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In this paper, we define the discrete time Wilson frame (DTW frame) for l2(Z) and discuss some properties of discrete time
Wilson frames. Also, we give an interplay between DTW frames and discrete time Gabor frames. Furthermore, a necessary and
a sufficient condition for the DTW frame in terms of Zak transform are given. Moreover, the frame operator for the DTW
frame is obtained. Finally, we discuss dual pair of frames for discrete time Wilson systems and give a sufficient condition for
their existence.

1. Introduction

*e idea of frame as a redundant peer of a basis was
originated in 1952 by Duffin and Schaeffer [1]. It came to
limelight only with the historic paper of Daubechies et al. [2].
A sequence of vectors uj􏽮 􏽯

j∈N⊆H is termed as a frame (or
Hilbert frame) for a separable Hilbert space H if there exist
constants Al,Au > 0 such that

Al‖u‖
2 ≤ 􏽘

j∈N
〈u, uj〉

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≤Au‖u‖

2
, for all u ∈H. (1)

*e positive numbersAl andAu are termed as lower and
upper frame bounds of the frame, respectively. *e bounds
may not be unique. If Al � Au, then uj􏽮 􏽯

j∈N is called an

Al-tight frame, and ifAl � Au � 1, then uj􏽮 􏽯
j∈N is said to be

a Parseval frame. *e inequality in (1) is recognized as the
frame inequality of the frame uj􏽮 􏽯

j∈N.
A sequence of vectors uj􏽮 􏽯

j∈N⊆H is called a Riesz basis if
uj􏽮 􏽯

j∈N is complete and there are positive constants Al and
Au such that

Al 􏽘
j∈N

αj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≤ 􏽘

j∈N
αjuj

����������

����������

2

≤Au 􏽘
j∈N

αj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
,

for all αj􏽮 􏽯
j∈N ∈ ℓ

2
(N).

(2)

Gabor frame for L2(R) (which is a Riesz basis) has bad
localization properties in either time or frequency. *us, a
system to replace Gabor systems which do not have bad
localization properties in time and frequency was required.
Wilson [3, 4] suggested a system of functions which are
localized around the positive and negative frequency of the
same order.*e idea ofWilson was used by Daubechies et al.
[5] to construct orthonormal “Wilson bases” which consist
of functions given by

ψk
j(x) �

εk cos(2kπx) w x −
j

2
􏼒 􏼓, if j is even,

2 sin(2(k + 1)πx) w x −
j + 1
2

􏼒 􏼓, if j is odd,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

εk �

�
2

√
, if k � 0,

2, if k ∈ N,
􏼨

(3)
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with a smooth well-localized window function w. For such
bases, the disadvantage described in the Balian–Low theo-
rem is completely removed. Independent of the work of
Daubechies et al. [5], orthonormal local trigonometric bases
consisting of the functions wj cos((k + (1/2))π (− j)), j ∈ Z,

k ∈ N0, where N0 � N∪ 0{ }, were introduced by Malvar [6],
where window functions are assumed to be compactly
supported, and only two immediately neighbouring win-
dows are allowed to have overlapping support. Some gen-
eralizations of Malvar bases were studied in [7, 8]. To obtain
more freedom for the choice of window functions, bio-
rthogonal bases were investigated in [9]. A drawback of
Malvar’s construction is the restriction on the support of the
window functions. *erefore, it was preferred to consider
Wilson bases of Daubechies et al. [5].

Feichtinger et al. [10] proved that Wilson bases of ex-
ponential decay are not unconditional bases for all modu-
lation spaces on R including the classical Bessel potential
spaces and the Schwartz spaces. Also, Wilson bases are not
unconditional bases for the ordinary Lp spaces for p≠ 2, as
shown in [10]. Approximation properties of Wilson bases
are studied by Bittner [11], and Wilson bases for general
time-frequency lattices are studied by Kutyniok and
Strohmer [12]. Generalizations of Wilson bases to non-
rectangular lattices are discussed by Sullivan et al. [3], with

motivation from wireless communication and cosines
modulated filter banks. Wojdyllo [13] studied modified
Wilson bases and discussed Wilson system for triple re-
dundancy in [14]. Discrete time Wilson frames with general
lattices are studied by Lian et al. [15]. Motivated by the fact
that one has different trigonometric functions for odd and
even indices, Bittner [11, 16] considered Wilson bases in-
troduced by Daubechies et.al [5] with nonsymmetrical
window functions for odd and even indices.*is generalized
system of Bittner was later studied extensively by Kaushik
and Panwar [17–19] and Jarrah and Panwar [20].

In this article, we consider the system defined by Bittner
[16] to define the discrete time Wilson frame (DTWF) and
give examples for its existence. Some observations related to
properties of discrete time Wilson frames are given. Also, a
relationship between DTW frames and the discrete time
Gabor frames is discussed. Furthermore, a necessary and a
sufficient condition for the DTW frame in terms of Zak
transform are obtained and the frame operator for the DTW
frame is constructed. Finally, dual pair of frames for discrete
timeWilson systems is defined and a sufficient condition for
its existence is given.

*e discrete time Wilson (DTW) system associated with
g0, g− 1 ∈ l2(Z) is defined as

ψm

M
, kL

�

E(m/M)T(kL/2) + E(− m/M)T(kL/2)􏼐 􏼑g0, if k ∈ 2Z, k≠ 0,

1
i

E(m+1/M)T((k+1)L/2) − E− (m+1/M)T((k+1)L/2)􏼐 􏼑g− 1, if k ∈ 2Z + 1,

1
�
2

√ E(m/M) + E(− m/M)􏼐 􏼑g0, if k � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where k ∈ Z, L, M ∈ N and m � 0, 1, 2, . . . , M − 1. *e DTW system given by (4) can be rewritten for any
n ∈ Z as

ψ(m/M),kL(n) �

�
2

√
cos

2πmn

M
􏼒 􏼓g0(n), if k � 0,

2 cos
2πmn

M
􏼒 􏼓g0 n −

kL

2
􏼠 􏼡, if k ∈ 2Z, k≠ 0,

2 sin
2π(m + 1)n

M
􏼠 􏼡g− 1 n −

(k + 1)L

2
􏼠 􏼡, if k ∈ 2Z + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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Remark 1. For g0 � g− 1 � g, the DTW system has the form

ψ(m/M),kLg �

E(m/M)T(kL/2) + E(− m/M)T(kL/2)􏼐 􏼑g, if k ∈ 2Z, k≠ 0,

1
i

E(m+1/M)T((k+1)L/2) − E− (m+1/M)T((k+1)L/2)􏼐 􏼑g, if k ∈ 2Z + 1,

1
�
2

√ E(m/M) + E(− m/M)􏼐 􏼑g, if k � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where k ∈ Z, L, M ∈ N and m � 0, 1, 2, . . . , M − 1.

2. Outline of the Paper

In this article, we define discrete time Wilson frames (DTW
frames) and discuss various properties of DTW frames (see
Observations (I) to (VIII)). An interplay between DTW frames
and discrete time Gabor frames has been given in *eorem 1.
Also, a necessary and a sufficient condition for the DTW frame
in terms of Zak transform are given in *eorem 3 and 4,
respectively. *e construction of the frame operator for the
DTW frame is discussed in*eorem 5. Finally, we discuss dual
pair of frames for discrete time Wilson systems and give a
sufficient condition for its existence. Various examples are
given to illustrate the discussion.

3. Discrete Time Wilson Frames

In this section, we define the discrete time Wilson frame
based on the Wilson system considered by Bittner [11, 16],
explore their existence through examples, and investigate
various properties including its relationship with discrete
time Gabor systems. We begin with the following definition.

Definition 1. *e discrete time Wilson system:

ψ(m/M),kL: g0, g− 1 ∈ l
2
(Z), k ∈ Z, L, M ∈ N, m � 0, 1, 2, . . . , M − 1􏽮 􏽯,

(7)

where ψ(m/M),kL is as defined in (4) and is called a discrete
time Wilson frame (DTWF) if there exist constants
0<Al ≤Au <∞ satisfying

Al‖f‖
2 ≤ 􏽘

k∈Z
􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤Au‖f‖

2
,

for allf ∈ l
2
(Z).

(8)

*e constants Al and Au are called lower and upper
frame bounds for the DTWF ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯.
*e supremum of all lower frame bounds and the infimum
of all upper frame bounds are called optimal lower and
optimal upper frames bounds, respectively.

In case the system ψ(m/M),kL: g0, g− 1 ∈ l2(Z),􏽮

k ∈ Z, L, M ∈ N, m � 0, 1, 2, . . . , M − 1} satisfy only the
right-hand side of inequality (8), then the system is called a
discrete time Wilson Bessel sequence for l2(Z).

In order to show the existence of discrete time Wilson
Bessel sequences which are not DTWF for l2(Z), we give the
following examples.

Example 1

(i) Let g(n)􏼈 􏼉n∈Z � en, n ∈ N. *en,

􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 􏽘
k∈Z

􏽘

M− 1

m�0
|f(n + kL)|

2

� M 􏽘
k∈Z

|f(n + kL)|
2

≤M‖f‖
2
, for allf ∈ l

2
(Z).

(9)

*erefore, we obtain

􏽘
k∈Z

􏽘

M− 1

m�0
〈f,ψ(m/M),kLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ 4M‖f‖

2
, for allf ∈ l

2
(Z).

(10)

Hence, ψ(m/M),kL: g ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N is a

discrete time Bessel sequence for l2(Z) with Bessel
bound 4M.
However, it is a DTW frame if and only if L � 1.

(ii) Let g(n)�
(1/n), n�1,2,3,...,A,whereA<L<M,L≥2,

0, otherwise.􏼨

*en, we have

􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤M‖f‖

2
, for allf ∈ l

2
(Z).

(11)

Hence, ψ(m/M),kL: g ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N is a dis-

crete time Bessel sequence for l2(Z) with Bessel bound
4M. Furthermore, it is not a frame as it does not satisfy
the lower frame condition for f(n)􏼈 􏼉n∈Z � eL ∈ l2(Z).
Moreover, note that

(1) If A � L, then ψ(m/M),kL: g ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N

is a DTW frame with frame bounds A � 2M and
B � 4M.
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(2) If A � L � M, then ψ(m/M),kL: g ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW frame with frame

bounds A � M and B � 4M.

Next, we give examples of Wilson systems which are
discrete time Wilson frames for l2(Z).

Example 2

(i) Let g(n) �
(1/

��
M

√
), n � 0, 1, 2, . . . , L − 1, L<M,

0, otherwise.􏼨

*en, using the fact that 􏽐
M− 1
m�0 e2πi(m/M)(q− p) �

M, if q − p ∈MZ,

0, if q − p ∉MZ,
􏼨 we have

􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

�
1

M
􏽘
k∈Z

􏽘

M− 1

m�0
􏽘

L− 1

p�0
|f(p + kL)|

2

� ‖f‖
2
, for allf ∈ l

2
(Z),

􏽘

M− 1

m�0
〈f, cos

2πm·

M
􏼒 􏼓g(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
≤
3
2
‖f‖

2
, for allf ∈ l

2
(Z).

(12)

*erefore, ψ(m/M),kL: g ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N is a

discrete time Wilson frame for l2(Z).

(ii) Let g(n) �
(1/2M

), n ∈ [0, L]∩Z, L<M,

0, otherwise.
􏼨

Note that
􏽐

M− 1
m�0 e2πi(m/M)(q− p) �

M, if q − p ∈MZ,

0, if q − p ∉MZ.
􏼨

*erefore,

􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

�
M

22M
‖f‖

2
+ 􏽘

k∈Z
|f((k + 1)L)|

2⎛⎝ ⎞⎠,

2 􏽘
M− 1

m�0
〈f, cos

2πm·

M
􏼒 􏼓g(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
≤
3M

22M
‖f‖

2
, f ∈ l

2
(Z).

(13)

Hence, ψ(m/M),kL: g ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW

frame for l2(Z).
In view of the above discussion, we have the following

observations in relation to DTW frames.

(I)Let f, g ∈ l2(Z) and let TkL be the translation op-
erator on l2(Z), where k ∈ Z and L ∈ N. *en,

􏽘
k∈Z

􏽘

M− 1

m�0
Im 〈f, cos

2πm(.)

M
􏼠 􏼡TkLg(.)〉􏼠

· 〈f, sin
2πm(.)

M
􏼠 􏼡TkLg(.)〉􏼡 � 0.

(14)

Indeed, it follows from the fact that

􏽘

M− 1

m�0
e
2πi(m/M)(q− p)

�
M, if q − p ∈MZ,

0, if q − p ∉MZ.
􏼨 (15)

(II) Let ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N be a

DTW system for l2(Z). *en,

􏽘
k∈Z

􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, cos

2πm(·)

M
􏼠 􏼡TkLg0(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, sin

2πm(·)

M
􏼠 􏼡TkLg− 1(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

− 2 􏽘
M− 1

m�0
〈f, cos

2πm(·)

M
􏼠 􏼡g0(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

, for allf ∈ l
2
(Z).

(16)
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Indeed, one can compute that

􏽘
k∈Z

􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 4 􏽘

k∈2Z

k≠ 0

􏽘

M− 1

m�0
〈f, cos

2πm.

M
􏼒 􏼓T(kL/2)g0(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 4 􏽘

k∈2Z+1

k≠ 0

􏽘

M− 1

m�0
〈f, sin

2π(m + 1).

M
􏼠 􏼡T((k+1)L/2)g− 1(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 2 􏽘
M− 1

m�0
〈f, cos

2πm.

M
􏼒 􏼓g0(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, cos

2πm.

M
􏼒 􏼓TkLg0(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
− 4 􏽘

M− 1

m�0
〈f, cos

2πm.

M
􏼒 􏼓g0(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, sin

2πm.

M
􏼒 􏼓TkLg− 1(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
+ 2 􏽘

M− 1

m�0
〈f, cos

2πm.

M
􏼒 􏼓g0(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
.

(17)

In view of Observations (I) and (II), we obtain (III). (III) Let ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N be a

DTW system for l2(Z). *en,

􏽘
k∈Z

􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg0(·)〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg− 1(·)〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, sin

2πm.

M
􏼒 􏼓TkLg0(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
− 2 􏽘

M− 1

m�0
〈f, cos

2πm

M
􏼒 􏼓g0(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

− 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, cos

2πm·

M
􏼒 􏼓TkLg− 1(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
, f ∈ l

2
(Z).

(18)

Using Observations (II) and (III), we have (IV). (IV) For all f ∈ l2(Z),

􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg0(·)〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg− 1(·)〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, cos

2πm(·)

M
􏼠 􏼡TkLg0(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, sin

2πm(·)

M
􏼠 􏼡TkLg0(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, cos

2πm(·)

M
􏼠 􏼡TkLg− 1(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, sin

2πm(·)

M
􏼠 􏼡TkLg− 1(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

.

(19)
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(V) If g0 � g− 1 � g for the DTW system
ψ(m/M),kLg􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N, then for all f ∈ l2(Z), and

we obtain

􏽘
k∈Z

􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg(.)〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− 2 􏽘
M− 1

m�0
〈f, cos

2πm

M
􏼒 􏼓g(.)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
. (20)

(VI) Let E(m/M)TkLg0􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N and

E(m/M)TkLg− 1􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N be two DTG Bessel se-

quences with Bessel bounds B1 and B2, respectively.
*en, the system ψ(m/M),kL: g0, g− 1 ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW Bessel sequence with

Bessel bound 4(B1 + B2).
Indeed, using observation (III) and the hypothesis, we
have

􏽘
k∈Z

􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ 4 􏽘

k∈Z
􏽘

M− 1

m�0
〈f, E(m/M)TkLg0(.)〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg− 1(.)〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

≤ 4 B1 + B2( 􏼁‖f‖
2
, for allf ∈ l

2
(Z).

(21)

Remark 2. *e converse of observation (VI) may not be true
even if additionally we assume that the system
ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N is a frame for

l2(Z).

Example 3. Let L � 2, M � 4, L � 2, M � 4, and
g− 1(n)􏼈 􏼉n∈Z � e1. *en,

􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg0〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 4 􏽘
k∈Z

|f(2k)|
2
, for allf ∈ l

2
(Z),

􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg− 1〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 4 􏽘
k∈Z

|f(2k + 1)|
2
, for allf ∈ l

2
(Z).

(22)

*us, the systems E(m/M)TkLg0􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N and

E(m/M)TkLg− 1􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N are not DTG frames for

l2(Z). Now, using observation (III), we obtain

8‖f‖
2 ≤ 􏽘

k∈Z
􏽘

M− 1

m�0
〈f,ψ(m/M),kLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ 16‖f‖

2
,

for allf ∈ l
2
(Z).

(23)

Hence, ψ(m/M),kL: g ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW

frame for l2(Z) with frame bounds 8 and 16.
(VII) Let g0, g− 1 ∈ l2(Z) be such that

B1 � M sup
n∈[0,L]∩N

􏽘
p∈Z

􏽘
k∈Z

g0(n − kL)g0(n − kL − pM)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<∞,

B2 � M sup
n∈[0,L]∩N

􏽘
p∈Z

􏽘
k∈Z

g− 1(n − kL)g− 1(n − kL − pM)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<∞.

(24)
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*en, the system
ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW

Bessel sequence for l2(Z) with Bessel bound
4(B1 + B2).
(VIII) If g0, g− 1 ∈ l2(Z) are functions having bounded
support, then the DTW system
ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW

Bessel sequence for l2(Z).

Indeed, onemay perceive that, since the functions g0 and
g− 1 have bounded support, B1 and B2 as defined in ob-
servation (VII) are finite, and hence the DTW system
ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW Bessel

sequence for l2(Z).
Now, we prove a result related to DTW systems for the

particular case when g0 � g− 1 � g.

Lemma 1. For f, g ∈ l2(Z), we have

2 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ 􏽘

k∈Z
􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

≤ 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(25)

Proof. Using observation (V), we obtain

􏽘
k∈Z

􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 4 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg(·)〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− 2 􏽘
M− 1

m�0
〈f, cos

2πm.

M
􏼒 􏼓g(·)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
.

(26)

Hence, we compute

2 􏽘
M− 1

m�0
〈f, cos

2πm.

M
􏼒 􏼓g(.)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
� 2 􏽘

M− 1

m�0
〈f,

1
2

E(m/M) + E(− m/M)􏼐 􏼑g(.)〉
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

�
1
2

􏽘

M− 1

m�0
〈f, E(m/M)g〉 +〈f, E(− m/M)g〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

≤ 2 􏽘
M− 1

m�0
〈f, E(m/M)g〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ 2 􏽘

k∈Z
􏽘

M− 1

m�0
〈f, E(m/M)TkLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(27)

In the following result, we give an interplay between the
DTW frame and DTG frame for l2(Z). □

Theorem 1. 9e Wilson system ψ(m/M),kL: g ∈􏽮

l2(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW frame for l2(Z) if and only if

E(m/M)TkLg􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N is a DTG frame for l2(Z).

Proof. Let Al and Au be the positive constants such that

Al‖f‖
2 ≤ 􏽘

k∈Z
􏽘

M− 1

m�0
〈f,ψm

M
, kL
〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤Au‖f‖
2
,

for allf ∈ l
2
(Z).

(28)

*en, using Lemma 1, it is easy to conclude that
E(m/M)TkLg􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N is a DTG frame for l2(Z) with

frame bounds (Al/4) and (Au/2).
Conversely, let E(m/M)TkLg􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N be a DTG

frame for l2(Z). *en, there exist positive constants Bl and
Bu such that

Bl‖f‖
2 ≤ 􏽘

k∈Z
􏽘

M− 1

m�0
〈f, E(m/M)TkLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤Bu‖f‖

2
,

for allf ∈ l
2
(Z).

(29)

Again, by utilizing Lemma 1, we deduce that
ψ(m/M),kL: g ∈ l2(Z)􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW frame with

frame bounds 2Bl and 4Bu.
Now, we define discrete time tight Wilson frame for

l2(Z) and investigate their relationship with discrete time
Gabor frame for l2(Z). □

Definition 2. *e discrete time Wilson system
ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N given by (4) is

called a discrete time tight Wilson frame (DTTWF) if there
exists a constant C∞ ≥ 0 such that

􏽘
k∈Z

􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� C1‖f‖
2
, for allf ∈ l

2
(Z).

(30)

IfC∞ � 1, then the frame ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯 is
called Discrete Time Parseval frame.

Next, we state two results whose proofs can be worked
out using Lemma 1.

Proposition 1. Let ψ(m/M),kL: g ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N be

a DTTW frame for l2(Z) with frame bound C∞. 9en,
E(m/M)TkLg􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N is a DTG frame with frame

bounds (C∞/4) and (C∞/2).
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Proposition 2. Let E(m/M)TkLg􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N be a DTTG

frame for l2(Z) with frame bound C∞. 9en,
ψ(m/M),kL: g ∈ l2(Z)􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW frame for

l2(Z) with frame bounds 2C∞ and 4C∞.

4. Discrete Zak Transform and Discrete Time
Wilson Frames

Various properties of the Zak transform (continuous ver-
sion) were studied by Janssen [21,22] and the discrete
version is discussed by Heil [23] who gave the following
definition of discrete Zak transform.

Definition 3 (see [23]). *e discrete Zak transform of a
sequence f ∈ l2(Z) is given by

Zf(n, x) � 􏽘
j∈Z

f(n + ja)e
2πijx

, ∀(n, x) ∈ Z × 􏽢R, (31)

where a ∈ Z+ is a fixed parameter and 􏽢R is the dual group of
R.

Next, we state a result related to Zak transform proved by
Heil [23].

Theorem 2 (see [23]). Given a fixed g ∈ L2(R) and L ∈ Z+.
If L � M, then the system E(m/M)TkLg􏽮 􏽯 is a frame for l2(Z)

with frame bounds D1 and D2⇔0<M− 1D1 ≤ |Zg|2 ≤
M− 1D2 <∞a.e.

Now, we give a necessary condition for DTW frame in
terms of the discrete Zak transform.

Theorem 3. Let L � M. If ψ(m/M),kL: g ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW frame for l2(Z) with frame

bounds Dl and Du, then

0<
L

− 1
Dl

4
≤ |Zg|

2 ≤
L

− 1
Du

2
<∞ a.e. (32)

Proof. Since ψ(m/M),kL: g ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N is a

DTW frame for l2(Z) with frame bounds Dl andDu, using
*eorem 1, the system E(m/M)TkLg􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N is a

DTG frame for l2(Z) with frame bounds (Dl/4) and
(Du/2).

Hence, the result follows using *eorem 2.
Towards, the converse of *eorem 3, we have the fol-

lowing result. □

Theorem 4. Let L � M. If there exists Dl > 0 and Du > 0
such that the following inequality holds

0<
L

− 1
Dl

2
≤ |Zg|

2 ≤
L

− 1
Du

4
< ∞. a.e., (33)

then ψ(m/M),kL: g ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW frame

for l2(Z) with frame bounds Dl and Du.

Proof. It can be worked out using *eorem 1 and
*eorem 2. □

Remark 3. For L>M, the system ψ(m/M),kL: g ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N is not a frame for l2(Z).

5. Discrete Time Wilson Frame Operator

*e frame operator for a frame is constructed by the
composition of two important operators, namely, the
analysis operator and the synthesis operator. *e frame
operator is positive, bounded, invertible, and self-adjoint. It
ensures the existence of a canonical dual frame of a given
frame, i.e., if fn􏼈 􏼉 is a frame and S is the frame operator, then
S− 1fn􏼈 􏼉 is a frame called the canonical dual of the frame
fn􏼈 􏼉. It is known that the canonical tight frame leads to a
perfect reconstruction when used for both analysis and
synthesis. Keeping this in mind, we make an attempt to
construct the frame operator for the discrete time Wilson
frame. We begin with the following definition.

Definition 4. Let ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N

be a discrete time Bessel sequence for l2(Z). *en, DTWF
operator S: l2(Z)⟶ l2(Z) is defined as

Sf � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉ψ(m/M),kL, ∀f ∈ l

2
(Z).

(34)

In the following result, we construct the frame operator
for the discrete timeWilson frame with the help of the frame
operators of the two associated discrete time Gabor Bessel
sequences.

Theorem 5. For g0,g− 1 ∈ l2(Z), let E(m/M)TkL􏽮

g0}
M− 1
m�0,k ∈Z,L,M ∈N and E(m/M)TkLg− 1􏽮 􏽯

M− 1
m�0,k ∈Z,L,M ∈N be DTG

Bessel sequences with frame operators S1 and S2, respectively.
9en, the frame operator S for DTW system ψ(m/M),kL: g0,􏽮

g− 1 ∈ l2(Z)}M− 1
m�0,k ∈Z,L,M ∈N is given by S � 2(S1 + S2 + P1−

P2 + R), where

S1f � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg0〉E(m/M)TkLg0,

S2f � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg− 1〉E(m/M)TkLg− 1,

P1f � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg0〉E(− m/M)TkLg0,

P2f � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg− 1〉E(− m/M)TkLg− 1,

Rf � 􏽘
M− 1

m�0
〈f, E(m/M)g0〉 cos 2π

m

M
(·)􏼒 􏼓g0(·).

(35)

Proof. By hypothesis, we have S1f � 􏽐
k∈Z

􏽐M− 1
m�0 〈f, E(m/M)

TkLg0〉E(m/M)TkLg0 and S2f � 􏽐k∈Z 􏽐M− 1
m�0 〈f, E(m/M)TkL
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g− 1〉E(m/M)TkLg− 1. Since E(m/M)TkLg0􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N and

E(m/M)TkLg− 1􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N are DTG Bessel sequences,

we obtain

􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E− (m/M)TkLg〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(36)

Also, using observation (VI), we deduce that the systems
E(− m/M)TkLg0􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N and E(− m/M)TkL􏽮

g− 1}
M− 1
m�0,k ∈ Z,L,M ∈ N are DTG Bessel sequences and the system

ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N is a DTW Bessel

sequence with their frame operators denoted by K1, K2, and
S, respectively. *en, for all f ∈ l2(Z), we obtain

K1f � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E− (m/M)TkLg0〉E− (m/M)TkLg0,

K2f � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E− (m/M)TkLg− 1〉E− (m/M)TkLg− 1,

Sf � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉ψ(m/M),kL

� 􏽘
M− 1

m�0
〈f,

1
�
2

√ E(m/M) + E− (m/M)􏼐 􏼑g0〉
1
�
2

√ E(m/M) + E− (m/M)􏼐 􏼑g0

+ 􏽘
k∈2Z,k≠ 0

􏽘

M− 1

m�0
〈f, E(m/M)T(kL/2) + E− (m/M)T(kL/2)􏼐 􏼑g0〉 E(m/M)T(kL/2) + E− (m/M)T(kL/2)􏼐 􏼑g0

+ 􏽘
k∈2Z+1

􏽘

M− 1

m�0
〈f,

1
i

E(m+1/M)T((k+1)L/2) − E− (m+1/M)T((k+1)L/2)􏼐 􏼑g− 1〉
1
i

E(m+1/M)T((k+1)L/2) − E− (m+1/M)T((k+1)L/2)􏼐 􏼑g− 1

�
1
2

􏽘

M− 1

m�0
〈f, E(m/M)g0〉E(m/M)g0 +

1
2

􏽘

M− 1

m�0
〈f, E− (m/M)g0〉E(m/M)g0 +

1
2

􏽘

M− 1

m�0
〈f, E(m/M)g0〉E− (m/M)g0

+
1
2

􏽘

M− 1

m�0
〈f, E− (m/M)g0〉E− (m/M)g0 + 􏽘

k∈2Z,k≠ 0
􏽘

M− 1

m�0
〈f, E(m/M)T(kL/2)g0〉E(m/M)T(kL/2)g0

+ 􏽘
k∈2Z,k≠ 0

􏽘

M− 1

m�0
〈f, E− (m/M)T(kL/2)g0〉E(m/M)T(kL/2)g0 + 􏽘

k∈2Z,k≠ 0
􏽘

M− 1

m�0
〈f, E(m/M)T(kL/2)g0〉E− (m/M)T(kL/2)g0

+ 􏽘
k∈2Z,k≠ 0

􏽘

M− 1

m�0
〈f, E− (m/M)T(kL/2)g0〉E− (m/M)T(kL/2)g0 + 􏽘

k∈2Z+1
􏽘

M− 1

m�0
〈f, E(m+1/M)T((k+1)L/2)g− 1〉E(m+1/M)T((k+1)L/2)g− 1

− 􏽘
k∈2Z+1

􏽘

M− 1

m�0
〈f, E− (m+1/M)T((k+1)L/2)g− 1〉E(m+1/M)T((k+1)L/2)g− 1

− 􏽘
k∈2Z+1

􏽘

M− 1

m�0
〈f, E(m+1/M)T((k+1)L/2)g− 1〉E− (m+1/M)T((k+1)L/2)g− 1

+ 􏽘
k∈2Z+1

􏽘

M− 1

m�0
〈f, E− (m+1/M)T((k+1)L/2)g− 1〉E− (m+1/M)T((k+1)L/2)g− 1nn,

� S1f + S2f + K1f + K2f + P1f + T1f − P2f − T2f − R1f − R2f − R3f − R4f,

(37)
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where

P1f � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg0〉E− (m/M)TkLg0,

T1f � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E− (m/M)TkLg0〉E(m/M)TkLg0,

P2f � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg− 1〉E− (m/M)TkLg− 1,

T2f � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E− (m/M)TkLg− 1〉E(m/M)TkLg− 1,

R1f �
1
2

􏽘

M− 1

m�0
〈f, E(m/M)g0〉E(m/M)g0,

R2f �
1
2

􏽘

M− 1

m�0
〈f, E− (m/M)g0〉E(m/M)g0,

R3f �
1
2

􏽘

M− 1

m�0
〈f, E(m/M)g0〉E− (m/M)g0,

R4f �
1
2

􏽘

M− 1

m�0
〈f, E− (m/M)g0〉E− (m/M)g0.

(38)

Now, for all h ∈ l2(Z), we compute

〈T1f, h〉 � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(− m/M)TkLg0〉〈E(m/M)TkLg0, h〉

� 􏽘
k∈Z

􏽘

M− 1

m�0
􏽘
p∈Z

􏽘
q∈Z

f(p)g0(p − kL)g0(q − kL)h(q)exp2πi(m/M)(p+q)

� M 􏽘
k∈Z

􏽘
p,q∈Z,p+q∈MZ

f(p)g0(p − kL)g0(q − kL)h(q),

〈P1 f, h〉 � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f, E(m/M)TkLg0〉〈E(− m/M)TkLg0, h〉

� 􏽘
k∈Z

􏽘

M− 1

m�0
􏽘
p∈Z

􏽘
q∈Z

f(p)g0(p − kL)g0(q − kL)h(q)exp− 2πi(m/M)(p+q)

� M 􏽘
k∈Z

􏽘
p,q∈Z,p+q∈MZ

f(p)g0(p − kL)g0(q − kL)h(q).

(39)

*us, T1 f � P1f, for allf ∈ l2(Z). Similarly, it can be
proved that T2f � P2f, S1f � K1f, S2f � K2f,

R1f � R4f, andR2f � R3f, for allf ∈ l2(Z).
Hence, we conclude that S � 2(S1 + S2 + P1−

P2 + R). □

6. Dual Pair of Frames for Discrete Time
Wilson Systems

In this section, we study dual pair of frames and obtain a
sufficient condition for the existence of a dual pair of discrete

time Wilson systems. First, we state the definition of a dual
pair of frames discussed by Christensen [24, 25].

Definition 5 (see [25]). Let H be a Hilbert space and let
fi􏼈 􏼉i∈I, gi􏼈 􏼉i∈I, pj􏽮 􏽯

j∈J, and qi􏼈 􏼉j∈J be Bessel sequences. *en,

F � fi􏼈 􏼉i∈I∪ pj􏽮 􏽯
j∈J and G � gi􏼈 􏼉i∈I∪ qj􏽮 􏽯

j∈J are dual pair of
frames if

f � 􏽘
i∈I
〈f, fi〉gi + 􏽘

j∈J
〈f, pj〉qj, for allf ∈ H. (40)
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In the following result, we give a sufficient condition for
the existence of a dual pair of discrete time Wilson systems.

Theorem 6. Let L≤M and let ψ(m/M),kL: g0, g− 1 ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N and ξ(m/M),kL: w0, w− 1 ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N be two DTW Bessel sequences for l2(Z).

9en, there exist DTW Bessel sequences P(m/M),kL: p0,􏽮

p− 1 ∈ l2(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N and Q(m/M),kL: q0, q− 1 ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N such that P � ψ(m/M),kL􏽮 􏽯∪ P(m/M),kL􏽮 􏽯

and Q � ξ(m/M),kL􏽮 􏽯∪ Q(m/M),kL􏽮 􏽯 are dual pair of frames for
l2(Z).

Proof. Let T and U be the preframe operators for the DTW
Bessel sequences ψ(m/M),kL: g0, g− 1 ∈ l2(Z)􏽮 􏽯

M− 1
m�0,k ∈ Z,L,M ∈ N

and ξ(m/M),kL: w0, w− 1 ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈ Z,L,M ∈ N, respectively.

*en, T: l2(Z × ZM)⟶ l2(Z) and
U: l2(Z × ZM)⟶ l2(Z) are given by

T cm,k􏽮 􏽯􏼐 􏼑 � 􏽘
k∈Z

􏽘

M− 1

m�0
cm,kψ(m/M),kL,

U cm,k􏽮 􏽯􏼐 􏼑 � 􏽘
k∈Z

􏽘

M− 1

m�0
cm,kξ(m/M),kL,

(41)

where ZM � 0, 1, 2, . . . , M − 1{ }. *en,

UT
∗
f � 􏽘

k∈Z
􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉ξ(m/M),kL, for allf ∈ l

2
(Z).

(42)

Also, the operator Φ � I − UT∗ is bounded on l2(Z).
Furthermore,Φ∗ � I − TU∗. Let R � R(m/M),kL: r0, r− 1 ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N and S � S(m/M),kL: s0, s− 1 ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N be a pair of DTW dual frames for l2(Z).

*en, using Proposition 2.1 of [25], we compute

f � 􏽘
k∈Z

􏽘

M− 1

m�0
〈f,ψ(m/M),kL〉ξ(m/M),kL

+ 􏽘
k∈Z

􏽘

M− 1

m�0
〈f,Φ∗R(m/M),kL〉S(m/M),kL.

(43)

Also, using Lemma 6.3.2 of [24], we deduce that R �

ψ(m/M),kL􏽮 􏽯∪ Φ∗R(m/M),kL􏽮 􏽯 and S � ξ(m/M),kL􏽮 􏽯∪ S(m/M),kL􏽮 􏽯

form a dual pair of frames for l2(Z) if Φ∗R(m/M),kL􏽮 􏽯 is a
DTW Bessel sequence. Now, observe that Φ∗R(m/M),kL􏽮 􏽯 is a
DTW system given by Φ∗R(m/M),kL􏽮 􏽯 � R∗(m/M),kL􏽮 􏽯 �

R(m/M),kL:Φ∗r0,Φ∗r− 1 ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈Z,L,M ∈N. Since R �

R(m/M),kL: r0, r− 1 ∈ l2(Z)􏽮 􏽯
M− 1
m�0,k ∈Z,L,M ∈N is a DTW Bessel

sequence and Φ is a bounded operator, Φ∗R(m/M),kL􏽮 􏽯 is a
DTW Bessel sequence.

Finally, we prove a result related to compact support of
functions generating DTW Bessel sequences. □

Theorem 7. Let L≤M, and let ψ(m/M),kL: g0, g− 1 ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N and ξ(m/M),kL: w0, w− 1 ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N be two DTWBessel sequences for l2(Z). If

the functions g0, g− 1, w0, and w− 1 are compactly supported,
then the functions p0, p− 1, q0, and q− 1 are also compactly
supported.

Proof. Suppose that R � R(m/M),kL: r0, r− 1 ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N and S � S(m/M),kL: s0, s− 1 ∈ l2􏽮

(Z)}M− 1
m�0,k ∈ Z,L,M ∈ N be such that r0, r− 1, s0, and s− 1 be

compactly supported. *en, in view of the proof of *eorem
6, one can conclude that the functions p0, p− 1, q0, and q− 1 are
compactly supported if Φ∗ r0 and Φ∗ r− 1 are compactly
supported.

By assumption, g0, g− 1, w0, w− 1, r0, r− 1, s0, and s− 1 are all
compactly supported. *erefore, there exists an N ∈ N such
that

g0(n) � g− 1(n) � w0(n) � w− 1(n) � s0(n)

� s− 1(n) � r0(n) � r− 1(n) � 0, for all n ∉ [− N, N].

(44)

Since

Φ∗r0 � I − TU
∗

( 􏼁r0 � r0 − 􏽘
k∈Z

􏽘

M− 1

m�0
〈r0, ξ(m/M),kL〉ψ(m/M),kL,

(45)

Φ∗ r0 is compactly supported. Similarly,Φ∗ r− 1 is compactly
supported. □

7. Conclusion

Gabor frame for L2(R) (which is a Riesz basis) has bad lo-
calization properties in either time or frequency. Wilson [3, 4]
suggested a system of functions which are localized around the
positive and negative frequency of the same order. Based on the
Wilson systems,Wilson frames for L2(R) were introduced and
studied in [17–20]. In this article, discrete time Wilson frames
(DTWF) are defined and their relationship with discrete time
Gabor frames is investigated. Also, frame operator for the
DTWF has been constructed. Finally, keeping duality in mind,
dual pair of frames for the discrete time Wilson systems have
been studied.
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