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'is paper proposes a new control chart for the Birnbaum–Saunders distribution based on multiple dependent state repetitive
sampling (MDSRS). 'e proposed control chart is a generalization of the control charts based on single sampling, repetitive
sampling, and multiple dependent state sampling. Its sensitivity is evaluated in terms of the average run length (ARL) using both
exact formulae and simulations. A comprehensive comparison between the Birnbaum–Saunders distribution control chart based
on the MDSRS method and other existing competing methods is provided using a simulation study as well as a real-life il-
lustration.'e results reveal that the proposed chart outperforms the existing charts considered in this study by having better shift
detection ability.

1. Introduction

Attribute and variable control charts have been widely used
in manufacturing as well as in industrial and nonindustrial
service operations to monitor the flaws in the process in
order to improve the quality of the outputs and/or services.
'e variable chart is more informative but not simple in the
application as compared to the attribute one. In addition, the
variable control charts are employed to estimate the vari-
ation in a process where the measurement is a variable
measured on a continuous scale. Both control charts are
designed to detect shifts in the process. 'e operational
process of both control charts is the same, whereas their
corresponding charting statistics are technically different
based on their properties. In both cases, the decision on
whether the process is “in a state of statistical control” (or
simply in control) is taken by plotting the charting statistic
(i.e., sample point) on the chart. For the basic chart, if the

sample point plots within the upper control limit (UCL) and
lower control limit (UCL), the process is declared to be in
control; otherwise, the process is considered to be out of
control.

Control charts are a popular vital apparatus which are
used to maintain the process at the given target. Control
charts are expected to detect any slight change in the process
as soon as possible in order to help industrial engineers to fix
the problem before it is too late. A more detailed account on
the difference between attributes and variable control charts
can be found in the study by Montgomery [1] and Aslam
et al. [2]. Hussain et al. [3] developed a variable exponential
weighted moving average (EWMA) control chart using the
auxiliary-information-based feature. Zhou et al. [4] pro-
posed an optimal design of the attribute control chart in the
presence of autocorrelation for monitoring the process
mean. Quinino et al. [5] proposed an attribute chart to
simultaneously monitor the average and dispersion in the
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process. 'e applications of attribute and variable control
charts can be found in [6–12].

According to Aslam et al. [13], “Designing a variable
control chart for a non-normal distribution may be difficult
because the exact distribution of the associated statistic may
not be known. +erefore, designing of an attribute control
chart for some non-normal distribution based on a life test has
attracted the attention of researchers. Particularly, a time-
truncated life test is popularly employed to save the experi-
ment time.” Aslam and Jun [14] and Aslam et al. [15] de-
veloped a preassigned lifetime termination control chart
based on Weibull distribution and the Pareto distribution of
the 2nd kind, respectively. Birnbaum and Saunders [16]
proposed a distribution for the fatigue process called
Birnbaum–Saunders (BS) distribution. Lio and Park [17]
proposed the chart for BS distribution using the bootstrap
approach. Saulo et al. [18] proposed the chart for BS dis-
tribution using the single sampling. Marchant et al. [19] used
the BS distribution in a multivariate control chart. Bour-
guignon et al. [20] proposed a control chart for BS distri-
bution using themedian parameter. A variety of applications
for BS distribution are available in [18, 21–23].

Statistical process control (SPC) literature shows that
repetitive sampling (RS) and multiple dependent state
sampling (MDSS) methods are mostly used to construct
professional control charts. 'e control charts using these
sampling schemes are efficient in decreasing the value of the
out-of-control average run length (ARL). 'e ARL is the
number of rational samples to be plotted on the chart before
it signals for the first time. 'ese sampling schemes are
applied if an engineer is not able to take a decision on the
state of the production process based on the first sample.
Aslam et al. [13] proposed a control chart based on BS
distribution with RS. Shaheen et al. [24] developed the
lognormal distribution scheme using the RS method. Aslam
et al. [25] proposed a control chart when the quality
characteristics follow a gamma distribution using the MDSS
method. For more details, readers are referred to Jeyadurga
et al. [26] and Riaz et al. [27].

Aldosari et al. [28] introduced the attribute control chart
using the multiple dependent state repetitive sampling
(MDSRS) method. 'e MDSRS is introduced by combining
the RS and MDSS methods. 'e MDSRS-based scheme is
shown to be more efficient than RS-based and MDSS-based
schemes in terms of the ARL values in [28]. More recently,
Aldosari et al. [29] developed a control chart based on
MDSRS when the quality characteristics follow a multivariate
Poisson distribution. More details on the use of MDSRS-
based schemes are documented by Krishnan and Deepa [30].
Up to now, the MDSRS method has not yet been used to
improve the existing charts when the quality characteristics
follow a BS distribution. 'erefore, the present article deals
with the development of the control chart based on the BS
distribution using the MDSRS method.

'e rest of the manuscript is organized as follows: the
proposed control chart is proposed in Section 2. In addition,
the in-control and out-of-control ARL expressions are also
derived. In Section 3, the proposed control chart is com-
pared to the existing BS control chart based on RS andMDSS

methods in terms of the ARL values. In Section 4, a real-life
application of the proposed chart in the industry is provided,
and the concluding remarks are provided in Section 5.

2. The Proposed Control Chart

In this section, the design of the MDSRS BS control chart is
introduced in Section 2.1, with its operational procedure
shown in Section 2.2 and the closed-form expressions of the
in-control and out-of-control ARL in Sections 2.3 and 2.4,
respectively. Finally, the sensitivity analysis of the new
control chart is conducted in Section 2.5.

2.1. Design of the Proposed MDSRS BS Control Chart. Let T

denote the lifetime/failure time of items that follows a BS
distribution with an unknown shape parameter. Let b and σ
denote the shape and scale parameters of the BS distribution,
respectively, i.e., T∼BS(b, σ). 'us, the cumulative distri-
bution function (cdf) of the BS (bσ) distribution is given by

F(t; b, σ) � Φ
1
b
ξ

t

σ
  , t> 0, (1)

where Φ(·) is the cdf of the standard normal variable and
ξ(t) �

�
t

√
−

����
(1/t)


. 'e average lifetime, say μ, of a product

under the BS distribution is defined by

μ � E[T] � σ 1 +
1
2
b
2

 . (2)

Assuming that t0 � aμ0 be the termination time of the
lifetime experiment, where a is the termination constant and
μ0 is the prespecified average life. 'erefore, the target mean
can be written as

μ0 � σ0 1 +
1
2
b
2
0 . (3)

Hence, the probability of failure, say p0 under t0 � aμ0, is
expressed as

p0 � P T≤ t0
 σ0, b0  � Φ

1
b0
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1
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ξ a 1 +
b
2
0
2

    .

(4)

Let D denote the number of failed items before pre-
assigned test time, t0. One of the main steps in the design of
the proposed chart is the determination of the control limits.
'e MDSRS BS chart for the number of failed items has two
pairs of control limits named as outer and inner control
limits denoted as (LCL1, UCL1) and (LCL2, UCL2), re-
spectively, where LCL1 < LCL2 <UCL2 <UCL1. When the
parameters are known, the control limits are defined by

UCL1 � np0 + k1

����������

np0 1 − p0( 



, (5a)

LCL1 � max 0, np0 − k1

����������

np0 1 − p0( 



 , (5b)
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UCL2 � np0 + k2

����������

np0 1 − p0( 



, (6a)

LCL2 � np0 − k2

����������

np0 1 − p0( 



, (6b)

where k1 and k2 (with k1 > k2) are the control limit coeffi-
cients that are set such that the control chart yields a pre-
specified in-control ARL value such as 370 and 500. 'us,
the process is declared in control if LCL2 ≤D≤UCL2 and
out of control if D>UCL1 or D< LCL1.

When p0 is not known to industrial engineers, as it is
usually the case in real-life applications, the following
control limits based on the average number of failed items
can be used to estimate the control limits given in (5a), (5b),
(6a), and (6b):

UCL1 � D + k1

������������

D 1 −
D

n
  



, (7a)

LCL1 � max 0, D − k1

������������
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n
  



⎡⎢⎣ ⎤⎥⎦, (7b)

UCL2 � D + k2

������������

D 1 −
D

n
  



, (8a)

LCL2 � D − k2

������������

D 1 −
D

n
  



, (8b)

where D denotes the estimated average number of failed
items observed from the preliminary subgroups taken from
in-control process.'e charting statistic of the proposed chart
follows the binomial distribution with parameters of n and p0,
which is more efficient as compared to the one of the BS-
based attribute control chart. Different control charts for the
BS-based attribute chart are particular cases for the proposed

chart. 'e latter turns to a single sampling BS-based attribute
control chart as soon as k1 � k2. 'e proposed chart is a BS
attribute chart using the MDSS method when the probability
of repetition is zero; however, it becomes the BS attribute
control chart based on the repetitive method when i � 0.

2.2. Operational Procedure of the Proposed Control Chart.
'e step-by-step procedure for the design of the proposed
control chart using the MDSRS method is given as follows:

Step 1: choosing the sample size (n) and fixing the
preassigned test time t0.
Step 2: setting k1 and k2 to some nonzero positive
values and calculating the control limits using (7) and
(8). 'e process is considered as in control if
LCL2 ≤D≤UCL2. 'e process is to be out of control if
D>UCL1 or D< LCL1. Otherwise, go to step 3.
Step 3: the process can be stated as in control if i

proceeding subgroups statistic D satisfies
UCL2 ≤D≤UCL1 or LCL1 ≤D≤ LCL2. Otherwise,
repeat Step 1.

2.3. In-Control ARL of theMDSRS BS Control Chart. For the
proposed control chart, the probability under the MDSRS
method while the process is actually in control is given by

P
0
in,1 � P LCL2 ≤D≤UCL2 p0

 

+ P LCL1 ≤D≤ LCL2 p0
 

+ P UCL2 ≤D≤UCL1 p0
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i
.

(9)

Since the plotting statistic follows a binomial distribu-
tion with parameters of n and p0, then (9) can be written as
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(10)

If the researcher is in the state of uncertainty after
plotting the statistic, based on step 3, the process should be

repeated. Suppose, P0
rep represents the probability of the

repeated state. 'us, the latter is mathematically defined by

P
0
rep � P LCL1 <D< LCL2 p0

  + P UCL2 <D<UCL1 p0
   1 − P LCL2 ≤D≤UCL2 p0

  
i

 . (11)
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'e probability in (11) can be written as
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Finally, the in-control probability of the BS control chart
under the MDSRS method is given by

P
0
in �

P
0
in,1

1 − P
0
rep

. (13)

'erefore, the in-control ARL is then defined by

ARL0 �
1

1 − P
0
in

. (14)

2.4. ARL When Process Is Shifted for the MDSRS BS Control
Chart. Suppose that due to controllable factors, there is a
change (or shift) in the parameters. 'e new values are σ1 �

fσ0 and b1 � gb0 where f is the shift in the scale parameter

and g is the shift in the shape parameter. When f≠ 1 and/or
g≠ 1, the process is out of control. 'e probability that an
item fails by t0 is given by
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(15)

where the shift constants f and g are typically taken to be
positive between 0 and 1.

'e probability of declaring the process is out of control
for the MDSRS BS chart when in fact it is shifted (denoted as
P1
in,1) is given by

P
1
in,1 � P LCL2 ≤D≤UCL2 p1

  + P LCL1 ≤D≤ LCL2 p1
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Note that (16) can be written as
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When the process parameter has shifted, the repeated
state probability, i.e., P1

rep at p1, is as follows:

P
1
rep � P LCL1 <D< LCL2(  + P UCL2 <D<UCL1(   1 − P LCL2 ≤D≤UCL2  
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 . (18)

Note that (18) can be written as
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'erefore, the in-control probability of the proposed
chart under theMDSRSmethod, when the process is shifted,
is given by

P
1
in �

P
1
in,1

1 − P
1
rep

. (20)

Hence, the in-control ARL when the process has shifted
is defined by

ARL1 �
1

1 − P
1
in

. (21)

2.5.EmpiricalAnalysis. Tables 1–6 display the ARL profile of
the proposedMDSRS BS chart for different values of f and g

for a prespecified in-control ARL value of 370. 'e results in
Tables 1–6 can be summarized as follows:

(1) When the values of b and n are kept fixed, the values
of ARL increase as the values of i increase.

(2) For the proposed BS chart, the values of ARL in-
crease as the values of n increase.

(3) When the shift in the scale parameter f< 0.6, re-
gardless of the design parameter and the shift in the
shape parameter, the proposed chart gives a signal on
the first sample (i.e., ARL� 1).

(4) When b and i are kept fixed, for f � 1, when
0.1<g≤ 0.4, the sensitivity of the proposed chart is
higher for large sample sizes and lower for small
sample sizes. However, when 0.4≤g< 1, the sensi-
tivity of the chart is lower for large values of n and
higher for small values of n. For f � 0.9, the larger
the sample size, the more sensitive the proposed
chart. For f< 0.9, sensitivity is similar regardless of
the sample size.

(5) 'e sensitivity of the proposed chart decreases for
small values of b. Moreover, for small values of b, the
larger the sample, the more sensitive the chart.

'e four-step procedure below is used to construct
Tables 1–6.

Usually, control charts are developed in favor of the
industrial purpose so that in-control ARLmust be as close as
the particular prespecified ARL value, denoted as r0. 'e
proposed chart comprises seven parameters. Five parame-
ters of shift-invariant f, sample size n, shape and scale pa-
rameters (b, σ), and i (i≤ 5) are prefixed. But, the control
chart parameters k1 and k2 are obtained such that inf
ARL0 |ARL0 ≥ r0 . 'e best combination is the one in
which in-control ARL is very close to the particular ARL.
'e control chart coefficient values are calculated by means
of the following steps:

Step 1: assigning values of b, a, n, and i.

Step 2: determining the chart parameter k1 and k2
values which satisfy the condition inf
{ARL0 |ARL0 ≥ r0} and k1 > k2. 'en, 10,000 possible
values for control chart coefficients ranging from 2 to

3.5 for k1 and 2 to 3 for k2 are generated and the ARL
values are calculated. 'en, the arrangement of pa-
rameters is chosen, which satisfied the condition inf
ARL0 |ARL0 ≥ r0 .
Step 3: therefore, step 2 is repeated 10000 times, and the
most suitable mixture of parameters is selected such
that ARL0 is nearest to r0.
Step 4: after selecting the combination of parameters
while the process is in control, the out-of-control ARL
values are calculated for various shifts of f and g where
both range from 1 to 0.1.

3. Comparative Studies Using the ARLs

In this section, the BS control chart using the MDSRS method
is compared to the ones using the single sampling (by [18]), RS
(by [13]), and MDSS methods. Note that the BS control chart
based on the MDSS method does not exist yet in the SPM
literature but is added here for comparison purpose. 'e same
combinations of parameters are used to evaluate the perfor-
mance of the competing projected charts.

'e values of ARLs of the proposed chart with three
other competing charts when b � 0.31 and 1 and n � 20 are
given in Table 7. From Table 7, it is quite clear that the
proposed control chart is superior to Saulo et al. [18] and
Aslam et al. [13] control charts. 'e proposed control chart
cuts down the ARL values significantly as compared to the
competing control charts. For instance, if f � 1 and g � 0.9,
the ARL is 312, 351, 358, and 366 for the BS control chart
based on the MDSRS, RS, MDSS, and single sampling
methods, respectively. From this study, it can be observed
that for very small shifts in the parameters, the BS control
chart based on the MDSRS method is very sensitive to the
changes in the manufacturing process as compared to the
other methods. In Table 7, it is observed that the BS control
chart provides the smaller values of ARL at each different
combinations of f and g.

4. Application Examples

4.1. Simulation Study. In this section, the sensitivity of the
proposed control chart as well as those of the two BS control
charts based on RS and MDSS is evaluated based on sim-
ulated data. 'e following procedure is used in the
simulations:

(1) Assuming that the in-control process parameters of
BS distribution are given by b0 � 1 and σ0 � 1.5.

(2) Assuming that the shifted process as f � 0.9 and
g � 0.9, which means that σ1 � 0.9×1.5�1.35 and
b1 � 0.9.

(3) Generating the first 20 random subgroups from the
BS distribution each of size 30 (i.e., n� 30) with the
in-control process, and subsequently 10 random test
subgroups each of size 30 are generated from the
shifted process.

(4) Considering a� 0.9902 and computing the four
control limits of the proposed control chart.
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(5) 'e plots of the charting statistic (i.e., the number of
defectives in a subgroup of 30 items) for the MDSRS,
RS, and MDSS methods using the BS control charts
are displayed in Figures 1–3, respectively.

From Figures 1–3, the following is observed:

(1) Figure 1 shows that the BS control chart using the
MDSRSmethod detects the shift at the 14th subgroup

(2) In Figure 2, the BS control chart using the RSmethod
(see [13]) detects the shift at the 23rd subgroup

(3) In Figure 3, the BS control chart using the MDSS
method detects the out-of-control shift at the 26th
subgroup

'us, we conclude that the BS chart using the MDSRS
method is more powerful as compared to the existing charts.

Table 1: 'e values of ARLs when b � 0.31, n � 20, and i � 3.

f

k1 � 2.66049; k2 � 2.2704; a � 0.91459
g

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
ARL

1 370.21 312.20 279.31 195.65 108.97 94.11 76.59 52.29 25.68 1.11
0.9 10.21 8.80 7.35 5.89 4.47 3.17 2.09 1.34 1.02 1.00
0.8 1.64 1.41 1.23 1.11 1.03 1.00 1.00 1.00 1.00 1.00
0.7 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3: 'e values of ARLs when b � 0.31, n � 30, and i � 4.

f

k1 � 3.03226639; k2 � 1.6412647; a � 0.9131
g

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
ARLs

1 370.37 379.94 373.26 337.61 263.46 161.32 69.00 18.42 3.21 1.01
0.9 5.85 4.74 3.75 2.91 2.21 1.67 1.29 1.06 1.00 1.00
0.8 1.21 1.12 1.06 1.02 1.00 1.00 1.00 1.00 1.00 1.00
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: 'e values of ARLs when b � 0.31, n � 30, and i � 3.

f

k1 � 2.93654; k2 � 2.37526; a � 1.0025
g

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
ARL

1 370.45 340.86 290.14 222.18 148.65 83.91 37.74 12.19 2.50 1.00
0.9 15.62 10.22 6.35 3.75 2.15 1.32 1.03 1.00 1.00 1.00
0.8 1.80 1.38 1.14 1.02 1.00 1.00 1.00 1.00 1.00 1.00
0.7 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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4.2. Application of the Proposed Chart in Industry. 'e ap-
plication of the proposed control chart is illustrated based on
coupon data, see [13]. 'e scheming statistics to apply the
proposed control chart are displayed in Table 8. For this
data, it is identified to tag on the BS distribution with shape
parameter b � 0.31 and presume that a � 0.9939 and n� 20.
'e parameters of the BS chart using theMDSRSmethod are
given by k1 � 2.910 and k2 � 1.347 with n � 20 and p0 � 0.55,

while the control parameters for the RS method are given by
k1 � 2.9527 and k2 � 1.5404, and for the MDSS method, the
control parameters are given by k1 � 2.735 and k2 � 2.507.
Figures 4–6 present the BS control chart using the MDSRS
(proposed here), RS (by Aslam et al. [13]), and MDSS
methods, respectively. From Figures 4–6, it can be seen that
for the real data, the MDSRS-based control chart shows that
two points are beyond the lower control limit and several

Table 4: 'e values of ARLs when b � 0.31, n � 20, and i � 4.

f

k1 � 2.910; k2 � 1.347; a � 0.9939
g

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
ARL

1 371.38 347.20 309.23 256.52 190.77 120.18 59.03 20.07 4.29 1.09
0.9 21.74 17.01 12.74 9.06 6.06 3.81 2.30 1.43 1.04 1.00
0.8 1.97 1.65 1.40 1.22 1.08 1.02 1.00 1.00 1.00 1.00
0.7 1.07 1.03 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6: 'e values of ARLs when b � 1, n � 30, and i � 2.

f

k1 � 2.9624; k2 � 1.846159; a � 0.7798
g

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
ARL

1 370.46 346.15 314.70 214.12 115.27 40.91 12.45 2.38 1.02 1.00
0.9 173.59 116.23 62.67 36.10 12.86 3.91 1.51 1.02 1.00 1.00
0.8 36.47 15.98 12.99 5.76 2.41 1.26 1.02 1.00 1.00 1.00
0.7 8.93 5.23 2.68 1.51 1.10 1.01 1.00 1.00 1.00 1.00
0.6 2.41 1.55 1.17 1.03 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.15 1.04 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.4 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5: 'e values of ARLs when b � 1, n � 20, and i � 2.

f

k1 � 2.8520574; k2 � 0.6578287; a � 0.9752
g

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
ARL

1 370.92 352.14 245.72 132.68 120.46 87.67 73.33 29.93 23.87 1.00
0.9 152.87 141.26 110.91 83.76 40.24 25.69 19.65 8.23 1.34 1.00
0.8 56.17 45.06 28.34 12.87 6.73 5.34 3.58 2.23 1.02 1.00
0.7 16.45 8.29 4.87 2.01 1.00 1.00 1.00 1.00 1.00 1.00
0.6 3.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.4 1.14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 7: Comparison between the BS control chart using single sampling (SS), repetitive sampling (RS), multiple dependent state sampling
(MDSS), and multiple dependent state repetitive sampling (MDSRS) methods.

b � 0.31, n � 20 b � 1, n � 20
f g SS RS MDSS MDSRS SS RS MDSS MDSRS

1.0

1.0 370 370 370.32 370.21 370.09 370.06 370.17 370.92
0.9 366.77 351.96 358.54 312.20 368.01 367.51 367.62 352.14
0.8 361.46 314.95 323.43 279.31 366.53 365.51 365.45 245.72
0.7 353.96 257.12 289.78 195.65 352.79 333.81 345.32 132.68
0.6 342.94 184.15 210.54 108.97 341.43 272.38 296.34 120.46

0.9

1.0 38.85 24.84 30.45 10.21 284.98 241.33 245.76 152.87
0.9 29.83 20.72 26.43 8.80 267.63 191.90 198.56 141.26
0.8 21.82 16.59 19.65 7.37 246.30 139.88 140.86 110.91
0.7 15.02 12.57 14.36 5.89 220.07 92.33 110.31 83.76
0.6 9.58 8.80 9.34 4.47 188.09 53.16 92.92 40.24

0.8

1.0 4.11 1.71 3.52 1.65 103.64 79.35 80.34 56.17
0.9 3.06 1.41 2.76 1.21 85.66 54.05 65.89 45.06
0.8 2.26 1.20 1.98 1.13 67.85 33.80 50.34 28.34
0.7 1.68 1.08 1.32 1.07 50.78 18.90 30.53 12.87
0.6 1.30 1.02 1.07 1.03 35.18 9.14 22.43 6.73

0.7

1.0 1.34 1.01 1.03 1.00 33.91 22.16 30.78 16.45
0.9 1.18 1.0 1.02 1.00 25.83 13.68 18.56 8.29
0.8 1.07 1.0 1.00 1.00 18.75 7.76 11.34 4.87
0.7 1.02 1.0 1.00 1.00 12.82 4.05 7.52 2.01
0.6 1.0 1.0 1.00 1.00 8.14 2.07 4.32 1.23

0.6

1.0 1.03 1.0 1.00 1.00 11.62 5.80 8.12 3.67
0.9 1.0 1.0 1.00 1.00 8.51 3.54 6.87 1.00
0.8 1.0 1.0 1.00 1.00 6.00 2.13 4.21 1.00
0.7 1.0 1.0 1.00 1.00 4.07 1.40 2.54 1.00
0.6 1.0 1.0 1.00 1.00 2.67 1.10 1.32 1.00
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Figure 1: 'e Birnbaum–Saunders chart based on the MDSRS method for simulated data.
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Figure 2: 'e Birnbaum–Saunders chart based on the RS method for simulated data.
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points are within the repetitive areas. 'ese points clearly
indicate some issues in the coupon built-up process. From
another point of view, the RS-based control chart proposed
by Aslam et al., [13] indicates no point plotted beyond the
control limits. 'e MDSS-based control chart shows that
one point lies outside the lower control limit. From this
comparison, it is important to note that the proposed control

chart is reasonably suitable to employ for supervising of the
coupon production.

5. Concluding Remarks

'is paper proposed a new control chart based on the BS
distribution using the MDSRS method. 'e comparison of
the proposed control chart with three existing control charts
revealed its superiority. 'e comparative study and appli-
cation using real data showed that the proposed chart is
efficient in reducing the ARLs significantly as compared to
the competing control charts considered in this study. Based
on the findings, the proposed chart is recommended when
industrial engineers or any other operators are interested to
monitor the number of nonconforming items in the in-
dustry. 'e economic design of the proposed control chart
for univariate and multivariate processes can be considered
in the future.

Appendix

A. R Code

nl� 30; b� 0.31; ssize� 100; a� 0.9952; f� 1; g � 1;
im� 3
x� (a∗ (1 + b2/2))/f
fx� sqrt(x)-sqrt(1/x)
Pl0� pnorm((1/(g∗ b))∗ fx); Pl0
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Figure 5: 'e Birnbaum–Saunders chart based on the RS method
for the coupon data.
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Figure 4: 'e Birnbaum–Saunders chart based on the MDSRS
method for the coupon data.
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Figure 6: 'e Birnbaum–Saunders chart using the MDSS method
for the coupon data.
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Figure 3: 'e Birnbaum–Saunders chart based on the MDSS
method for simulated data.

Table 8: 'e plotting statistic for the coupon data.

Subgroup no. d Subgroup no. d

1 9 16 9
2 9 17 11
3 8 18 7
4 9 19 10
5 8 20 11
6 6 21 9
7 12 22 11
8 10 23 4
9 10 24 12
10 10 25 10
11 8 26 14
12 8 27 7
13 6 28 7
14 10 29 10
15 8 30 3
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kl1� 3.095; kl1
kl2� 0.8388; kl2
LCLl1� as.integer(nl∗ Pl0-kl1∗ sqrt(nl∗ Pl0∗ (1-Pl0)));
LCLl1
LCLl2� as.integer(nl∗ Pl0-kl2∗ sqrt(nl∗Pl0∗ (1-Pl0)));
LCLl2
UCLl1� as.integer(nl∗ Pl0+kl1∗ sqrt(nl∗ Pl0∗ (1-Pl0)));
UCLl1
UCLl2� as. integer(nl∗Pl0+kl2∗ sqrt(nl∗ Pl0∗ (1-Pl0)));
UCLl2
wLCLl2 < -which(LCLl2< -0)
LCLl2[wLCLl2]� 0; #print(cbind(LCLl1, UCLl1))
l< -length(LCLl2); Poutl1 < -c()
for(i in 1 : l){

if(LCLl2[i]� � 0){Poutl1[i] < -sum(dbinom(LCLl2
[i]:UCLl2[i], nl, Pl0, FALSE))}

else {Poutl1[i] < -sum(dbinom((LCLl2[i] + 1):UCLl2
[i], nl, Pl0, FALSE))}
}
Poutl1
wUCLl2 < -which(UCLl2< 0)
UCLl2[wUCLl2]� 0; #print(cbind(UCLl2, UCLl1))
l< -length(UCLl2); Poutl2 < -c()
for(i in 1 : l){

if(UCLl2[i]� � 0){Poutl2[i] < -sum(dbinom(UCLl2
[i]:UCLl1[i], nl, Pl0, FALSE))}

else {Poutl2[i] < -sum(dbinom((UCLl2[i] + 1):
UCLl1[i], nl, Pl0, FALSE))}
}
Poutl2
wLCLl1 < -which(LCLl1< 0)
LCLl1[wLCLl1]� 0; #print(cbind(LCLl1, LCLl2))
l< -length(LCLl1); Poutl3 < -c()
for(i in 1 : l){
if(LCLl1[i]� � 0){Poutl3[i] < -sum(dbinom(LCLl1[i]:
LCLl2[i], nl, Pl0, FALSE))}
else {Poutl3[i] < -sum(dbinom((LCLl1[i] + 1):LCLl2[i],
nl, Pl0, FALSE))}
}
Poutl3; Pout< -c()
Pout< -Poutl1 + (Poutl2 + Poutl3)∗ Poutl1im

Prep< -(Poutl2 + Poutl3)∗ (1-Poutl1im); Prep
Pin< -Pout/(1-Prep); Pin
ARL0<-1/(1-Pin); ARL0
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