4}-4 n^{2}+22 n-23$
G_{50}	$3\binom{n}{4}-5 n^{2}+27 n-21$	G_{51}	$3\binom{n}{4}-5 n^{2}+27 n-20$
G_{53}	$3\binom{n}{4}-5 n^{2}+29 n-32$	G_{57}	$3\binom{n}{4}-5 n^{2}+29 n-30$
G_{55}	$3\binom{n}{4}-5 n^{2}+30 n-38$	G_{523}	$3\binom{n}{4}-5 n^{2}+30 n-39$
G_{511}	$3\binom{n}{4}-5 n^{2}+28 n-26$	G_{517}	$3\binom{n}{4}-5 n^{2}+28 n-27$
G_{519}	$3\binom{n}{4}-5 n^{2}+29 n-33$	G_{522}	$3\binom{n}{4}-5 n^{2}+29 n-33$

Suppose that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ and $d_{1}^{\prime} \geq d_{2}^{\prime} \geq$ $\cdots \geq d_{n}^{\prime}$ are the degree sequences of G and H, respectively. If G and H are A_{α}-cospectral with $\alpha \in(0,1]$, then
(iv) $\sum_{1 \leq i<j \leq n} d_{i} d_{j}=\sum_{1 \leq i<j \leq n} d_{i}^{\prime} d_{j}^{\prime}$.
(v) $\sum_{1 \leq i \leq n} d_{i}^{2}=\sum_{1 \leq i \leq n} d_{i}^{\prime 2}$.

Lemma 6 (see [21]). The complete graph K_{n} is determined by its A_{α}-spectrum.

Lemma 7 (see [21]). The graph $\overline{k K_{2} \cup(n-2 k) K_{1}}$ is determined by its A_{α}-spectrum, where $1 \leq k \leq\lfloor n / 2\rfloor$ and $0 \leq \alpha \leq 1$.

By Lemma 7, we can obtain a corollary as follows.
Corollary 1. Graphs $G_{10}, G_{21}, G_{34}, G_{49}$, and G_{521} are determined by their A_{α}-spectra, where $0 \leq \alpha \leq 1$.

The M-coronal of an $n \times n$ square matrix M, denoted by $\Gamma_{M}(x)$, is defined to be the sum of the entries of the matrix $\left(x I_{n}-M\right)^{-1}$, that is,

$$
\begin{equation*}
\Gamma_{M}(x)=1_{n}^{T}\left(x I_{n}-M\right)^{-1} 1_{n} \tag{6}
\end{equation*}
$$

where 1_{n} denotes the column vector of size n with all the entries equal to one and 1_{n}^{T} means the transpose of 1_{n} ([22, 23]).

Lemma 8 (see [16]). If G is an arbitrary graph and H_{1} and H_{2} are Q-cospectral graphs with $\Gamma_{Q\left(H_{1}\right)}(x)=\Gamma_{Q\left(H_{2}\right)}(x)$, then $G \vee H_{1}$ and $G \vee H_{2}$ are Q-cospectral.

By Lemma 8, we obtain directly the following corollary.
Corollary 2. If G is an arbitrary graph and H_{1} and H_{2} are Q-cospectral graphs with $\Gamma_{Q\left(H_{1}\right)}(x)=\Gamma_{Q\left(H_{2}\right)}(x)$, then $G \vee H_{1}$ and $G \vee H_{2}$ are $A_{1 / 2}$-cospectral.

Lemma 9. The each of following holds:
(i) $\left(K_{m}-E\left(l K_{2}\right)\right) \vee\left(K_{4}-E\left(K_{1,3}\right)\right)$ and $\left(K_{m}-E\left(l K_{2}\right)\right)$ $\vee\left(K_{4}-E\left(K_{3}\right)\right)$ are $A_{1 / 2}$-cospectral, where $0 \leq l \leq$ $\lfloor m / 2\rfloor$
(ii) $\left(K_{m}-E\left(P_{l}\right)\right) \vee\left(K_{4}-E\left(K_{1,3}\right)\right)$ and $\left(K_{m}-E\left(P_{l}\right)\right) \vee$ $\left(K_{4}-E\left(K_{3}\right)\right)$ are $A_{1 / 2}$-cospectral, where $2 \leq l \leq m$

Proof. Directly calculating the signless Laplacian polynomials of $K_{4}-E\left(K_{1,3}\right)$ and $K_{4}-E\left(K_{3}\right)$ yield $\operatorname{det} \mid x I-Q\left(K_{4}-\right.$ $\left.E\left(K_{1,3}\right)|=\operatorname{det}| x I-Q\left(K_{4}-E\left(K_{3}\right) \mid=x^{4}-6 x^{3}+9 x^{2}+4 x\right)\right)$. Furthermore, by simple computations, we have $\Gamma_{Q}\left(K_{4}-\right.$ $\left.E\left(K_{1,3}\right)\right)(x)=\Gamma_{Q}\left(K_{4}-E\left(K_{3}\right)\right)(x)=4(x-1) / x(x-4)$. By Corollary 2 , it is easy to see that the results in Lemma 9 hold.

By Lemma 9, we obtain some $A_{1 / 2}$-cospectral mates in G_{n}.

Corollary 3. The following results hold:

(i) Graphs G_{30} and G_{32} are $A_{1 / 2}$-cospectral
(ii) Graphs G_{41} and G_{45} are $A_{1 / 2}$-cospectral
(iii) Graphs G_{58} and G_{514} are $A_{1 / 2}$-cospectral
(iv) Graphs G_{57} and G_{513} are $A_{1 / 2}$-cospectral

Remark 1. By Corollaries 1 and 3, we know that $\overline{K_{2}} \vee K_{m}=$ G_{10} is a Q-DS graph, and $\overline{K_{3}} \vee K_{m}=G_{30}$ and G_{32} are Q-cospectral. These results answer the special case of Problem 2.

3. Main Results

In this section, we show that all graphs in G_{n} are determined by their A_{α}-spectra.

Theorem 2. Graphs G_{20} and G_{21} are $A_{\alpha}-D S$ graphs, where $0<\alpha \leq 1$.

Proof. The result follows from Lemma 5 and Corollary 1.

Theorem 3. Let G be a graph obtained from K_{n} by deleting three edges, and then G is determined by the A_{α}-spectra when $\alpha \in(0,1 / 2) \cup(1 / 2,1]$.

Table 3: The value $\sum_{i} d_{i} c_{3}\left(G_{v_{i}}\right)$ of some graphs in G_{n}.

Graph	$\sum_{i} d_{i} c_{3}\left(G_{v_{i}}\right)$	Graph	$\sum_{i} d_{i} c_{3}\left(G_{v_{i}}\right)$
G_{42}	$1 / 2 n^{4}-2 n^{3}-27 / 2 n^{2}+65 n-50$	G_{48}	$1 / 2 n^{4}-2 n^{3}-27 / 2 n^{2}+65 n-52$
G_{50}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+79 n-48$	G_{51}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+79 n-46$
G_{53}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+89 n-79$	G_{57}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+89 n-75$
G_{519}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+89 n-80$	G_{522}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+89 n-78$
G_{511}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+84 n-61$	G_{517}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+84 n-63$
G_{55}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+94 n-94$	G_{523}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+94 n-96$
G_{56}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+99 n-110$	G_{525}	$1 / 2 n^{4}-2 n^{3}-35 / 2 n^{2}+99 n-112$

Proof. Checking Figure 1, we know that G is isomorphic to one of $\left\{G_{30}, G_{31}, G_{32}, G_{33}, G_{34}\right\}$. Directly computing yields $\sum_{i=1}^{n} d_{i}^{2}\left(G_{31}\right)=n^{3}-2 n^{2}-11 n+20, \quad \sum_{i=1}^{n} d_{i}^{2}\left(G_{33}\right)=n^{3}-$ $2 n^{2}-11 n+22$, and $\sum_{i=1}^{n} d_{i}^{2}\left(G_{30}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{32}\right)=n^{3}-$ $2 n^{2}-11 n+24$. By Lemma 4 (iv) and Table 1, we have

$$
\begin{align*}
c_{\alpha 3}\left(G_{32}\right)-c_{\alpha 3}\left(G_{30}\right)= & 2(1-\alpha)^{3}\left(c_{3}\left(G_{30}\right)-c_{3}\left(G_{32}\right)\right) \\
& +\frac{1}{3} \alpha^{3}\left(\sum_{i} d_{i}^{3}\left(G_{30}\right)-\sum_{i} d_{i}^{3}\left(G_{32}\right)\right) \\
= & 2(1-\alpha)^{3}-2 \alpha^{3}=2-6 \alpha+6 \alpha^{2}-4 \alpha^{3} . \tag{7}
\end{align*}
$$

Solving equation

$$
\begin{equation*}
4 \alpha^{3}-6 \alpha^{2}+6 \alpha-2=0 \tag{8}
\end{equation*}
$$

we have $\alpha=1 / 2,1 / 2+\sqrt{3} i / 2$, or $1 / 2-\sqrt{3} i / 2$. This implies that $c_{\alpha 3}\left(G_{32}\right) \neq c_{\alpha 3}\left(G_{30}\right)$ for $\alpha \in(0,1 / 2) \cup(1 / 2,1]$.

By Corollaries 1 and 3 (i) and Lemma 7 (i), (ii), and (v), the result in Theorem 3 holds.

Remark 2. By the proof of Theorem 3, it can be known that G_{31}, G_{33}, and G_{34} are determined by their Q-spectra.

Lemma 10. Each of the following holds:
(i) Graphs G_{44} and G_{410} are not A_{α}-cospectral, where $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$
(ii) Graphs G_{42} and G_{48} are not A_{α}-cospectral, where $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$
(iii) Graphs G_{41}, G_{45}, and G_{47} are not pairwise A_{α}-cospectral, where $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$

Proof
(i) By Lemma 4 (iv) and Table 1, we have $c_{\alpha 3}\left(G_{44}\right)-c_{\alpha 3}\left(G_{410}\right)=2 \alpha^{3}$. Solving equation

$$
\begin{equation*}
2 \alpha^{3}=0 \tag{9}
\end{equation*}
$$

we obtain $\alpha=0,0$ or 0 . It implies that G_{42} and G_{48} are not A_{α}-cospectral, when $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$.
(ii) By Lemma $4(v)$ and Tables $1-3$, we obtain that

$$
\begin{equation*}
c_{\alpha 4}\left(G_{48}\right)-c_{\alpha 4}\left(G_{42}\right)=-2(\alpha-1)^{4}-\alpha^{2}(\alpha-1)^{2}+4 \alpha(\alpha-1)^{3} . \tag{10}
\end{equation*}
$$

Solving equation

$$
\begin{equation*}
-2(\alpha-1)^{4}-\alpha^{2}(\alpha-1)^{2}+4 \alpha(\alpha-1)^{3}=0, \tag{11}
\end{equation*}
$$

we have $\alpha=1,1, \sqrt{2}$, or $-\sqrt{2}$. This indicates that G_{42} and G_{48} are not A_{α}-cospectral when $\alpha \in(0,1 /$ 2) $\cup(1 / 2, t 1)$.
(iii) Similarly, by Lemma 4 (iv) and Table 1, we obtain that

$$
\begin{align*}
& c_{\alpha 3}\left(G_{41}\right)-c_{\alpha 3}\left(G_{45}\right)=4 \alpha^{3}-6 \alpha^{2}+6 \alpha-2 \\
& c_{\alpha 3}\left(G_{41}\right)-c_{\alpha 3}\left(G_{47}\right)=2 \alpha^{3} \tag{12}\\
& c_{\alpha 3}\left(G_{45}\right)-c_{\alpha 3}\left(G_{47}\right)=-2 \alpha^{3}+6 \alpha^{2}-6 \alpha+2
\end{align*}
$$

Solving equation

$$
\begin{equation*}
-2 \alpha^{3}+6 \alpha^{2}-6 \alpha+2=0 \tag{13}
\end{equation*}
$$

we obtain $\alpha=1,1$ or 1 . By the roots of equations (8), (9), and (13), we know that G_{41}, G_{45}, and G_{47} are not pairwise A_{α}-cospectral when $\alpha \in(0,1 / 2) \cup(1 / 2, t$ 1).

Theorem 4. Graphs $G_{40}, G_{41}, G_{42}, G_{43}, G_{44}, G_{45}, G_{46}, G_{47}$, G_{48}, G_{49}, and G_{410} are determined by their A_{α}-spectra, respectively, where $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$.

Proof. By simple computations, we obtain that $\sum_{i=1}^{n} d_{i}^{2}\left(G_{40}\right)=n^{3}-2 n^{2}-15 n+36, \quad \sum_{i=1}^{n} d_{i}^{2}\left(G_{43}\right)=n^{3}-$ $2 n^{2}-15 n+26, \sum_{i=1}^{n} d_{i}^{2}\left(G_{46}\right)=n^{3}-2 n^{2}-15 n+34, \sum_{i=1}^{n} d_{i}^{2}$ $\left(G_{42}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{48}\right)=n^{3}-2 n^{2}-15 n+28, \sum_{i=1}^{n} d_{i}^{2}\left(G_{41}\right)=$ $\sum_{i=1}^{n} d_{i}^{2}\left(G_{45}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{47}\right)=n^{3}-2 n^{2}-15 n+30, \quad$ and $\sum_{i=1}^{n} d_{i}^{2}\left(G_{44}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{410}\right)=n^{3}-2 n^{2}-15 n+32$.

By Corollaries 1 and 3 (ii) and Lemmas 5 and 10, graphs $G_{40}, G_{41}, G_{42}, G_{43}, G_{44}, G_{45}, G_{46}, G_{47}, G_{48}, G_{49}$, and G_{410} are A_{α}-DS graphs, where $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$.

Lemma 11. Each of the following holds:

(i) Graphs G_{50} and G_{51} are not A_{α}-cospectral, where $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$
(ii) Graphs G_{59} and G_{516} are not A_{α}-cospectral, where $\alpha \in(1 / 2, t 1)$
(iii) Graphs G_{510} and G_{524} are not A_{α}-cospectral, where $\alpha \in(1 / 2, t 1)$
(iv) Graphs $G_{53}, G_{57}, G_{513}, G_{519}$, and G_{522} are not pairwise $\quad A_{\alpha}$-cospectral, where $\alpha \in(0,1 / 2) \cup$ ($1 / 2, t 1$).
(v) Graphs G_{55}, G_{518}, G_{520}, and G_{523} are not pairwise A_{α}-cospectral, where $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$
(vi) Graphs G_{56}, G_{512}, G_{515}, and G_{525} are not pairwise A_{α}-cospectral, where $\alpha \in(1 / 2, t 1)$
(vii) Graphs G_{58}, G_{511}, G_{514}, and G_{517} are not pairwise A_{α}-cospectral, where $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$

Proof
(i) By Lemma 4 (v) and Tables 1-3, we have

$$
\begin{equation*}
c_{\alpha 4}\left(G_{50}\right)-c_{\alpha 4}\left(G_{51}\right)=2(\alpha-1)^{4}+\alpha^{2}(\alpha-1)^{2}-4 \alpha(\alpha-1)^{3} . \tag{14}
\end{equation*}
$$

By the roots of equations (11), we know that G_{50} and G_{51} not A_{α}-cospectral when $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$.
(ii) By Lemma 4 (iv) and Table 1, we have $c_{\alpha 3}\left(G_{59}\right)-c_{\alpha 3}\left(G_{516}\right)=6 \alpha^{3}-6 \alpha^{2}+6 \alpha-2$. Solving equation

$$
\begin{equation*}
6 \alpha^{3}-6 \alpha^{2}+6 \alpha-2=0 \tag{15}
\end{equation*}
$$

we have $\alpha=\sqrt[3]{4}+\sqrt[3]{-2}+1 / 3<1 / 2, \quad 2 \sqrt[3]{4}+\sqrt[3]{-2}$ $(-\sqrt{3} i-1)+2 / 6$, or $2 \sqrt[3]{-2}+\sqrt[3]{4}(-\sqrt{3} i-1)+2 / 6$. It implies that G_{59} and G_{516} are not A_{α}-cospectral when $\alpha \in(1 / 2, t 1)$.
(iii) Similarly, by Lemma 4 (iv) and Table 1, we have $c_{\alpha 3}\left(G_{510}\right)-c_{\alpha 3}\left(G_{524}\right)=6 \alpha^{3}-6 \alpha^{2}+6 \alpha-2$. By the roots of equation (15), we know that G_{510} and G_{524} are not A_{α}-cospectral, where $\alpha \in(1 / 2, t 1)$.
(iv) Analogously, by Lemma 4 (iv) and (v) and Tables 1-3, we obtain that

$$
\begin{align*}
c_{\alpha 4}\left(G_{53}\right)-c_{\alpha 4}\left(G_{57}\right)= & 4(\alpha-1)^{4}+2 \alpha^{2}(\alpha-1)^{2} \\
& -8 \alpha(\alpha-1)^{3}, \\
c_{\alpha 3}\left(G_{53}\right)-c_{\alpha 3}\left(G_{513}\right)= & 4 \alpha^{3}-6 \alpha^{2}+6 \alpha-2, \\
c_{\alpha 3}\left(G_{53}\right)-c_{\alpha 3}\left(G_{519}\right)= & 2 \alpha^{3}, \\
c_{\alpha 3}\left(G_{53}\right)-c_{\alpha 3}\left(G_{522}\right)= & 2 \alpha^{3}, \\
c_{\alpha 3}\left(G_{57}\right)-c_{\alpha 3}\left(G_{513}\right)= & 4 \alpha^{3}-6 \alpha^{2}+6 \alpha-2, \\
c_{\alpha 3}\left(G_{57}\right)-c_{\alpha 3}\left(G_{519}\right)= & 2 \alpha^{3}, \\
c_{\alpha 3}\left(G_{57}\right)-c_{\alpha 3}\left(G_{522}\right)= & 2 \alpha^{3}, \\
c_{\alpha 3}\left(G_{513}\right)-c_{\alpha 3}\left(G_{519}\right)= & -2 \alpha^{3}+6 \alpha^{2}-6 \alpha+2, \\
c_{\alpha 3}\left(G_{513}\right)-c_{\alpha 3}\left(G_{522}\right)= & -2 \alpha^{3}+6 \alpha^{2}-6 \alpha+2, \\
c_{\alpha 4}\left(G_{519}\right)-c_{\alpha 4}\left(G_{522}\right)= & \alpha^{2}(\alpha-1)^{2}-4 \alpha(\alpha-1)^{3}, \\
c_{\alpha 4}\left(G_{517}\right)-c_{\alpha 4}\left(G_{511}\right)= & 2(\alpha-1)^{4}+\alpha^{2}(\alpha-1)^{2} \\
& -4 \alpha(\alpha-1)^{3} . \tag{16}
\end{align*}
$$

Solving equation

$$
\begin{equation*}
\alpha^{2}(\alpha-1)^{2}-4 \alpha(\alpha-1)^{3}=0 \tag{17}
\end{equation*}
$$

we obtain $\alpha=0,1,1$, or $4 / 3$. By the roots of equations (8), (9), (11), (13), and (17), we obtain that G_{53}, G_{57}, G_{513}, G_{519}, and G_{522} are not pairwise A_{α} - cospectral when $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$.
(v) Similarly, by Lemma 4 (iv) and (v) and Tables 1-3, we obtain that

$$
\begin{align*}
c_{\alpha 3}\left(G_{55}\right)-c_{\alpha 3}\left(G_{518}\right)= & 2 \alpha^{3}-6 \alpha^{2}+6 \alpha-2, \\
c_{\alpha 3}\left(G_{55}\right)-c_{\alpha 3}\left(G_{520}\right)= & 2 \alpha^{3}, \\
c_{\alpha 4}\left(G_{55}\right)-c_{\alpha 4}\left(G_{523}\right)= & -2(\alpha-1)^{4}-\alpha^{2}(\alpha-1)^{2} \\
& +4 \alpha(\alpha-1)^{3}, \\
c_{\alpha 3}\left(G_{518}\right)-c_{\alpha 3}\left(G_{520}\right)= & 6 \alpha^{2}-6 \alpha+2, \\
c_{\alpha 3}\left(G_{518}\right)-c_{\alpha 3}\left(G_{523}\right)= & -2 \alpha^{3}+6 \alpha^{2}-6 \alpha+2, \\
c_{\alpha 3}\left(G_{520}\right)-c_{\alpha 3}\left(G_{523}\right)= & -2 \alpha^{3} . \tag{18}
\end{align*}
$$

Solving equation

$$
\begin{equation*}
6 \alpha^{2}-6 \alpha+2=0 \tag{19}
\end{equation*}
$$

we obtain $\alpha=3+\sqrt{3} i / 6$ or $3-\sqrt{3} i / 6$. By the roots of equations (9), (11), (13), and (19), we obtain that G_{55}, G_{518}, G_{520}, and G_{523} are not pairwise A_{α} - cospectral when $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$.
(vi) By Lemma 4 (iv) and (v) and Tables 1-3, we have

$$
\begin{align*}
& c_{\alpha 3}\left(G_{56}\right)-c_{\alpha 3}\left(G_{512}\right)=8 \alpha^{3}-6 \alpha^{2}+6 \alpha-2, \\
& c_{\alpha 3}\left(G_{56}\right)-c_{\alpha 3}\left(G_{515}\right)=6 \alpha^{3}, \\
& c_{\alpha 4}\left(G_{56}\right)-c_{\alpha 4}\left(G_{525}\right)=4 \alpha^{3}, \tag{20}\\
& c_{\alpha 3}\left(G_{512}\right)-c_{\alpha 3}\left(G_{515}\right)=-2 \alpha^{3}+6 \alpha^{2}-6 \alpha+2, \\
& c_{\alpha 3}\left(G_{512}\right)-c_{\alpha 3}\left(G_{525}\right)=-4 \alpha^{3}+6 \alpha^{2}-6 \alpha+2, \\
& c_{\alpha 3}\left(G_{515}\right)-c_{\alpha 3}\left(G_{525}\right)=-2 \alpha^{3} .
\end{align*}
$$

Solving equation

$$
\begin{equation*}
8 \alpha^{3}-6 \alpha^{2}+6 \alpha-2=0 \tag{21}
\end{equation*}
$$

we obtain $\alpha=\sqrt[3]{9}+\sqrt[3]{-3}+1 / 4<1 / 2,2 \sqrt[3]{9}+\sqrt[3]{-3}(-$ $\sqrt{3} i-1)+2 / 8$, or $2 \sqrt[3]{-3}+\sqrt[3]{9}(-\sqrt{3} i-1)+2 / 8$. By the roots of equations (8), (11), (13), and (21), we obtain that G_{56}, G_{512}, G_{515}, and G_{525} are not A_{α}-cospectral when $\alpha \in(1 / 2, t 1)$.
(vii) Finally, by Lemma 4 (iv) and (v) and Tables 1-3, we have

$$
\begin{align*}
& c_{\alpha 3}\left(G_{58}\right)-c_{\alpha 3}\left(G_{511}\right)= 2 \alpha^{3}, \\
& c_{\alpha 3}\left(G_{58}\right)-c_{\alpha 3}\left(G_{514}\right)= 4 \alpha^{3}-6 \alpha^{2}+6 \alpha-2, \\
& c_{\alpha 3}\left(G_{58}\right)-c_{\alpha 3}\left(G_{517}\right)= 2 \alpha^{3}, \\
& c_{\alpha 3}\left(G_{511}\right)-c_{\alpha 3}\left(G_{514}\right)= 2 \alpha^{3}-6 \alpha^{2}+6 \alpha-2, \\
& c_{\alpha 4}\left(G_{511}\right)-c_{\alpha 4}\left(G_{517}\right)=-2(\alpha-1)^{4}-\alpha^{2}(\alpha-1)^{2} \\
&+4 \alpha(\alpha-1)^{3}, \\
& c_{\alpha 3}\left(G_{514}\right)-c_{\alpha 3}\left(G_{517}\right)=-2 \alpha^{3}+6 \alpha^{2}-6 \alpha+2 . \tag{22}
\end{align*}
$$

By the roots of equations (8), (9), (11), and (13), we obtain that G_{58}, G_{511}, G_{514}, and G_{517} are not A_{α}-cospectral when $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$.

Theorem 5. Graphs $G_{50}, G_{51}, G_{52}, G_{53}, G_{54}, G_{55}, G_{56}, G_{57}$, $G_{58}, G_{59}, G_{510}, G_{511}, G_{512}, G_{513}, G_{514}, G_{515}, G_{516}, G_{517}, G_{518}$, $G_{519}, G_{520}, G_{522}, G_{523}, G_{524}$, and G_{525} are, respectively, determined by their A_{α}-spectra, where when $\alpha \in(1 / 2, t 1)$.

Proof. By simple computations, we have that $\sum_{i=1}^{n} d_{i}^{2}\left(G_{50}\right)=$ $\sum_{i=1}^{n} d_{i}^{2}\left(G_{51}\right)=n^{3}-2 n^{2}-19 n+34, \sum_{i=1}^{n} d_{i}^{2}\left(G_{52}\right)=n^{3}-2 n^{2}$ $-19 n+32, \quad \sum_{i=1}^{n} d_{i}^{2}\left(G_{53}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{57}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{513}\right)=$ $\sum_{i=1}^{n} d_{i}^{2}\left(G_{519}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{522}\right)=n^{3}-2 n^{2}-19 n+38, \quad \sum_{i=1}^{n}$ $d_{i}^{2}\left(G_{54}\right)=n^{3}-2 n^{2}-19 n+50, \sum_{i=1}^{n} d_{i}^{2}\left(G_{55}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{518}\right)=$ $\sum_{i=1}^{n} d_{i}^{2}\left(G_{520}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{523}\right)=n^{3}-2 n^{2}-19 n+40, \quad \sum_{i=1}^{n} d_{i}^{2}$ $\left(G_{56}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{512}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{515}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{525}\right)=n^{3}-$ $2 n^{2}-19 n+42, \sum_{i=1}^{n} d_{i}^{2}\left(G_{58}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{511}\right)=\sum_{i=1}^{n} d_{i}^{2}\left(G_{514}\right)$ $=\sum_{i=1}^{n} d_{i}^{2}\left(G_{517}\right)=n^{3}-2 n^{2}-19 n+36, \sum_{i=1}^{n} d_{i}^{2}\left(G_{59}\right)=\sum_{i=1}^{n} d_{i}^{2}$ $\left(G_{516}\right)=n^{3}-2 n^{2}-19 n+46$, and $\quad \sum_{i=1}^{n} d_{i}^{2}\left(G_{510}\right)=\sum_{i=1}^{n} d_{i}^{2}$ $\left(G_{524}\right)=n^{3}-2 n^{2}-19 n+44$.

By Corollaries 1 and 3 (iii) and (iv) and Lemmas 5 and 11, graphs $G_{50}, G_{51}, G_{52}, G_{53}, G_{54}, G_{55}, G_{56}, G_{57}, G_{58}, G_{59}$, $G_{510}, G_{511}, G_{512}, G_{513}, G_{514}, G_{515}, G_{516}, G_{517}, G_{518}, G_{519}, G_{520}$, $G_{521}, G_{522}, G_{523}, G_{524}$, and G_{525} are determined by their A_{α}-DS graphs, respectively, where $\alpha \in(1 / 2, t 1)$.

By Corollary 1 and Theorems 2-5, directly yields the following result.

Theorem 6. Let $G \in G_{n}$ be a graph with $n(\neq 7)$ vertices. G is determined by its A_{α}-spectrum, where $\alpha \in(1 / 2, t 1)$.

Remark 3. By Theorems 2-4, we know that almost complete graphs are determined by their A_{α}-spectra, where $\alpha \in(0,1 / 2) \cup(1 / 2, t 1)$, each $G_{i j}$ is a join. Thus, these results is a solution of Problem 1. Motivated by these results, we pose the following two questions.

Question 1. Prove or disprove that G_{59} and G_{516} are A_{α}-cospectral, where $\alpha \in(0,1 / 2)$.

Question 2. Prove or disprove that G_{510} and G_{524} are A_{α}-cospectral, where $\alpha \in(0,1 / 2)$.

Data Availability

Data from previous studies were used to support this study. They are cited at relevant places within the text as references.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 11761056), Natural Science Foundation of Qinghai Province (no. 2020-ZJ-920), and Scientific Research Innovation Team in Qinghai Nationalities University.

References

[1] D. M. Cardoso, G. Pastén, and O. Rojo, "On the multiplicity of α as an eigenvalue of $A(G)$ of graphs with pendant vertices," Linear Algebra and Its Applications, vol. 552, pp. 52-70, 2018.
[2] H. Guo and B. Zhou, "On the α-spectral radius of graphs," Applicable Analysis and Discrete Mathematics, vol. 14, pp. 431-458, 2020.
[3] H. Lin, H. Guo, and B. Zhou, "On the α-spectral radius of irregular uniform hypergraphs," Linear Multiliear Algebra, vol. 68, 2020.
[4] H. Lin, J. Xue, and J. Shu, "On the A-spectra of graphs," Linear Algebra and Its Applications, vol. 556, pp. 210-219, 2018.
[5] X. Liu and S. Liu, "On the A-characteristic polynomial of a graph," Linear Algebra and Its Applications, vol. 546, pp. 274-288, 2018.
[6] V. Nikiforov, "Merging the A-and Q-spectral theories," Applicable Analysis and Discrete Mathematics, vol. 11, no. 1, pp. 81-107, 2017.
[7] V. Nikiforov, G. Pastén, O. Rojo, and R. L. Soto, "On the A $\alpha-$ spectra of trees," Linear Algebra and Its Applications, vol. 520, pp. 286-305, 2017.
[8] V. Nikiforov and O. Rojo, "On the α-index of graphs with pendent paths," Linear Algebra and Its Applications, vol. 550, pp. 87-104, 2018.
[9] D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs, Academic Press, Cambridge, MA, USA, 1982.
[10] D. Cvetković, P. Rowlinson, and S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, England, 2010.
[11] W. Wang, "A simple arithmetic criterion for graphs being determined by their generalized spectra," Journal of Combinatorial Theory, Series B, vol. 122, pp. 438-451, 2017.
[12] H. H. Günthard and H. Primas, "Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen," Helvetica Chimica Acta, vol. 39, no. 6, pp. 1645-1653, 1956.
[13] E. R. van Dam and W. H. Haemers, "Which graphs are determined by their spectrum?" Linear Algebra and Its Applications, vol. 373, pp. 241-272, 2003.
[14] E. R. van Dam and W. H. Haemers, "Developments on spectral characterizations of graphs," Discrete Mathematics, vol. 309, no. 3, pp. 576-586, 2009.
[15] H. Lin, X. Huang, and J. Xue, "A note on the A-spectral radius of graphs," Linear Algebra and Its Applications, vol. 557, pp. 430-437, 2018.
[16] X. Liu and P. Lu, "Signless Laplacian spectral characterization of some joins," Electronic Journal of Linear Algebra, vol. 30, pp. 443-454, 2015.
[17] H. Zhang, T. Wu, and H.-J. Lai, "Per-spectral characterizations of some edge-deleted subgraphs of a complete graph," Linear and Multilinear Algebra, vol. 63, no. 2, pp. 397-410, 2015.
[18] M. Cámara and W. H. Haemers, "Spectral characterizations of almost complete graphs," Discrete Applied Mathematics, vol. 176, pp. 19-23, 2014.
[19] M. Doob and W. H. Haemers, "The complement of the path is determined by its spectrum," Linear Algebra and Its Applications, vol. 356, no. 1-3, pp. 57-65, 2002.
[20] S. Liu and Z. Qin, "A note on the coefficients of the A-characteristic polynomial of a graph," Journal of Zhejiang University, vol. 46, pp. 399-404, 2019.
[21] H. Lin, X. Liu, and J. Xue, "Graphs determined by their A α spectra," Discrete Mathematics, vol. 342, no. 2, pp. 441-450, 2019.
[22] S.-Y. Cui and G.-X. Tian, "The spectrum and the signless Laplacian spectrum of coronae," Linear Algebra and Its Applications, vol. 437, no. 7, pp. 1692-1703, 2012.
[23] C. McLeman and E. McNicholas, "Spectra of coronae," Linear Algebra and Its Applications, vol. 435, no. 5, pp. 998-1007, 2011.

