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Let G be a graph with n vertices. For every real α ∈ [0, 1], write Aα(G) for the matrix Aα(G) � αD(G) + (1 − α)A(G), where A(G)

and D(G) denote the adjacency matrix and the degree matrix of G, respectively. *e collection of eigenvalues of Aα(G) together
with multiplicities are called the Aα-spectrum of G. A graph G is said to be determined by its Aα-spectrum if all graphs having the
same Aα-spectrum as G are isomorphic to G. In this paper, we show that some joins are determined by their Aα-spectra
for α ∈ (0, 1/2) or (1/2, t1).

1. Introduction

We use G to denote a simple graph with vertex set V(G) �

v1, v2, . . . , vn  and edge set E(G) � e1, e2, . . . , em . *e
degree of a vertex v ∈ V(G) is denoted by d(v). For a
subgraph H of G, let G − E(H) denote the subgraph
obtained from G by deleting the edges of H. Let ci(G) and
pi(G) denote, respectively, the numbers of i-cycles and
i-vertex paths in G. Let c3(Gv) denote the number of
triangles containing the vertex v of G. Let G∪H be the
union of two graphs G and H which have no common
vertices. For any positive integer l, let lG denote be the
union of l disjoint copies of graph G. *e join of two
disjoint graphs G and H, denoted by G∨H, is the graph
obtained by joining each vertex of G to each vertex of H.
For convenience, the complete graph, path, cycle and star
on n vertices are denoted by Kn, Pn, Cn, and K1,n− 1,
respectively.

Let A(G) and D(G) denote, respectively, the adjacency
matrix and degree matrix of G. For every real α ∈ [0, 1],
write Aα(G) for the matrix Aα(G) � αD(G) + (1 − α)A(G).
Note that A0(G) � A(G) and 2A1/2(G) � Q(G), where
Q(G) is the signless Laplacian matrix of G. *e polynomial

ϕ(G) � ϕ(G, x) � det xI − Aα(G)(  � 

n

i�1
cαi(G)x

n− i
, (1)

is called Aα-characteristic polynomial, where I is the identity
matrix of order n. *e theory of Aα-characteristic polyno-
mial of a graph is well elaborated [1–8].

*e Aα-spectrum of G is a collection of roots of ϕ(G)

together with multiplicities. Two graphs are said to be
Aα-cospectral if they have the same Aα-spectrum. A graph is
called an Aα-DS graph if it is determined by its Aα-spectrum,
meaning that there exists no other graph that is non-
isomorphic to it but Aα-cospectral with it.

It is interesting to characterize which graph is deter-
mined by some graph spectrum [9–11]. *e problem was
raised by Günthard and Primas [12] in 1956 with motiva-
tions from chemistry. In recent years, although many graphs
have been proved to be DS graphs, the problem of deter-
mining DS graphs is still far from being completely solved
[13, 14]. Recently, Lin et al. [15] considered the problem
which graph is determined by its Aα-spectrum? And they
gave some characterizing properties of Aα-spectrum and
proposed the following problem.

Problem 1. Characterizing graphs G determined by their
Aα-spectra such that G∨Km(m≥ 1) is also determined by
their Aα-spectra for α ∈ (0, 1/2) or (1/2, t1).

Liu and Lu [16] discussed the problem which join graph
is determined by its Q-spectrum? And they pointed out the
following problem.
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Problem 2. Prove or disprove that Kn ∨Km is determined by
its Q-spectrum for m≥ 3.

In this paper, we focus on Problem 1 above, and we
prove that some join graphs are Aα-DS graphs. Furthermore,
we also give a special solution for Problem 2. *e rest of this
paper is organized as follows. In Section 2, we present some
characterizing properties of the Aα-spectrum of graphs and
give the formula to compute c3(Gv) in Kn − E(H), where H

is a subgraph of Kn with l edges. In Section 3, we give a
solution for Problem 1.

2. Preliminaries

Let Gn denote the set of graphs each of which is obtained
from Kn by removing five or fewer edges. For n≥ 10, there
exist exactly 45 nonisomorphic graphs each of which is
obtained from Kn by removing five or fewer edges [17].
*ese graphs are labeled by Gij, 1≤ i≤ 5 and 0≤ j≤ 25 and
illustrated in Figure 1. Checking the structure of Gij, we
know that Gij � H∨Km, where H is a graph obtained form
Kt deleting some edges, and t + m � n, e.g., G44 � (K4−

E(C4))∨Kn− 4.
Cámara and Haemers [18] discussed the problem which

Gij ∈ Gn is determined by its A0-spectrum. And they gave
the following result.

Theorem 1 (see [18]). Let G ∈ Gn be a graph with n≠ 7
vertices. )en, G is A0-DS graph.

Lemma 1 (see [19]). Let H⊆Kn be a graph with l edges and
let G � Kn − E(H). )en,

c3(G) �
n

3
  − l(n − 2) + 

v∈V(H)

d(v)

2
  − c3(H). (2)

By Lemma 1, the number of triangles of some G ∈ Gn is
calculated [17], see Table 1.

Lemma 2 (see [17]). Let H⊆Kn be a graph with l edges and
let G � Kn − E(H). )en,

c4(G) � 3
n

4
  − 2l

n − 2

2
 

+ 2
l

2
  +(n − 5) 

v∈V(H)

d(v)

2
 ⎡⎢⎢⎣ ⎤⎥⎥⎦ − p4(H) + c4(H).

(3)

By Lemma 2, the number of quadrangles of someG ∈ Gn

is calculated [17], see Table 2.
Using the Principle of Inclusion-Exclusion, we can

obtain the following result.

Lemma 3. Let H⊆Kn be a graph with k edges and let
G � Kn − E(H). Let v ∈ V(G), and let v be an endpoint of
l(≤ k) edges in E(H). )en,

c3 Gv(  �
n − 1

2
  − (k − l) − l(n − 1 − l) + c3 Gv(  + |P3| −

l

2
 .

(4)

Proof. Let E(H) � e1, e2, . . . , ek . Let Si denote the set of
triangles of Kn containing ei(i � 1, 2, . . . , k) and v. *us,

there exists exactly n − 1
2  triangles containing v in Kn. By

the Inclusion-Exclusion Principle, we have

c3 Gv(  �
n − 1

2
  − 

l

i�1
Si


 + 

i<j
Si ∩ Sj



 − 
i<j<k

Si ∩ Sj ∩ Sk



.

(5)

For any edge ei, if v is an endpoint of ei, then there exists
n − 1 − l triangles containing ei. Otherwise, there exists k − l

triangles containing ei. So, 
l
i�1 |Si| � l(n − 1 − l) + k − l. For

any given ei and ej, if v is a common endpoint of ei and ej,
then there exists c3(Gv) triangles containing ei and ej.
Otherwise, there exists |P3| triangles containing ei and ej in
G, where P3 is a path which v is origin endpoint and |P3| is
the number of vertices with length 2 to v. *us,
i<j|Si ∩ Sj| � c3(Gv) + |P3|. Since any two edges in l edges

induce a triangle, i<j<k|Si ∩ Sj ∩ Sk| �
l

2 . By the above

arguments, we arrive in equation (4). □

Lemma 4 (see [20] and [5]). Let G be a graph with n vertices
and m edges, and let (d1, d2, . . . , dn) be the degree sequence of
G. Suppose that ϕ(Aα(G), x) � jcαjx

n− j. )en,

(i) cα0 � 1
(ii) cα1 � − 2αm

(iii) cα2 � 2α2m2 − (1 − α)2m − 1/2α2id
2
i

(iv) cα3 � − 2(1 − α)3c3(G) + 2α(1 − α)2m2 − α(1 − α)2

id
2
i − 1/3α3(4m3 − 3mid

2
i + id

3
i )

(v) cα4 � − 1/4α4 
i

d
4
i − α2(1 − α)

2


i

d
3
i +2/3α4m

i

d
3
i +

5/2α2(1 − α)
2
m

i

d
2
i − α4m2


i

d
2
i − 1/2(1 − α)

4


i

d
2
i +

1/8α4(
i

d
2
i )

2
− α2 (1 − α)

2


(vivj)∈E(G)

didj − 2α(1 − α)
3


i

dic3 (Gvi
) +4α (1 − α)

3
mc3(G) − 2(1 − α)

4
c4(G) +

2/3α4m4
− 2α2(1 − α)

2
m

3
+ 1/2(1 − α)

4
m

2
+1/2(1 −

α)4m

For convenience, by Lemmas 3 and 4, we calculate the
value idic3(Gvi

) of some graphs in Gn, see Table 3.

Lemma 5 (see [21]). Let G and H be two graphs with n

vertices. For α ∈ [0, 1], if G and H are Aα-cospectral, then the
following statements hold:

(i) |V(G)| � |V(H)|.
(ii) |E(G)| � |E(H)|.
(iii) If G is r-regular, then H is r-regular.
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Figure 1: *e graphs obtained from Kn by deleting five or fewer edges drawn as lines in a disk.

Table 1: *e numbers of triangles of some graphs in Gn.

Graph c3(G) Graph c3(G)

G30
n

3  − 3n + 9 G59, G524
n

3  − 5n + 17

G31
n

3  − 3n + 7 G42, G45, G48
n

3  − 4n + 10

G40
n

3  − 4n + 14 G44, G46, G410
n

3  − 4n + 12

G43
n

3  − 4n + 9 G50, G51, G514
n

3  − 5n + 12

G52
n

3  − 5n + 11 G55, G512, G520, G523
n

3  − 5n + 15

G54
n

3  − 5n + 20 G58, G511, G513, G517
n

3  − 5n + 13

G32, G33
n

3  − 3n + 8 G53, G57, G518, G519, G522
n

3  − 5n + 14

G41, G47
n

3  − 4n + 11 G56, G510, G515, G516, G525
n

3  − 5n + 16
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Suppose that d1 ≥ d2 ≥ · · · ≥ dn and d1′ ≥d2′ ≥
· · · ≥dn
′ are the degree sequences of G and H, re-

spectively. If G and H are Aα-cospectral with
α ∈ (0, 1], then

(iv) 1≤i<j≤ndidj � 1≤i<j≤ndi
′dj
′.

(v) 1≤i≤nd2
i � 1≤i≤nd′2i .

Lemma 6 (see [21]). )e complete graph Kn is determined by
its Aα-spectrum.

Lemma 7 (see [21]). )e graph kK2 ∪ (n − 2k)K1 is deter-
mined by its Aα-spectrum, where 1≤ k≤ ⌊n/2⌋ and 0≤ α≤ 1.

By Lemma 7, we can obtain a corollary as follows.

Corollary 1. Graphs G10, G21, G34, G49, and G521 are de-
termined by their Aα-spectra, where 0≤ α≤ 1.

*eM-coronal of an n × n square matrix M, denoted by
ΓM(x), is defined to be the sum of the entries of the matrix
(xIn − M)− 1, that is,

ΓM(x) � 1T
n xIn − M( 

− 11n, (6)

where 1n denotes the column vector of size n with all the
entries equal to one and 1T

n means the transpose of 1n

([22, 23]).

Lemma 8 (see [16]). If G is an arbitrary graph and H1 and
H2 are Q-cospectral graphs with ΓQ(H1)(x) � ΓQ(H2)(x), then
G∨H1 and G∨H2 are Q-cospectral.

By Lemma 8, we obtain directly the following corollary.

Corollary 2. If G is an arbitrary graph and H1 and H2 are
Q-cospectral graphs with ΓQ(H1)(x) � ΓQ(H2)(x), then G∨H1
and G∨H2 are A1/2-cospectral.

Lemma 9. )e each of following holds:

(i) (Km − E(lK2))∨ (K4 − E(K1,3)) and (Km − E(lK2))

∨ (K4 − E(K3)) are A1/2-cospectral, where 0≤ l≤
⌊m/2⌋

(ii) (Km − E(Pl))∨ (K4 − E(K1,3)) and (Km − E(Pl))∨
(K4 − E(K3)) are A1/2-cospectral, where 2≤ l≤m

Proof. Directly calculating the signless Laplacian polyno-
mials of K4 − E(K1,3) and K4 − E(K3) yield det|xI− Q(K4 −

E(K1,3)| � det|xI − Q(K4 − E(K3)| � x4 − 6x3 + 9x2+ 4x)).
Furthermore, by simple computations, we have ΓQ(K4 −

E(K1,3))(x) � ΓQ(K4− E(K3))(x) � 4 (x − 1)/x(x − 4). By
Corollary 2, it is easy to see that the results in Lemma 9 hold.

By Lemma 9, we obtain some A1/2-cospectral mates in
Gn. □

Corollary 3. )e following results hold:

(i) Graphs G30 and G32 are A1/2-cospectral
(ii) Graphs G41 and G45 are A1/2-cospectral
(iii) Graphs G58 and G514 are A1/2-cospectral
(iv) Graphs G57 and G513 are A1/2-cospectral

Remark 1. By Corollaries 1 and 3, we know that K2 ∨Km �

G10 is a Q-DS graph, and K3 ∨Km � G30 and G32 are
Q-cospectral. *ese results answer the special case of
Problem 2.

3. Main Results

In this section, we show that all graphs in Gn are determined
by their Aα-spectra.

Theorem 2. Graphs G20 and G21 are Aα-DS graphs, where
0< α≤ 1.

Proof. *e result follows from Lemma 5 and Corollary 1. □

Theorem 3. Let G be a graph obtained from Kn by deleting
three edges, and then G is determined by the Aα-spectra when
α ∈ (0, 1/2)∪ (1/2, 1].

Table 2: *e numbers of quadrangles of some graphs in Gn.

Graph c4(G) Graph c4(G)

G42 3 n

4  − 4n2 + 22n − 22 G48 3 n

4  − 4n2 + 22n − 23

G50 3 n

4  − 5n2 + 27n − 21 G51 3 n

4  − 5n2 + 27n − 20

G53 3 n

4  − 5n2 + 29n − 32 G57 3 n

4  − 5n2 + 29n − 30

G55 3 n

4  − 5n2 + 30n − 38 G523 3 n

4  − 5n2 + 30n − 39

G511 3 n

4  − 5n2 + 28n − 26 G517 3 n

4  − 5n2 + 28n − 27

G519 3 n

4  − 5n2 + 29n − 33 G522 3 n

4  − 5n2 + 29n − 33

4 Journal of Mathematics



Proof. Checking Figure 1, we know that G is isomorphic to
one of {G30, G31, G32, G33, G34}. Directly computing yields


n
i�1 d2

i (G31) � n3 − 2n2 − 11n + 20, 
n
i�1 d2

i (G33) � n3−

2n2− 11n + 22, and 
n
i�1 d2

i (G30) � 
n
i�1 d2

i (G32) � n3−

2n2 − 11n + 24. By Lemma 4 (iv) and Table 1, we have

cα3 G32(  − cα3 G30(  � 2(1 − α)
3

c3 G30(  − c3 G32( ( 

+
1
3
α3 

i

d
3
i G30(  − 

i

d
3
i G32( ⎛⎝ ⎞⎠

� 2(1 − α)
3

− 2α3 � 2 − 6α + 6α2 − 4α3.
(7)

Solving equation

4α3 − 6α2 + 6α − 2 � 0, (8)

we have α � 1/2, 1/2 +
�
3

√
i/2, or 1/2 −

�
3

√
i/2. *is implies

that cα3(G32)≠ cα3(G30) for α ∈ (0, 1/2)∪ (1/2, 1].
By Corollaries 1 and 3 (i) and Lemma 7 (i), (ii), and (v),

the result in *eorem 3 holds. □

Remark 2. By the proof of *eorem 3, it can be known that
G31, G33, and G34 are determined by their Q-spectra.

Lemma 10. Each of the following holds:

(i) Graphs G44 and G410 are not Aα-cospectral, where
α ∈ (0, 1/2)∪ (1/2, t1)

(ii) Graphs G42 and G48 are not Aα-cospectral, where
α ∈ (0, 1/2)∪ (1/2, t1)

(iii) Graphs G41, G45, and G47 are not pairwise
Aα-cospectral, where α ∈ (0, 1/2)∪ (1/2, t1)

Proof

(i) By Lemma 4 (iv) and Table 1, we have
cα3(G44) − cα3(G410) � 2α3. Solving equation

2α3 � 0, (9)

we obtain α � 0, 0 or 0. It implies that G42 and G48
are not Aα-cospectral, when α ∈ (0, 1/2)∪ (1/2, t1).

(ii) By Lemma 4 (v) and Tables 1–3, we obtain that

cα4 G48(  − cα4 G42(  � − 2(α − 1)
4

− α2(α − 1)
2

+ 4α(α − 1)
3
.

(10)

Solving equation

− 2(α − 1)
4

− α2(α − 1)
2

+ 4α(α − 1)
3

� 0, (11)

we have α � 1, 1,
�
2

√
, or −

�
2

√
. *is indicates that G42

and G48 are not Aα-cospectral when α ∈ (0, 1/
2)∪ (1/2, t1).

(iii) Similarly, by Lemma 4 (iv) and Table 1, we obtain
that

cα3 G41(  − cα3 G45(  � 4α3 − 6α2 + 6α − 2,

cα3 G41(  − cα3 G47(  � 2α3,

cα3 G45(  − cα3 G47(  � − 2α3 + 6α2 − 6α + 2.

(12)

Solving equation

− 2α3 + 6α2 − 6α + 2 � 0, (13)

we obtain α � 1, 1 or 1. By the roots of equations (8),
(9), and (13), we know that G41, G45, and G47 are not
pairwise Aα-cospectral when α ∈ (0, 1/2)∪ (1/2, t

1). □

Theorem 4. Graphs G40, G41, G42, G43, G44, G45, G46, G47,
G48, G49, and G410 are determined by their Aα-spectra, re-
spectively, where α ∈ (0, 1/2)∪ (1/2, t1).

Proof. By simple computations, we obtain that


n
i�1 d2

i (G40) � n3 − 2n2 − 15n + 36, 
n
i�1 d2

i (G43) � n3−

2n2 − 15n + 26, 
n
i�1 d2

i (G46) � n3 − 2n2 − 15n + 34, 
n
i�1 d2

i

(G42) � 
n
i�1 d2

i (G48) � n3 − 2n2 − 15n + 28, 
n
i�1 d2

i (G41) �


n
i�1 d2

i (G45) � 
n
i�1 d2

i (G47) � n3 − 2n2 − 15n + 30, and


n
i�1 d2

i (G44) � 
n
i�1 d2

i (G410) � n3 − 2n2 − 15n + 32.
By Corollaries 1 and 3 (ii) and Lemmas 5 and 10, graphs

G40, G41, G42, G43, G44, G45, G46, G47, G48, G49, and G410 are
Aα-DS graphs, where α ∈ (0, 1/2)∪ (1/2, t1). □

Lemma 11. Each of the following holds:

(i) Graphs G50 and G51 are not Aα-cospectral, where
α ∈ (0, 1/2)∪ (1/2, t1)

Table 3: *e value idic3(Gvi
) of some graphs in Gn.

Graph idic3(Gvi
) Graph idic3(Gvi

)

G42 1/2n4 − 2n3 − 27/2n2 + 65n − 50 G48 1/2n4 − 2n3 − 27/2n2 + 65n − 52
G50 1/2n4 − 2n3 − 35/2n2 + 79n − 48 G51 1/2n4 − 2n3 − 35/2n2 + 79n − 46
G53 1/2n4 − 2n3 − 35/2n2 + 89n − 79 G57 1/2n4 − 2n3 − 35/2n2 + 89n − 75
G519 1/2n4 − 2n3 − 35/2n2 + 89n − 80 G522 1/2n4 − 2n3 − 35/2n2 + 89n − 78
G511 1/2n4 − 2n3 − 35/2n2 + 84n − 61 G517 1/2n4 − 2n3 − 35/2n2 + 84n − 63
G55 1/2n4 − 2n3 − 35/2n2 + 94n − 94 G523 1/2n4 − 2n3 − 35/2n2 + 94n − 96
G56 1/2n4 − 2n3 − 35/2n2 + 99n − 110 G525 1/2n4 − 2n3 − 35/2n2 + 99n − 112
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(ii) Graphs G59 and G516 are not Aα-cospectral, where
α ∈ (1/2, t1)

(iii) Graphs G510 and G524 are not Aα-cospectral, where
α ∈ (1/2, t1)

(iv) Graphs G53, G57, G513, G519, and G522 are not
pairwise Aα-cospectral, where α ∈ (0, 1/2)∪
(1/2, t1).

(v) Graphs G55, G518, G520, and G523 are not pairwise
Aα-cospectral, where α ∈ (0, 1/2)∪ (1/2, t1)

(vi) Graphs G56, G512, G515, and G525 are not pairwise
Aα-cospectral, where α ∈ (1/2, t1)

(vii) Graphs G58, G511, G514, and G517 are not pairwise
Aα-cospectral, where α ∈ (0, 1/2)∪ (1/2, t1)

Proof

(i) By Lemma 4 (v) and Tables 1–3, we have

cα4 G50(  − cα4 G51(  � 2(α − 1)
4

+ α2(α − 1)
2

− 4α(α − 1)
3
.

(14)

By the roots of equations (11), we know that G50 and
G51 not Aα-cospectral when α ∈ (0, 1/2)∪ (1/2, t1).
(ii) By Lemma 4 (iv) and Table 1, we have
cα3(G59) − cα3(G516) � 6α3 − 6α2 + 6α − 2. Solving
equation

6α3 − 6α2 + 6α − 2 � 0, (15)

we have α �
�
43

√
+

���
− 23

√
+ 1/3< 1/2, 2

�
43

√
+

���
− 23

√

(−
�
3

√
i − 1) + 2/6, or 2

���
− 23

√
+

�
43

√
(−

�
3

√
i − 1) + 2/6.

It implies that G59 and G516 are not Aα-cospectral
when α ∈ (1/2, t1).

(iii) Similarly, by Lemma 4 (iv) and Table 1, we have
cα3(G510) − cα3(G524) � 6α3 − 6α2 + 6α − 2. By the
roots of equation (15), we know that G510 and G524
are not Aα-cospectral, where α ∈ (1/2, t1).

(iv) Analogously, by Lemma 4 (iv) and (v) and
Tables 1–3, we obtain that

cα4 G53(  − cα4 G57(  � 4(α − 1)
4

+ 2α2(α − 1)
2

− 8α(α − 1)
3
,

cα3 G53(  − cα3 G513(  � 4α3 − 6α2 + 6α − 2,

cα3 G53(  − cα3 G519(  � 2α3,
cα3 G53(  − cα3 G522(  � 2α3,
cα3 G57(  − cα3 G513(  � 4α3 − 6α2 + 6α − 2,

cα3 G57(  − cα3 G519(  � 2α3,
cα3 G57(  − cα3 G522(  � 2α3,

cα3 G513(  − cα3 G519(  � − 2α3 + 6α2 − 6α + 2,

cα3 G513(  − cα3 G522(  � − 2α3 + 6α2 − 6α + 2,

cα4 G519(  − cα4 G522(  � α2(α − 1)
2

− 4α(α − 1)
3
,

cα4 G517(  − cα4 G511(  � 2(α − 1)
4

+ α2(α − 1)
2

− 4α(α − 1)
3
.

(16)

Solving equation

α2(α − 1)
2

− 4α(α − 1)
3

� 0, (17)

we obtain α � 0, 1, 1, or 4/3. By the roots of equations
(8), (9), (11), (13), and (17), we obtain that G53, G57,
G513, G519, and G522 are not pairwise Aα − cospectral
when α ∈ (0, 1/2)∪ (1/2, t1).

(v) Similarly, by Lemma 4 (iv) and (v) and Tables 1–3,
we obtain that

cα3 G55(  − cα3 G518(  � 2α3 − 6α2 + 6α − 2,

cα3 G55(  − cα3 G520(  � 2α3,

cα4 G55(  − cα4 G523(  � − 2(α − 1)
4

− α2(α − 1)
2

+ 4α(α − 1)
3
,

cα3 G518(  − cα3 G520(  � 6α2 − 6α + 2,

cα3 G518(  − cα3 G523(  � − 2α3 + 6α2 − 6α + 2,

cα3 G520(  − cα3 G523(  � − 2α3.
(18)

Solving equation

6α2 − 6α + 2 � 0, (19)

we obtain α � 3 +
�
3

√
i/6 or 3 −

�
3

√
i/6. By the roots

of equations (9), (11), (13), and (19), we obtain that
G55, G518, G520, and G523 are not pairwise
Aα − cospectral when α ∈ (0, 1/2)∪ (1/2, t1).

(vi) By Lemma 4 (iv) and (v) and Tables 1–3, we have

cα3 G56(  − cα3 G512(  � 8α3 − 6α2 + 6α − 2,

cα3 G56(  − cα3 G515(  � 6α3,

cα4 G56(  − cα4 G525(  � 4α3,

cα3 G512(  − cα3 G515(  � − 2α3 + 6α2 − 6α + 2,

cα3 G512(  − cα3 G525(  � − 4α3 + 6α2 − 6α + 2,

cα3 G515(  − cα3 G525(  � − 2α3.

(20)

Solving equation

8α3 − 6α2 + 6α − 2 � 0, (21)

we obtain α �
�
93

√
+

���
− 33

√
+ 1/4< 1/2, 2

�
93

√
+

���
− 33

√
(−�

3
√

i − 1) + 2/8, or 2
���
− 33

√
+

�
93

√
(−

�
3

√
i − 1) + 2/8. By

the roots of equations (8), (11), (13), and (21), we
obtain that G56, G512, G515, and G525 are not
Aα-cospectral when α ∈ (1/2, t1).

(vii) Finally, by Lemma 4 (iv) and (v) and Tables 1–3, we
have
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cα3 G58(  − cα3 G511(  � 2α3,

cα3 G58(  − cα3 G514(  � 4α3 − 6α2 + 6α − 2,

cα3 G58(  − cα3 G517(  � 2α3,

cα3 G511(  − cα3 G514(  � 2α3 − 6α2 + 6α − 2,

cα4 G511(  − cα4 G517(  � − 2(α − 1)
4

− α2(α − 1)
2

+ 4α(α − 1)
3
,

cα3 G514(  − cα3 G517(  � − 2α3 + 6α2 − 6α + 2.

(22)

By the roots of equations (8), (9), (11), and (13), we
obtain that G58, G511, G514, and G517 are not
Aα-cospectral when α ∈ (0, 1/2)∪ (1/2, t1). □

Theorem 5. Graphs G50, G51, G52, G53, G54, G55, G56, G57,
G58, G59, G510, G511, G512, G513, G514, G515, G516, G517, G518,
G519, G520, G522, G523, G524, and G525 are, respectively, de-
termined by their Aα-spectra, where when α ∈ (1/2, t1).

Proof. By simple computations, we have that 
n
i�1 d2

i (G50) �


n
i�1 d2

i (G51) � n3 − 2n2 − 19n + 34, 
n
i�1 d2

i (G52) � n3 − 2n2

− 19n + 32, 
n
i�1 d2

i (G53) � 
n
i�1 d2

i (G57) � 
n
i�1 d2

i (G513) �


n
i�1 d2

i (G519) � 
n
i�1 d2

i (G522) � n3 − 2n2 − 19n + 38, 
n
i�1

d2
i (G54) � n3 − 2n2 − 19n +50, 

n
i�1 d2

i (G55) � 
n
i�1d2

i (G518) �


n
i�1 d2

i (G520) � 
n
i�1 d2

i (G523) � n3 − 2n2 − 19n +40, 
n
i�1 d2

i

(G56) � 
n
i�1 d2

i (G512) � 
n
i�1 d2

i (G515) � 
n
i�1d2

i (G525) � n3 −

2n2 − 19n+ 42, 
n
i�1d2

i (G58) � 
n
i�1 d2

i (G511) � 
n
i�1d2

i (G514)

� 
n
i�1 d2

i (G517) � n3 − 2n2 − 19n +36, 
n
i�1d2

i (G59) � 
n
i�1 d2

i

(G516) � n3 − 2n2 − 19n +46, and 
n
i�1d2

i (G510) � 
n
i�1 d2

i

(G524) � n3 − 2n2 − 19n +44.
By Corollaries 1 and 3 (iii) and (iv) and Lemmas 5 and

11, graphs G50, G51, G52, G53, G54, G55, G56, G57, G58, G59,
G510, G511, G512, G513, G514, G515, G516, G517, G518, G519, G520,
G521, G522, G523, G524, and G525 are determined by their
Aα-DS graphs, respectively, where α ∈ (1/2, t1).

By Corollary 1 and *eorems 2–5, directly yields the
following result. □

Theorem 6. Let G ∈ Gn be a graph with n(≠ 7) vertices. G is
determined by its Aα-spectrum, where α ∈ (1/2, t1).

Remark 3. By*eorems 2–4, we know that almost complete
graphs are determined by their Aα-spectra, where
α ∈ (0, 1/2)∪ (1/2, t1), each Gij is a join. *us, these results
is a solution of Problem 1. Motivated by these results, we
pose the following two questions.

Question 1. Prove or disprove that G59 and G516 are
Aα-cospectral, where α ∈ (0, 1/2).

Question 2. Prove or disprove that G510 and G524 are
Aα-cospectral, where α ∈ (0, 1/2).
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