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+is paper considers the fuzzy viscoelastic model with a nonlinear source utt + Lu + 
t

0 g(t − ζ)Δu(ζ)dζ − |u|cu − ηΔut � 0 in a
bounded field Ω. Under weak assumptions of the function g(t), with the aid of Mathematica software, the computational
technique is used to construct the auxiliary functionals and precise priori estimates. As time goes to infinity, we prove that the
solution is global and energy decays to zero in two different ways: the exponential form and the polynomial form.

1. Introduction

In this paper, we take the following fuzzy viscoelastic model
into account:

utt + Lu + 
t

0
g(t − ζ)Δu(ζ)dζ − |u|

c
u − ηΔut � 0, x ∈ Ω, t ∈ (0,∞),

u(x, t) � 0, (x, t) ∈ Γ ×(0,∞),

u(x, t)|t�0 � u0(x), ut(x, t)|t�0 � u1(x), x ∈ Ω,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

where the fuzzy number η ∈ (1, 1000), c> 0:

Lu(t) � − Δu(t) + c
2
u(t). (2)

In RN(N≥ 1), Ω is a domain which is well bounded.
Besides, the boundary of Ω is smooth perfectly and
expressed as Γ: � zΩ. Meanwhile, the memory kernel g (t)
is positive and some assumptions will be given in detail.

+is type of problems has been observed in many areas
of scientific and engineering fields. For example, time an-
alyticity for the viscoelastic equation is studied as follows [1]:

utt − Δu + 
t

0
g(t − ζ)Δu(ζ)dζ � |u|

c
u. (3)

S. Berrimi and S. A. Messaoudi applied weak conditions
on the memory kernel g. Meanwhile, considering the

condition that the energy is positive and relatively small,
they obtained the existence of global solutions.

Taking

utt − Δu + 
t

0
g(t − ζ)Δu(ζ)dζ + a(x)ut +|u|

c
u � 0, (4)

into account, they also obtained a decay rate exponentially in
[2]. M.M. Cavalcanti and H.P. Oquendo improved this latter
result in [3]. In their work, two situations, the internal
dissipation and the viscoelastic dissipation, are considered to
act on respective part separately. +e authors in [3] ex-
panded the internal dissipation to nonlinear cases as much
as possible. Simultaneously, the system is well stabilized
through the dissipation which is induced by the integral
term.

As we know, the viscoelastic terms attract many
mathematicians; for instance, the authors in [4] studied the
energy decay rate for the global solution of a quasilinear
viscoelastic model, and the authors in [5–9] considered time
analysis of solutions for some viscoelastic models. Moreover,
F. Y. Zhang et al. considered a nonlinear viscoelastic
equation in [10]:

utt + Lu + 
t

0
g(t − ζ)Δu(ζ)dζ � 0. (5)
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+e solution is perfectly stabilized through the dissi-
pation, which is induced by the viscoelastic term. +e
modified energy functional in [10] has been used to prove
the energy decay through two different ways: the exponential
form and the polynomial form. Additionally, the con-
struction of auxiliary functions is organized by the com-
putational technique of undetermined coefficients. Besides,
the authors in [11, 12] discussed the adaptive fuzzy control of
nonlinear systems, and the discussion of fuzzy coefficients
involved in these papers is quite interesting.

Inspired by these works, we consider (1) in this paper, the
two optimal decay rates, exponential decay and polynomial
decay, are easily and directly established through the ap-
plication of Mathematica software.+e specific arrangement
of this work is as follows: in Section 2, we present some
notations and necessary materials; in Section 3, in view of the
fuzzy number ƞ, we give the whole decay result, and our
choice of the “Lyapunov” functional shows the extensive
applicability and practical significance of the computational
technique.

2. Preliminaries

In this section, Lp(Ω) and H1
0(Ω) are understood and ap-

plied in their usual senses. We impose the following hy-
potheses and preliminaries on the memory kernel g (t). In
addition, the definition of energy function plays a significant
role to our main result:

H1: as a bounded C1− function, g(t): R+⟶ R+

satisfies

1 − 
∞

0
g(ζ)dζ � ℓ, (6)

where both g (0) and ℓ are positive.
H2: the existence of a positive constant ξ makes the
following formula hold:

g′(t)≤ − ξ · g
p
(t), t≥ 0, p ∈ 1,

3
2

 . (7)

Remark 1. From the assumption above, if p � 1, we have

g(t) ≤ ce
− ξt

. (8)

If 1<p< (3/2), we have

g(t)≤
1

g
1− p

(0) +(p − 1)ξt 
(1/p− 1)

�
Δ 1

d1t + d2 
(1/p− 1)

,

(9)

where d1 � (p − 1)ξ > 0 and d2 � g1− p(0).
Indeed, the condition p< (3/2) plays an important role

to ensure that


∞

0
g
2− p

(ζ)dζ <∞. (10)

Theorem 1. Assuming that (u0, u1) ∈ [H2(Ω)∩ H1
0(Ω)] ×

H1
0 (Ω), then u (t) can be found as a unique solution to model

(1) with

u ∈ L
∞
loc 0,∞; H

1
0(Ω)∩H

2
(Ω) ,

u′ ∈ L
∞
loc 0,∞; H

1
0(Ω) , u″ ∈ L

∞
loc 0,∞; L

2
(Ω) .

(11)

Simultaneously, we get

u ∈ C [0,∞); H
1
0(Ω) , u′ ∈ C

1
[0,∞); L

2
(Ω) . (12)

Taking the initial data, less regularity, and the priori
estimate into consideration, the theorem above guarantees
the existence of solutions for model (1) as in [7, 13]. In
addition, the Galerkin approximation method can be ap-
plied to accomplish the proof of the theorem above.

Our primary assignment is to find out the energy
function ε(t). Combining themultiplier method, the integral
subsection integration, and (H1, H2), the calculation is
provided:

0 � 
Ω

utt − Δu + c
2
u + 

t

0
g(t − ζ)Δu(ζ)dζ − |u|

c
u − ηΔut utdx

�
1
2
d
dt


Ω

ut



2dx + 

Ω
|∇u|

2dx + c
2

Ω

|u|
2dx  + 

t

0
g(t − ζ)

Ω
Δu(ζ)utdxdζ

− 
Ω

|u|
c
uutdx + η

Ω
∇ut



2dx �

1
2
d
dt


Ω

ut



2dx + 

Ω
|∇u|

2dx + c
2

Ω

|u|
2dx −

1
1 +(c/2)


Ω

|u|
c+2dx 

− 
t

0
g(t − ζ)

Ω
∇u(ζ)∇utdxdζ + η

Ω
∇ut



2dx,

(13)
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− 
t

0
g(t − ζ)

Ω
∇u(ζ)∇utdxdζ

� − 
Ω
∇ut 

t

0
g(t − ζ)∇u(ζ)dζdx

� − 
Ω
∇ut 

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζdx − 

Ω
∇ut∇u(t) 

t

0
g(t − ζ)dζdx

�
1
2
d
dt


Ω


t

0
g(t − ζ)|∇u(ζ) − ∇u(t)|

2dζdx 

−
1
2


Ω


t

0
g′(t − ζ)|∇u(ζ) − ∇u(t)|

2dζdx − 
Ω
∇ut∇u(t) 

t

0
g(t − ζ)dζdx

�
1
2
d
dt

g ∘ ∇u − 
t

0
g(ζ)dζ

Ω
|∇u(t)|

2dx  −
1
2

g′ ∘ ∇u(  +
g(t)

2

Ω

|∇u(t)|
2dx.

(14)

Now, (13) yields

1
2
d
dt


Ω

ut



2dx + 1 − 

t

0
g(ζ)dζ 

Ω
|∇u(t)|

2dx

+ c
2

Ω

|u|
2dx + g ∘ ∇u −

Ω|u(t)|
c+2dx

1 +(c/2)
⎞⎠

−
1
2

g′ ∘ ∇u(  +
g(t)

2

Ω

|∇u|
2dx + η

Ω
∇ut



2dx � 0.

(15)

Now, it is obvious that the energy of model (1) can be
given directly:

ε(t) �
1
2


Ω

ut



2dx +

1
2

1 − 
t

0
g(ζ)dζ 

Ω
|∇u(t)|

2dx

+
c
2

2

Ω

|u|
2dx +

1
2

g ∘ ∇u −
Ω|u(t)|

c+2dx

c + 2
,

(16)

where

g ∘f � 
Ω


t

0
g(t − ζ)|f(t) − f(ζ)|

2dζdx. (17)

+ereby, we can find

ε′(t) �
d
dt

ε(t)

�
1
2

g′ ∘ ∇u(  − 
Ω

|∇u|
2dx  − η

Ω
∇ut



2dx

≤
1
2

g′ ∘ ∇u(  − 
Ω

|∇u|
2dx 

≤
1
2

− ξ g
p ∘ ∇u(  − g(t)

Ω
|∇u|

2dx 

≤ 0,

(18)

which means ε(t) is decreasing.

3. Main Results

In this chapter, the main result of this work is put forward
directly and clearly. We introduce the following auxiliary
functionals firstly:

φ(t) � 
Ω

utudx + 
Ω

|∇u|
2dx,

χ(t) � 
Ω

u + αΔu − βut(  
t

0
g(t − ζ)(u(t) − u(ζ))dζdx,

(19)

where the coefficients α and β will be determined later.

Lemma 1. 3e existence of a positive constant C makes the
following conclusion:

|φ(t)|≤Cε(t), ∀t≥ 0. (20)

Proof. Recalling the inequalities of Cauchy and Poincaré,
the following estimates can be arrived:

|φ(t)|≤
Ω ut



2dx + Ω|u|

2dx

2
+ 
Ω

|∇u|
2dx

≤
Cp + 1

2

Ω

|∇u|
2dx +

1
2


Ω

ut



2dx,

(21)

where the symbol Cp > 0 satisfies ‖u‖2 ≤Cp‖∇u‖2 for all
u ∈ H1

0(Ω).
Here, it is necessary to indicate that the positive con-

stants C andCp later in this article represent different
meanings in different places.

From the representation of ε(t), it is naturally for us to
get

|φ(t)|≤Cε(t), ∀t≥ 0. (22)

+us, (20) follows. □

Lemma 2. For any t≥ 0, the following estimate holds:
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φ′(t)≤
Ω

ut



2dx +

1
4ε1

+ ε1 1 +
1
2ε2

 (1 − ℓ)2

+
C
2c+2
p

2
(2c + 4)E(0)

cℓ
 

c

− η⎞⎠
Ω

|∇u|
2dx

+
1
2

− c
2

 
Ω

|u|
2dx + ε1 1(

+ 2ε2 
t

0
g
2− p

(ζ)dζ g
p ∘ ∇u +

2 − η
2


Ω
∇ut



2dx,

(23)

where ε1 and ε2 are selected appropriately.

Proof. Deriving function φ(t) with respect to time, the
following calculation will be given clearly:

d
dt

φ(t) � 
Ω

ut



2dx + 

Ω
uttudx + 2

Ω
∇u∇utdx

� 
Ω

ut



2dx − 

Ω
|∇u|

2dx − c
2

Ω

|u|
2dx

+ 
Ω


t

0
g(t − ζ)∇u(t)∇u(ζ)dζdx

+ 
Ω

|u|
c
u
2dx +(2 − η)

Ω
∇u∇utdx.

(24)

Considering the fourth item of (23), we adopt the fol-
lowing estimate from [10] without proof:


Ω


t

0
g(t − ζ)∇u(t)∇u(ζ)dζdx

≤
1
4ε1

+ ε1 1 +
1
2ε2

 (1 − ℓ)2 
Ω

|∇u|
2dx + ε1 1 + 2ε2(  

t

0
g
2− p

(ζ)dζ g
p ∘ ∇u.

(25)

Taking the sixth item of (23) into account, we adopt the
following estimate from [1] as follows:


Ω

|u|
c
u
2dx � 

Ω
|u|

c+1
udx

≤
1
2


Ω

|u|
2(c+1)dx +

1
2


Ω

|u|
2dx

≤
C
2c+2
p

2
(2c + 4)E(0)

cℓ
 

c


Ω

|∇u|
2dx +

1
2


Ω

|u|
2dx.

(26)

For the last item of (23), we have

(2 − η)
Ω
∇u∇utdx≤ 1 −

η
2

  
Ω

|∇u|
2dx + 

Ω
∇ut



2dx .

(27)

+us, (21) follows. □

Lemma 3. For t≥ 0, the following estimate holds:

χ′(t)≤ βc
2ε6 + ε9 +(1 − ℓ)ε12 

Ω
|u|

2dx + ε3 + βε11 +
1

4ε12
− β (1 − ℓ) 

Ω
ut



2dx

+
Cp

4ε3
+
βη − α
4ε4

+
c
2β
4ε6

+ β ε7 +
1
4ε7

  +
β
4ε8

  
t

0
g
2− p

(ζ)dζ g
p ∘ ∇u

+ g(0)
Cp

4ε9
+

α
4ε10

+
βCp

4ε11
  − g′ ∘ ∇u(  + βε5 + βε7(1 − ℓ)2 + βε8C

2c+2
p

(2c + 4)E(0)

cℓ
 

c

+ αε10 + αε13(1 − ℓ) 
Ω

|∇u|
2dx

+ ε4(βη − α) +
α

4ε13
 

Ω
∇ut



2dx,

(28)
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where εi > 0, (5≤ i≤ 13), are selected appropriately. Proof. Deriving function χ(t) with respect to time, the
expression will be given distinctly:

d
dt

χ(t)

� 
Ω

ut + αΔut − βutt(  
t

0
g(t − ζ)(u(t) − u(ζ))dζdx

+ 
Ω

u + αΔu − βut(  
t

0
g′(t − ζ)(u(t) − u(ζ))dζdx + 

Ω
u + αΔu − βut(  

t

0
g(t − ζ)utdζdx

� 
Ω

ut + αΔut − β − Δu + c
2
u + 

t

0
g(t − ζ)Δu(ζ)dζ − |u|

c
u − ηΔut   

t

0
g(t − ζ)(u(t) − u(ζ))dζ dx

+ 
Ω

u + αΔu − βut(  
t

0
g′(t − ζ)(u(t) − u(ζ))dζdx + 

t

0
g(ζ)dζ 

Ω
u + αΔu − βut( utdx

� 
Ω

ut +(α − βη)Δut − βΔu + βc
2
u + β

t

0
g(t − ζ)Δu(ζ)dζ − β|u|

c
u  

t

0
g(t − ζ)(u(t) − u(ζ))dζdx 

+ 
Ω

u + αΔu − βut(  
t

0
g′(t − ζ)(u(t) − u(ζ))dζdx + 

t

0
g(ζ)dζ 

Ω
u + αΔu − βut( utdx

� 
Ω

ut 
t

0
g(t − ζ)(u(t) − u(ζ))dζ dx

+ 
Ω
∇ut(t)(βη − α) 

t

0
g(t − ζ)(∇u(t) − ∇u(ζ))dζdx

+ β
Ω
∇u 

t

0
g(t − ζ)(∇u(t) − ∇u(ζ))dζdx

+ βc
2

Ω

u 
t

0
g(t − ζ)(u(t) − u(ζ))dζdx

+ β 
t

0
g(t − ζ)Δu(ζ)dζ  

t

0
g(t − ζ)(u(t) − u(ζ))dζ dx

− β
Ω

|u|
1+c


t

0
g(t − ζ)(u(t) − u(ζ))dζdx

+ 
Ω

u + αΔu − βut(  
t

0
g′(t − ζ)(u(t) − u(ζ))dζdx + 

t

0
g(ζ)dζ 

Ω
uut + αutΔu − βu

2
t dx.

(29)
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For any α, β≥ 0, we will estimate every item of the right
hand of (29):


Ω

ut 
t

0
g(t − ζ)(u(t) − u(ζ))dζdx

≤ ε3
Ω

ut



2dx +

1
4ε3


Ω


t

0
g(t − ζ)(u(t) − u(ζ))dζ





2

dx

� ε3
Ω

ut



2dx +

1
4ε3


Ω


t

0
g
1− (p/2)

(t − ζ)g
(p/2)

(t − ζ)(u(t) − u(ζ))dζ




2

dx

≤ ε3
Ω

ut



2dx +

Cp

4ε3


t

0
g
2− p

(ζ)dζ  g
p ∘ ∇u( ,

(30)

(βη − α)
Ω
∇ut(t) 

t

0
g(t − ζ)(∇u(t) − ∇u(ζ))dζdx

≤ (βη − α) ε4
Ω
∇ut



2dx +

1
4ε4


Ω


t

0
g(t − ζ)|∇u(t) − ∇u(ζ)|dζ 

2

dx⎛⎝ ⎞⎠

≤ (βη − α)ε4
Ω
∇ut



2dx +

βη − α
4ε4


t

0
g
2− p

(ζ)dζ  g
p ∘ ∇u( ,

(31)

β
Ω
∇u 

t

0
g(t − ζ)(∇u(t) − ∇u(ζ))dζdx≤ βε5

Ω
|∇u|

2dx +
β
4ε5


t

0
g
2− p

(ζ)dζ  g
p ∘ ∇u( . (32)

Similar to the first term, considering the third item of
(29), similar estimate will be given:

βc
2

Ω

u 
t

0
g(t − ζ)(∇u(t) − ∇u(ζ))dζdx

≤ βc
2ε6
Ω

|u|
2dx +

βc
2

4ε6


t

0
g
2− p

(ζ)dζ  g
p ∘ ∇u.( 

(33)

Applying Young’s inequality properly, the following
estimates can be obtained from [10]:

β 
t

0
g(t − ζ)Δu(ζ)dζ  

t

0
g(t − ζ)(u(t) − u(ζ))dζ dx

� β 
t

0
g(t − ζ)∇u(ζ)dζ  

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ dx

≤ β(1 − ℓ)2ε7
Ω

|∇u|
2dx + β ε7 +

1
4ε7

  
t

0
g
2− p

(ζ)dζ  g
p ∘ ∇u( ,

(34)
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− β
Ω

|u|
c
u 

t

0
g(t − ζ)(u(t) − u(ζ))dζdx

≤ βε8
Ω

|u|
2c+2dx +

β
4ε8


Ω


t

0
g(t − ζ)|u(t) − u(ζ)dζ|

2dx

≤ βε8C
2c+2
p

(2c + 4)E(0)

cℓ
 

c


Ω

|∇u|
2dx +

β
4ε8


t

0
g
2− p

(ζ)dζ  g
p ∘ ∇u( ,

(35)


Ω

u 
t

0
g′(t − ζ)(u(t) − u(ζ))dζdx

≤ ε9
Ω

|u|
2dx +

g(0)Cp

4ε9

Ω


t

0
− g′(t − ζ)|∇u(t) − ∇u(ζ)|

2dζ dx

� ε9
Ω

|u|
2dx +

g(0)Cp

4ε9
− g′ ∘ ∇u( ,

(36)

α
Ω
Δu 

t

0
g′(t − ζ)(u(t) − u(ζ))dζdx

≤ αε10
Ω

|∇u|
2
dx +

αg(0)

4ε10

Ω


t

0
− g′(t − ζ)|∇u(t) − ∇u(ζ)|

2dζ dx

� αε10
Ω

|∇u|
2
dx +

αg(0)

4ε10
− g′ ∘ ∇u( .

(37)

Similarly, we have

− β
Ω

ut 
t

0
g′(t − ζ)(u(t) − u(ζ))dζdx

≤ βε11
Ω

ut



2dx +

βg(0)Cp

4ε11
− g′ ∘ ∇u( .

(38)

Furthermore,


t

0
g(ζ)dζ 

Ω
uut + αutΔu − βu

2
t dx

≤ 
t

0
g(ζ)dζ  ε12

Ω
|u|

2dx +
1

4ε12
− β 

Ω
ut


2dx


 + αε13

Ω
|∇u|

2dx +
α

4ε13

Ω
∇ut



2dx 

� (1 − ℓ) ε12
Ω

|u|
2dx +

1
4ε12

− β 
Ω

ut



2dx + αε13

Ω
|∇u|

2dx +
α

4ε13

Ω
∇ut



2dx .

(39)

Taking (29)–(39) and H2 into account, for all t≥ 0, we
get (28). □

Theorem 2. Let every pair (u0, u1) ∈ H1
0(Ω) × H1

0(Ω), H1
and H2 hold, and t0 ∈ (0,∞) For every t ∈ [t0,∞), there
must be some positive constants K1, K2, and k, which would
enable the solution of the model (1) to satisfy the following:

ε(t)≤
K1ε(0)

e
kt

, p � 1,

ε(t)≤
K2

(t + 1)
(1/2(p− 1))

, p> 1.

(40)

Proof. We start the proof by selecting an appropriate
auxiliary functional
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L(t) � Mε(t) + aφ(t) + bχ(t), (41)

where the positive constantsM, a, and bwill be chosen in the
sequel.

Applying Lemma 1 and the hypothesis
g′(t)≤ − ξ · gp(t), the equivalence between ε(t) and L(t) is
achieved. To this point, firstly, a simple calculation shows
that

|L(t) − Mε(t)|

� |aφ(t) + bχ(t)|

� a
Ω

utudx + a
Ω

|∇u|
2dx + b

Ω
u + αΔu − βut(  

t

0
g(t − ζ)(u(t) − u(ζ))dζdx





� a
Ω

utudx + a
Ω

|∇u|
2dx + b

Ω
u − βut(  

t

0
g(t − ζ)(u(t) − u(ζ))dζdx − bα

Ω
∇u 

t

0
g(t − ζ)(u(t) − u(ζ))dζ dx





≤
|a|

2

Ω

ut



2dx +

|a|Cp + 2a

2

Ω

|∇u|
2dx +

|b|

2

Ω

u − βut( 
2dx +

|bα|

2

Ω

|∇u|
2dx

+
|b|

2

Ω


t

0
g(t − ζ)(u(t) − u(ζ))dζ 

2

dx +
|bα|

2

Ω


t

0
g(t − ζ)(∇u(t) − ∇u(ζ))dζ 

2

dx

≤
|a|

2

Ω

ut



2dx +

|a|Cp + 2a +|bα|

2

Ω

|∇u|
2dx +

|b|

2

Ω

|u|
2dx

+
β2|b|

2

Ω

ut



2dx − β|b|

Ω
utudx +

|b|

2
1
2


Ω


t

0
g(t − ζ)dζdx +

1
2


Ω


t

0
g(t − ζ)|u(t) − u(ζ)|

2dζdx 

+
|bα|

2
1
2


Ω


t

0
g(t − ζ)dζdx +

1
2


Ω


t

0
g(t − ζ)|∇u(t) − ∇u(ζ)|

2dζdx 

≤
|a| +|b|β2

2

Ω

ut



2dx +

|a|Cp + 2a +|bα|

2

Ω

|∇u|
2dx +

|b|

2

Ω

|u|
2dx +

|bα| +|b|Cp

4
g ∘ ∇u

+
|b|(1 +|α|)(1 − ℓ)

4

Ω
dx

≤C1ε(t).

(42)

By (25), we get

|L(t) − Mε(t)| +
1

c + 2

Ω

|u|
c+2dx

≤
|a| +|b|β2

2

Ω

ut



2dx +

1
2

|a|Cp + 2a +|bα| + C
2c+2
p

(2c + 4)E(0)

cℓ
 

c

 
Ω

|∇u|
2dx

+
|b| + 1

2

Ω

|u|
2dx +

|bα| +|b|Cp

4
g ∘ ∇u +

|b|(1 +|α|)(1 − ℓ)
4


Ω
dx

≤C1 ε(t) +
1

c + 2

Ω

|u|
c+2dx .

(43)

8 Journal of Mathematics



+us, the equivalence between L(t) and ε(t) is complete. Secondly, differentiating (41) with respect to t, consid-
ering the assumption H2 and Lemmas 1 and 2, the estimate
of L′(t) is given naturally:

L′(t) � Mε′(t) + aφ′(t) + bχ′(t)

≤M −
ξ
2

g
p ∘ ∇u(  −

g(t)

2

Ω

|∇u|
2dx  + aφ′(t) + bχ′(t)

≤ c1
Ω

ut



2dx + c2

Ω
|∇u|

2dx + c3
Ω

|u|
2dx + c4g

p ∘ ∇u + c5
Ω
∇ut



2dx,

(44)

where the coefficients c1, c2, c3, and c4 are given as follows:

c1 � a + bε3 + bβε11 + b(1 − ℓ)
1

4ε12
− β ,

c2 � a
1
4ε1

+ ε1 1 +
1
2ε2

 (1 − ℓ)2 +
C
2c+2
p

2
(2c + 4)E(0)

cℓ
 

c

−
η
2

⎛⎝ ⎞⎠

+ b βε5 + βε7(1 − ℓ)2 + βε8C
2c+2
p

(2c + 4)E(0)

cℓ
 

c

+ αε10 + αε13(1 − ℓ)  −
Mg(t)

2
,

c3 � a
1
2

− c
2

  + b βc
2ε6 + ε9 + ε12(1 − ℓ) ,

c4 � aε1 1 + 2ε2(  + b
Cp

4ε3
+
βη − α
4ε4

+
c
2β
4ε6

+ β ε7 +
1
4ε7

  +
β
4ε8

   
t

0
g
2− p

(ζ)dζ 

+ bξ
g(0)Cp

4ε9
+

g(0)α
4ε10

+
βg(0)Cp

4ε11
  −

Mξ
2

,

c5 � a 1 −
η
2

  + b ε4(βη − α) +
α
ε13

 .

(45)

Next, it is time to carry out a discussion on the different
values of p. □

Case 1. p � 1
In such a case, choosing

c1 � c1, c2 � c2 + (h/c + 2)(C
2c+2
p /2)((2c + 4)E(0)/cℓ)c, c3 �

c3 + (h/2(c + 2)), c4 � c4, c5 � c5 � 0 and taking the positive
constant h as

h≤min − 2 c1,
− 2 c2

1 − 
t

0 g(ζ)dζ
,
− 2 c3

c
2 , − 2 c4

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (46)
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we find

L′(t) −
h

c + 2

Ω

|u|
c+2dx

≤ L′(t) +
h

c + 2

Ω

|u|
c+2dx

≤ L′(t) +
h

c + 2
C
2c+2
p

2
(2c + 4)E(0)

cℓ
 

c


Ω

|∇u|
2dx +

h

2(c + 2)

Ω

|u|
2dx

≤ c1
Ω

ut



2dx + c2

Ω
|∇u|

2dx + c3
Ω

|u|
2dx + c4g

p ∘ ∇u + c5
Ω
∇ut



2dx

≤ − h
1
2


Ω

ut



2dx +

1
2

1 − 
t

0
g(ζ)dζ 

Ω
|∇u|

2dx +
c
2

2

Ω

|u|
2dx +

1
2

g ∘ ∇u .

(47)

+erefore, (45) yields

L′(t)≤ − hε(t). (48)

Remark 2. Using the computational technique proposed in
[10] and selecting some appropriate numerical values by
means of the calculation software Mathematica, it is obvious
that ci < 0(1≤ i≤ 4).

Considering the interval of the fuzzy number η, taking

M � 10, η � 100, εi � 0.01, (1≤ i≤ 13),

α � 1, β � 2, a � 1, b � − 1, c � 2,
(49)

for example, with the aid of Mathematica, we easily
verify that

c1 � − 0.580816 − 23(1 − ℓ),

c2 � 13.4295 + 5g(t) + 0.611833ℓ

− 0.300916ℓ2 −
(4.72653 − 2h)E(0)

2
C
6
p

ℓ2
,

c3 � − 0.295408 + 0.530816c
2

+
h

8
+ 0.01ℓ,

c4 � − 5100.03 + 50c
2

 (1 − ℓ) − 5ξ − 100ξg(0).

(50)

Taking another example into consideration,

M � 10, η � 10, εi �
i

1000
, (1≤ i≤ 13),

α � 1, β � 2, a � 1, b � − 1, c � 2,

(51)

we find that

c1 � − 4.85169 − 18.8333(1 − ℓ),

c2 � − 1183.8 + 5g(0) + 2.464ℓ − 1.2255ℓ2

−
(38.8695 − 2h)E(0)

2
C
6
p

ℓ2
,

c3 � − 2.43435 + 4.81469c
2

+
h

8
+ 0.012ℓ,

c4 � − 1321.45 + 83.3333 c
2

+ Cp  (1 − ℓ) − 5ξ

− 25ξg(0) − 73.2323Cpg(0)ξ.

(52)

Additionally, we may retrieve more effective data of ci,
and the data provide an intuitive understanding in the
discussion of the auxiliary functionals.

Considering the equivalence between L(t) and ε(t), it is
easy for us to see that

M1ε(t)≤L(t)≤M2ε(t), (53)

where the coefficients M1 and M2 in (53) have many pos-
sibilities to be chosen.

+e following expression can be presented through the
combination of (48) and (53):

L′(t)≤ −
h

M1
ε(t). (54)

After a simple integral on the interval (t0, t), (54) leads to

L(t)≤ e
− h t− t0( )/M1( )L t0( . (55)

As a consequence, taking k � − (h/M1), (55) leads to

ε(t)≤
L t0( 

M1e
h/M1( ) t− t0( )

≤
K1ε(0)

e
kt

, (56)

where K1 is some appropriate positive constant.

10 Journal of Mathematics



Case 2. p> 1.
Using H1, H2, and (9), we easily verify that


∞

0
g
1− θ

(ζ)dζ ≤ 
+∞

0

1
d1t + d2

 

(1− θ/p− 1)

dζ <∞, 0≤ θ< 2 − p.

(57)

Moreover, considering the inequality in [6], for some
constant C,

g ∘ ∇u≤C E(0) 
∞

0
g
1− θ

(ζ)dζ 
(p− 1/(p− 1+θ))

g
p ∘ ∇u( 

(θ/p− 1+θ)
.

(58)

Taking θ � (1/2), c � 2p − 1, we find (cθ/p − 1 + θ) � 1.

+erefore, for some m> 1, we get

εm
(t)≤C 

Ω
|u|

2dx + 
Ω

|∇u|
2dx + 

Ω
ut



2dx + g

p ∘ ∇u ,

(59)

that is,

− 
Ω

|u|
2dx + 

Ω
|∇u|

2dx + 
Ω

ut



2dx + g

p ∘ ∇u ≤ −
1
C
εm

(t).

(60)

Taking (48) into account, we have

− εm
(t)≤ −

1
M

m
2

L
m

(t). (61)

For each t≥ t0, it is straight for us to get

L′(t)≤
h

c + 2

Ω

|u|
c+2dx + L′(t)

≤ −
h

2

Ω

ut



2dx + ℓ

Ω
|∇u|

2dx + c
2

Ω

|u|
2dx + g ∘ ∇u 

≤ −
h

C
εm

(t)

≤ −
h

CM
m
2

L
m

(t)

≤ − CL
m

(t).

(62)

As we mentioned before, the symbol C denotes different
constants in different places. Executing a simple integral on
the interval (t0, t), (62) yields

L(t)≤ Cat + Cb( 
− (1/m− 1)

� Cat + Cb( 
− (1/2(p− 1))

. (63)

Considering the equivalence between L(t) and ε(t), it is
apparently for us to get

ε(t)≤
K2

(t + 1)
(1/2(p− 1))

. (64)

+is completes the proof.

4. Conclusion

Under the assumptions on the relaxation function and the
interval of the fuzzy number η, applying the computational
technique, a lot of auxiliary functionals can be constructed
numerically. Two decay results, the exponential one and the
polynomial one, are derived for themodel (1) eventually.+e
result shows a new way for the decay rates, which is quite
different from other literatures.
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