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In this article, we introduce a novel curvelet transform by combining the merits of the well-known curvelet and linear canonical
transforms. ,e motivation towards the endeavour spurts from the fundamental question of whether it is possible to increase the
flexibility of the curvelet transform to optimize the concentration of the curvelet spectrum. By invoking the fundamental re-
lationship between the Fourier and linear canonical transforms, we formulate a novel family of curvelets, which is comparatively
flexible and enjoys certain extra degrees of freedom. ,e preliminary analysis encompasses the study of fundamental properties
including the formulation of reconstruction formula and Rayleigh’s energy theorem. Subsequently, we develop the Heisenberg-
type uncertainty principle for the novel curvelet transform. Nevertheless, to extend the scope of the present study, we introduce
the semidiscrete and discrete analogues of the novel curvelet transform. Finally, we present an example demonstrating the
construction of novel curvelet waveforms in a lucid manner.

1. Introduction

,e wavelet transform is a multiscale integral transform,
which serves as one of the corner stones of nonstationary
signal processing. It can be used in time-frequency analysis,
wherein the scale and frequency are inverse to each other.
,ewavelet transform decomposes a signal into components
determined by the translations and dilations of a single
function known as the mother wavelet. By applying these
local decomposition filters, the wavelet transform has proved
to be of substantial importance in capturing the local
characteristics of nonstationary signals and has paved its way
to a number of fields including signal and image processing,
sampling theory, geophysics, astrophysics, and quantum
mechanics [1–4]. However, the efficiency of the wavelet
transform fades away in the realm of higher-dimensional
signal processing due to the fact that the wavelet transform
employs isotropic scalings in dimensions n≥ 2. Such iso-
tropic scalings are incompetent to capture the edges and
corners in higher-dimensional signals appearing due to the
spatial occlusion between different objects; for instance, in
medical imaging curves separate bones and different kinds of
soft tissue. ,erefore, the key problem in multidimensional

signal analysis is to extract and characterize the relevant and
directional information regarding the occurrence of curves
and boundaries in signals. As a result, some off-shoots of the
wavelet transform, such as the Stockwell transform [5, 6],
ridgelet transform [7], curvelet transform [8, 9], contourlet
transform [10], and the shearlet transform [11], have been
introduced to address these shortcomings of the wavelet
transform.

,e curvelet transform aims to deal with certain inter-
esting phenomena occurring along curved edges in higher-
dimensional signals. Unlike the wavelet transform, the
curvelet transform provides time-frequency localization
with a reasonable directionality and anisotropy by using
angled polar wedges or angled trapezoid windows in fre-
quency domain. ,e intrinsic multiscale and anisotropic
nature of curvelet waveforms leads to optimally sparse
representations of objects which display curve-punctuated
smoothness, that is, smoothness except for discontinuity
along a general curve with bounded curvature. Another
remarkable property of curvelets is that they elegantly model
the geometry of wave propagation; curvelets may be viewed
as coherent waveforms with enough frequency localization
to behave like waves but, at the same time, with sufficient
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spatial localization to behave like particles [12]. For more
about curvelets and their applications, we refer to the
monographs in [12–19]. Keeping in view the merits of the
curvelet transform, in the present study, we aim to answer
the fundamental question of whether it is possible to in-
crease the flexibility of the curvelet transform to optimize the
concentration of the curvelet spectrum. ,e answer to this
question is affirmative and lies in intertwining the curvelet
transform with the well-known linear canonical transform,
an integral transform known for its flexibility and higher
degrees of freedom in modelling physical phenomenon [20].

,e highlights of the article are given as follows:

(i) We introduce the notion of novel curvelet trans-
form by combining the merits of the curvelet and
linear canonical transforms

(ii) We study the fundamental properties of the pro-
posed transform including the reconstruction and
Rayleigh’s energy formulae

(iii) We formulate a Heisenberg-type uncertainty
principle associated with the novel curvelet
transform

(iv) To extend the scope of the study, we introduce both
the semidiscrete and discrete analogues of the novel
curvelet transform

(v) Finally, we present an example regarding the con-
struction of novel curvelets

,e rest of the article is structured as follows: In Section
2, we recapitulate the linear canonical transform and the
ordinary curvelet transform. In Section 3, we present the
formal aspects of the study, which are continued to Section 4,
and Section 5 is devoted to illustrating the construction of
novel curvelets. Finally, in Section 6, we extract a conclusion
and provide an impetus to the future research work in the
realm of novel curvelet transform.

2. Linear Canonical and Curvelet Transforms

In this section, we shall present a gentle overview of the
linear canonical and curvelet transforms, which facilitates
the formulation of the proposed novel curvelet transform.

2.1. Two-Dimensional Linear Canonical Transform. ,e or-
igin of the theory of linear canonical transforms dates back
to early 1970s with the independent seminal works of Collins
[21] in paraxial optics and Moshinsky and Quesne [22] in
quantum mechanics to study the conservation of infor-
mation and uncertainty under linear maps of phase space. It
was only in 1990s that both these independent works began
to be referred to jointly in the open literature. ,e linear
canonical transform (LCT) encompasses several well-known
signal processing transforms as special cases including the

Fourier transform, the fractional Fourier transform, the
Fresnel transform, and even simple multiplication by qua-
dratic phase factors [20]. As of now, the theory of linear
canonical transforms has expanded into an independent and
broad field of research with numerous applications to optics,
mathematical physics, and signal and image processing. For
more about LCTand its applications, the reader is referred to
the monographs in [20–27].

Below, we shall present the formal definition of the two-
dimensional LCT [25]. For notational convenience, we shall

write a 2 × 2 matrix M �
A B

C D
􏼠 􏼡 as M � (A, B: C, D).

Definition 1. For any f ∈ L2(R2), the two-dimensional LCT
with respect to a real, unimodular matrix M � (A, B: C, D)

is denoted by LM[f] and is defined as

LM[f](ξ) �

􏽚
R2

f(t)KM(t, ξ)dt, B≠ 0,

��
D

√
exp

iC D|ξ|
2

2
􏼨 􏼩f(Dξ), B � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

whereKM(t, ξ), with t � (t1, t2)
T and ξ � (ξ1, ξ2)

T, denotes
the kernel of the two-dimensional LCT and is given by

KM(t, ξ) �
1

2πB
exp

i A|t|2 − 2tTξ + D|ξ|
2

􏼐 􏼑

2B

⎧⎨

⎩

⎫⎬

⎭, B≠ 0.

(2)

It is pertinent to mention that, for the case B � 0, the
two-dimensional LCT (1) corresponds to a chirp multipli-
cation operation. Moreover, the case B< 0 is also of no
particular interest to us. As such, in the rest of the article, we
shall focus our attention on the case B> 0. We also note that
the phase-space transform (1) is lossless if and only if the
matrix M is unimodular; that is, A D − BC � 1. ,e in-
version formula corresponding to the two-dimensional LCT
(1) is given by

f(t) � L
− 1
M LM[f](ξ)( 􏼁(t) � 􏽚

R2
LM[f](ξ)KM(t, ξ)dξ.

(3)

Also, Parseval’s formula associated with (1) reads

〈f, g〉2 �〈LM[f],LM[g]〉2, ∀f, g ∈ L
2
R

2
􏼐 􏼑. (4)

In the remaining part of this subsection, we shall present
an analogue of the two-dimensional LCT using the polar
coordinates. We emphasize that the polar LCT plays a key
role in the development of the novel curvelet transform. For
ξ1 � r cosω, ξ2 � r sinω and t1 � ρ cos η, t2 � ρ sin η, where
r, ρ≥ 0 and ω, η ∈ [0, 2π), the polar LCT is given by
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LM[f](r,ω) �
1

2πB
􏽚
2π

0
􏽚
∞

0
f(ρ, η)exp

i Aρ2 + Dr
2

− 2ρr cos(η − ω)􏼐 􏼑

2B

⎧⎨

⎩

⎫⎬

⎭ρ d ρ dη. (5)

Also, the inversion formula corresponding to (5) is given
by

f(ρ, η) �
1

2πB
􏽚
2π

0
􏽚
∞

0
LM[f](r,ω)exp −

i Aρ2 + Dr
2

− 2ρr cos(η − ω)􏼐 􏼑

2B

⎧⎨

⎩

⎫⎬

⎭rdrdω. (6)

Remarks 1. ,e aforementioned definitions (1) and (5)
embody several well-known integral transforms, some of
which are listed below:

(i) As a special case when M � (0, 1: − 1, 0), the LCT
definitions (1) and (5) reduce to their respective
counterparts of the Fourier transform

(ii) Plugging the matrix M � (cos α, sinα: − sin α,

cosα), α≠ nπ, n ∈ Z (1) and (5), yields the respective
counterparts of the fractional Fourier transform

(iii) For the matrix M � (1, B: 0, 1), B≠ 0, the LCT
definitions (1) and (5) boil down to their analogues
for the Fresnel transform

2.2. Ordinary Curvelet Transform. In this subsection, we
shall recapitulate the mathematical frameworks of the
classical curvelet transform, which serve as preliminaries for
the development of the novel curvelet transform.

Consider the frequency plane R2 and let (r,ω),
r≥ 0,ω ∈ [0, 2π), denote the polar coordinates of an arbi-
trary point ξ ∈ R2. We choose a pair of window functions
W: (0,∞)⟶ (0,∞), called “radial window,” and
V: (− ∞,∞)⟶ (0,∞), called “angular window,” satis-
fying the following admissibility conditions:

􏽚
∞

0
|W(r)|

2dr

r
� 1, supp(W)⊆

1
2
, 2􏼒 􏼓, (7)

(2π)
2

􏽚
1

− 1
|V(ω)|

2dω � 1, supp(V)⊆ [− 1, 1]. (8)

,ewindow functions (7) and (8) are used to construct a
family of complex-valued waveforms adopted to scale a> 0
location b ∈ R2 and orientation θ ∈ [0, 2π) or (− π, π)

according to convenience. For a fixed scale a ∈ (0, a0) where
a0 < π2 the basic curvelet Ψa: R2⟶ C is defined via the
polar Fourier transform as

F Ψa􏼂 􏼃(r,ω) � a
3/4

W(ar)V
ω
��
a

√􏼠 􏼡, (9)

whereF denotes the well-known Fourier transform defined
by

F[f](ξ) �
1
2π

􏽚
R2

f(t)e− itTξdt, (10)

which can be expressed via the polar coordinates as

F[f](r,ω) �
1
2π

􏽚
2π

0
􏽚
∞

0
f(ρ, η)exp − iρr cos(η − ω)􏼈 􏼉ρdρdη.

(11)
Consequently, the family of analyzing waveforms
Ψa,b,θ(t) called curvelets is generated by translation and
rotation of the basic element Ψa(t); that is,

Ψa,b,θ(t) � Ψa Rθ(t − b)( 􏼁, t ∈ R2
, (12)

where Rθ �
cos θ − sin θ
sin θ cos θ􏼠 􏼡 denotes the 2 × 2 rotation

matrix affecting the planar rotation by θ radians. From (9),
we note that the support of the basic element Ψa in the
frequency domain is a polar wedge governed by the re-
spective supports of the radial and angular windows. ,e
scaling in the radial and angular windows is parabolic in
nature with ω being the “thin” variable. ,e coarsest scale a0
is fixed once for all and must obey a0 < π2. ,ese elements
become increasingly needle-like at fine scales. Formally, we
have the following definition of the ordinary curvelet
transform [8, 9].

Definition 2. Given a function f ∈ L2(R2), the ordinary
curvelet transform is defined as

ΓΨf􏼂 􏼃(a, b, θ) � 􏽚
R2

f(t)Ψa,b,θ(t)dt, (13)

where a< a0, b ∈ R2, θ ∈ [0, 2π), and Ψa,b,θ(t) is given by
(12).

3. Novel Curvelet Transform

In this section, our aim is to introduce the notion of the
novel curvelet transform and formulate the associated re-
construction formula and Rayleigh’s energy theorem. Sub-
sequently, we shall also study the support and oscillation
properties of the proposed novel curvelet transform.

For a fixed scale a ∈ (0, a0) where a0 < π2, consider a
basic waveform Ψa: R2⟶ C defined via the polar LCT (5)
as

LM Ψa􏼂 􏼃(r,ω) � a
3/4

W(ar)V
ω
��
a

√􏼠 􏼡, (14)
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where the radial and angular windows W(r) and V(ω)

satisfy the slightly modified set of admissibility conditions
given by

B
2

􏽚
∞

0
|W(r)|

2 dr

r
� 1, supp(W)⊆

1
2
, 2􏼒 􏼓, (15)

(2π)
2

􏽚
1

− 1
|V(ω)|

2dω � 1, supp(V)⊆ [− 1, 1]. (16)

Applying the inverse LCT (6) on both sides of the ex-
pression (14), we have

Ψa(ρ, η) �
a
3/4

2πB
􏽚
2π

0
􏽚
∞

0
W(ar)V

ω
��
a

√􏼠 􏼡exp −
i Aρ2 + Dr

2
− 2ρr cos(η − ω)􏼐 􏼑

2B

⎧⎨

⎩

⎫⎬

⎭rdrdω,

�
a
3/4

2πB
exp −

iAρ2

2B
􏼨 􏼩 􏽚

2π

0
􏽚
∞

0
exp −

i Dr
2

2B
􏼨 􏼩W(ar)V

ω
��
a

√􏼠 􏼡 × exp
iρr cos(η − ω)

B
􏼨 􏼩rdrdω.

(17)

and upon simplifying (17), we obtain a novel basic waveform
ΨM

a (t) via the following expression:

F ΨM
a􏽨 􏽩(r,ω) � a

3/4
B exp −

i DB r
2

2
􏼨 􏼩W(aBr)V

ω
��
a

√􏼠 􏼡,

(18)

where ΨM
a (t) � exp iA|t|2/2B}Ψa(t)􏽮 .

Hence, the family of novel curvelets ΨM
a,b,θ(t) (or linear

canonical curvelets) is obtained by translating the basic
waveform ΨM

a (t) by b ∈ R2 and then inducing a rotation of
θ ∈ [0, 2π) radians; that is,

ΨM
a,b,θ(t) � ΨM

a Rθ(t − b)( 􏼁, t ∈ R2
. (19)

Having formulated a new family of curvelets ΨM
a,b,θ(t) by

invoking the two-dimensional linear canonical transform
(1), we are ready to introduce the formal definition of the
novel curvelet transform.

Definition 3. Given a real, unimodular matrix
M � (A, B: C, D) with B> 0, for any square-integrable
function f on R2, the novel curvelet transform is defined as

ΓMΨ f􏽨 􏽩(a, b, θ) �〈f,ΨM
a,b,θ〉2 � 􏽚

R2
f(t)ΨM

a,b,θ(t)dt, (20)

where a< a0, b ∈ R2, θ ∈ [0, 2π), and ΨM
a,b,θ(t) is given by

(19).
Definition 3 embodies many new integral transforms

that are yet to be reported in the open literature. Below we
point out some important deductions.

(i) Choosing the matrix M � (cos α, sin α: −

sin α, cos α), α≠ nπ, n ∈ Z, Definition 3 yields a new
curvelet transform combining the merits of the
ordinary curvelet transform and the well-known
fractional Fourier transform

(ii) For M � (1, B: 0, 1), B≠ 0, Definition 3 inter-
twines the advantages of the ordinary curvelet

and the well-known Fresnel transforms into a
new curvelet transform

(iii) Nevertheless, when M � (0, 1: − 1, 0), Definition 3
boils down to the ordinary curvelet transform (13)

Next, we shall present a proposition that interlinks the
Fourier transform of the novel curvelet transform
[ΓMΨ f](a, b, θ) as a function of the translation variable b,
with the respective Fourier transforms of the given function
f and the basic waveform ΨM

a .

Proposition 1. Given any f ∈ L2(R2), the novel curvelet
transform [ΓM

Ψ f](a, b, θ) defined in (20) can be expressed as

F ΓMΨ f􏽨 􏽩(a, b, θ)􏼐 􏼑(ξ) � 2πF[f](ξ)F ΨM
a􏽨 􏽩 Rθξ( 􏼁.

(21)

Proof. To accomplish the motive, we shall firstly compute
the Fourier transform of the novel curvelet family ΨM

a,b,θ(t)
defined in (19). We proceed as

F ΨM
a,b,θ􏽨 􏽩(ξ) �

1
2π

􏽚
R2
ΨM

a,b,θ(t)e
− itTξdt

�
1
2π

􏽚
R2
ΨM

a Rθ(t − b)( 􏼁e
− itTξdt

�
1
2π

􏽚
R2
ΨM

a (z)e
− i b+R− θz( )

Tξdz

�
e

− ibTξ

2π
􏽚
R2
ΨM

a (z)e
− izT Rθξ( )dz

� e
− ibTξ

F ΨM
a􏽨 􏽩 Rθξ( 􏼁.

(22)

Let (σ, μ), (ρ, η), and (r,ω) denote the polar coordinates
of the variables b, t, and ξ, respectively. ,en, we can rewrite
(22) as follows:
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F ΨM
a,b,θ􏽨 􏽩(r,ω) � e

− irσ cos(μ− ω)
F ΨM

a􏽨 􏽩(r,ω − θ)

� e
− irσ cos(μ− ω)

a
3/4

B exp −
i DB r

2

2
􏼨 􏼩

W(aBr)V
ω − θ

��
a

√􏼠 􏼡.

(23)

Finally, using Definition 3 and invoking the well-known
Parseval’s formula in polar coordinates, we have

ΓMΨ f􏽨 􏽩(a, b, θ) �〈f,ΨM
a,b,θ〉2

� a
3/4

B 􏽚
2π

0
􏽚
∞

0
e

irσ cos(μ− ω)
F[f](r,ω)exp

i DB r
2

2
􏼨 􏼩W(aBr)V

ω − θ
��
a

√􏼠 􏼡rdrdω,

(24)

Next, translating the expression (24) into cartesian co-
ordinates yields the following:

ΓMΨ f􏽨 􏽩(a, b, θ) � 􏽚
R2
F[f](ξ)F ΨM

a􏽨 􏽩 Rθξ( 􏼁e
ibTξdξ

� 2πF− 1
F[f](ξ)F ΨM

a􏽨 􏽩 Rθξ( 􏼁􏼒 􏼓(b),

(25)

Applying the Fourier transform on both sides of (25), we
obtain the desired result

F ΓMΨ f􏽨 􏽩(a, b, θ)􏼐 􏼑(ξ) � 2πF[f](ξ)F ΨM
a􏽨 􏽩 Rθξ( 􏼁.

(26)

,is completes the proof of Proposition 1.
Next, we shall analyze the support and oscillatory be-

haviour of the novel curvelet transform by invoking
Proposition 1. We shall demonstrate that the proposed
transform enjoys a certain degree of freedom as the radial
window is comparatively more flexible with the degree of
flexibility governed by the matrix parameter B. As such, the
proposed transform is capable of optimizing the concen-
tration of the curvelet spectrum.

Let (σ, μ ), σ ≥ 0, μ ∈ [0, 2π) be the polar coordinates of
the translation variable b. ,en, as a consequence of
Proposition 1, we can express the novel curvelet transform
(20) as

ΓMΨ f􏽨 􏽩(a, b, θ) � ΓMΨ f􏽨 􏽩(a, (σ, μ), θ)

� a
3/4

B 􏽚
2π

0
􏽚
∞

0
e

irσ cos(μ− ω)
F[f](r,ω)exp

i DB r
2

2
􏼨 􏼩W(aBr)V

ω − θ
��
a

√􏼠 􏼡rdrdω.

(27)

From (23), we observe that the support of the analyzing
elements ΨM

a,b,θ in the frequency domain is completely de-
termined by the support of the radial window W(aBr) and
the angular window V(ω − θ/

��
a

√
). Moreover, we observe

that

supp(W(aBr))⊆
1

2aB
,
2

aB
􏼒 􏼓and supp V

ω − θ
��
a

√􏼠 􏼡􏼠 􏼡

⊆ [−
��
a

√
+ θ,

��
a

√
+ θ].

(28)

Hence, we conclude that the support of the analyzing
elements ΨM

a,b,θ in the frequency domain depends upon the
choice of the matrix parameter B and is completely inde-
pendent of the translation parameter b. ,erefore, an ap-
propriate matrix parameter B can be chosen to optimize the
concentration of novel curvelet spectrum.

On the other hand, since the curvelet functions ΨM
a,b,θ

have compact support in the frequency domain, the well-
known Heisenberg’s uncertainty principle implies that the

novel curvelet functions cannot have compact support in the
time domain. We note that, for large |t|, the decay of the
novel curvelet functions ΨM

a,b,θ(t) depends upon the
smoothness of the corresponding Fourier transform; the
smoother F[ΨM

a,b,θ](ξ) is, the faster the decay is. Moreover,
by definition,F[ΨM

a ](ξ) is supported away from the vertical
axis ξ1 � 0 but near the horizontal axis ξ2 � 0. Hence, for
smaller values of a< a0, the basic waveform ΨM

a (t) is less
oscillatory in t2 direction and more oscillatory in t1
direction.

Below, we shall present the formal reconstruction for-
mula associated with the novel curvelet transform. We note
that the said reconstruction formula is valid for high-fre-
quency signals. ,e analogue for low-frequency signals will
be dealt with afterwards. To facilitate the narrative, we need
the following definition. □

Definition 4. Given any two functions f, g ∈ L2(R2), the
convolution operation is denoted by ⊛ and is defined as
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(f⊛g)(z) � 􏽚
R2

f(t)g(z − t)dt, (29)

Moreover, the convolution theorem corresponding to (29)
reads

F[f⊛g](ξ) � 2πF[f](ξ)F[g](ξ). (30)

Theorem 1 (Reconstruction Formula). For any f ∈ L2(R2)

satisfying F[f](ξ) � 0,∀|ξ|< 2/a0B, a0 < π2, the recon-
struction formula for the novel curvelet transform
[ΓM
Ψ f](a, b, θ) defined in (20) is given by

f(t) � 􏽚
2π

0
􏽚
R2

􏽚
a0

0
[ ΓMΨ f ](a, b, θ)ΨM

a,b,θ(t)
dadbdθ

a
3 , (31)

where the radial and angular windows W and V satisfy their
respective admissibility conditions (15) and (16).

Proof. We note that the novel curvelet transform
[ΓMΨ f](a, b, θ) defined in (20) can be expressed via the
convolution ⊛ as follows:

ΓMΨ f􏽨 􏽩(a, b, θ) � 􏽚
R2

f(t)ΨM
a Rθ(t − b)( 􏼁dt

� 􏽚
R2

f(t)ΨM
a,0,θ(− (b − t))dt

� f⊛ 􏽥ΨM

a,0,θ􏼒 􏼓(b), 􏽥ΨM
(t) � ΨM

(− t).

(32)

Next, we define a function

F
M
a,θ(t) � 􏽚

R2
ΓMΨ f􏽨 􏽩(a, b, θ)ΨM

a,b,θ(t)db, (33)

Invoking (32), we can express (33) as follows:

F
M
a,θ(t) � f⊛ 􏽥ΨM

a,0,θ􏼒 􏼓(b)⊛ΨM
a,0,θ(b)􏼒 􏼓(t). (34)

Applying the convolution theorem (30), we can compute
the Fourier transform of the function Fa,θ(t) as

F F
M
a,θ􏽨 􏽩(ξ) � 2πF f⊛ 􏽥ΨM

a,0,θ􏼒 􏼓􏼔 􏼕(ξ)F ΨM
a,0,θ􏽨 􏽩(ξ)

� (2π)
2
F[f](ξ) F ΨM

a,0,θ􏽨 􏽩(ξ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
.

(35)

Consequently, we have

􏽚
a0

0
􏽚
2π

0
F F

M
a,θ􏽨 􏽩(ξ)

dθ da

a
3 � (2π)

2
F[f](ξ) 􏽚

a0

0
􏽚
2π

0
F ΨM

a,0,θ􏽨 􏽩(ξ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2dθ da

a
3 . (36)

Next, we shall evaluate the integral on the right-hand
side of (36). To do so, we shall use the polar coordinates of ξ
and invoke the admissibility conditions (15) and (16). For
r≥ 2/a0B, a0 < π2, we have

(2π)
2

􏽚
a0

0
􏽚
2π

0
F ΨM

a,0,θ􏽨 􏽩(r,ω)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2dθda

a
3

� (2πB)
2

􏽚
a0

0
􏽚
2π

0
|W(aBr)|

2
V

ω − θ
��
a

√􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2dθ da

a
3/2

� B
2

􏽚
a0

0
|W(aBr)|

2
(2π)

2
􏽚
2π

0
V

ω − θ
��
a

√􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dθ
⎧⎨

⎩

⎫⎬

⎭
da

a
3/2

� B
2

􏽚
a0

0
|W(aBr)|

2da

a

� B
2

􏽚
a0Br

0
W(r)′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dr′

r′
� 1.

(37)

Implementing (37) in (36), we obtain

F[f](ξ) � 􏽚
a0

0
􏽚
2π

0
F F

M
a,θ􏽨 􏽩(ξ)

dθda

a
3 . (38)

,at is,

f(t) � 􏽚
2π

0
􏽚
R2

􏽚
a0

0
ΓMΨ f􏽨 􏽩(a, b, θ)ΨM

a,b,θ(t)
dadbdθ

a
3 . (39)

,is completes the proof of ,eorem 1. □

Theorem 2 (Rayleigh’s Energy Formula). For any
f ∈ L2(R2) satisfying F[f](ξ) � 0,∀|ξ|< 2/a0B, a0 < π2,
we have

ΓMΨ f􏽨 􏽩(a, b, θ)
�����

�����
2

2
� ‖f‖

2
2. (40)

,at is, the total energy of the signal is preserved from
the natural domain L2(R2) to transformed domain
L2( (0, a0 ) × R2 × [0, 2π) ), where a0 < π2.

Proof. Invoking the well-known Parseval’s formula and
using (30), we have
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ΓMΨ f􏽨 􏽩(a, b, θ)
�����

�����
2

2
� 􏽚

2π

0
􏽚
R2

􏽚
a0

0
ΓMΨ f􏽨 􏽩(a, b, θ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 dadbdθ

a
3

� 􏽚
2π

0
􏽚
R2

􏽚
a0

0
f⊛ 􏽥ΨM

a,0,θ􏼒 􏼓(b)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2dadbdθ
a
3

� 􏽚
2π

0
􏽚
R2

􏽚
a0

0
F f⊛ 􏽥ΨM

a,0,θ􏼒 􏼓􏼔 􏼕(ξ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2dadξdθ
a
3

� (2π)
2

􏽚
2π

0
􏽚
R2

􏽚
a0

0
|F[f](ξ)|

2
F ΨM

a,0,θ􏽨 􏽩(ξ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2dadξdθ

a
3

� 􏽚
R2

|F[f](ξ)|
2

(2π)
2

􏽚
a0

0
􏽚
2π

0
F ΨM

a,0,θ􏽨 􏽩(ξ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 dθda

a
3􏼨 􏼩dξ

� 􏽚
R2

|F[f](ξ)|
2dξ � ‖f‖

2
2,

(41)

which evidently completes the proof. □

Remark 2. From (40), we infer that the novel curvelet
transform defined in (20) is an isometry from the space of
signals L2(R2) to the space of transforms
L2( (0, a0 ) × R2 × [0, 2π) ), where a0 < π2.

We note that the reconstruction formula (31) is con-
cerned for those signals f ∈ L2(R2) satisfying
F[f](ξ) � 0,∀|ξ|< 2/a0B, a0 < π2. In order to have a
complete reconstruction formula, we need to take care of the
other frequency components as well. To facilitate the nar-
rative, we consider an arbitrary square integrable function f

on R2 and define

T1f( 􏼁(t) � 􏽚
2π

0
􏽚
R2

􏽚
a0

0
ΓMΨ f􏽨 􏽩(a, b, θ)ΨM

a,b,θ(t)
dadbdθ

a
3

� 􏽚
2π

0
􏽚

a0

0
f⊛ 􏽥ΨM

a,0,θ􏼒 􏼓(b)⊛ΨM
a,0,θ(b)􏼒 􏼓(t)

dadθ
a
3 ,

(42)

T0f( 􏼁(t) � f(t) − T1f( 􏼁(t). (43)

Here, we note that

F T1f( 􏼁􏼂 􏼃(ξ) � (2π)
2

􏽚
2π

0
􏽚

a0

0
F[f](ξ) F ΨM

a,0,θ􏽨 􏽩(ξ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2dadθ

a
3

� B
2
F[f](ξ) 􏽚

a0B|ξ|

0
|W(a)|

2da

a

� (2π)
2
F[f](ξ) F ΩM

􏽨 􏽩(ξ)􏼐 􏼑
2
,

(44)

where (F[ΩM](ξ))2 � B2/(2π)2 􏽒
a0B|ξ|

0 |W(a)|2da/a.

Furthermore, using additivity of the Fourier transform,
we observe that

F T0f( 􏼁􏼂 􏼃(ξ) � F[f](ξ) − F T1f( 􏼁􏼂 􏼃(ξ)

� F[f](ξ) 1 − (2π)
2
F ΩM

􏽨 􏽩(ξ)􏼐 􏼑
2

􏼒 􏼓

� (2π)
2
F[f](ξ)

1
(2π)

2 − F ΩM
􏽨 􏽩(ξ)􏼐 􏼑

2
􏼠 􏼡

� (2π)
2
F[f](ξ) F ΦM

􏽨 􏽩(ξ)􏼐 􏼑
2
,

(45)

where (F[ΦM](ξ))2 � 1/(2π)2 − (F[ΩM](ξ))2.
Also, thanks to the convolution theorem (30), we infer

from (44) and (45) that

T0f( 􏼁(t) � f⊛ΦM ⊛ΦM
􏼐 􏼑(t),

T1f( 􏼁(t) � f⊛ΩM ⊛ΩM
􏼐 􏼑(t).

(46)

Moreover, we note that

(2π)
2

F ΩM
􏽨 􏽩(ξ)􏼐 􏼑

2
+ F ΦM

􏽨 􏽩(ξ)􏼐 􏼑
2

􏼔 􏼕 � 1. (47)

Also,

F ΦM
􏽨 􏽩(ξ) � 0, |ξ|>

2
a0B

,

F ΦM
􏽨 􏽩(ξ) �

1
2π

, |ξ|<
1

2a0B
.

(48)

Finally, we define the father waveletΦM
b (t) � ΦM(t − b),

so that
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T0f( 􏼁(t) � 􏽚
R2
〈f,ΦM

b 〉2Φ
M
b (t)db. (49)

Consequently, (43) implies that

f(t) � 􏽚
R2
〈f,ΦM

b 〉2Φ
M
b (t)db

+ 􏽚
2π

0
􏽚
R2

􏽚
a0

0
ΓMΨ f􏽨 􏽩(a, b, θ)ΨM

a,b,θ(t)
dadbdθ

a
3 .

(50)

,erefore, we conclude that the complete reconstruction
formula for the novel curvelet transform (20) is composed of
both curvelet waveforms and isotropic father wavelets. ,e
above discussion can be summarized into the following
theorem:

Theorem 3 (Complete Reconstruction Formula). For any
f ∈ L2(R2), the reproducing formula for the novel curvelet
transform [ΓM

Ψ f](a, b, θ) defined in [20] is given by

f(t) � 􏽚
R2
〈f,ΦM

b 〉2Φ
M
b (t)db

+ 􏽚
2π

0
􏽚
R2

􏽚
a0

0
[ ΓMΨ f ](a, b, θ)ΨM

a,b,θ(t)
dadbdθ

a
3 ,

(51)

where the radial and angular windows W and V satisfy their
respective admissibility conditions (15) and (16).

,e classical Heisenberg’s uncertainty principle in har-
monic analysis gives information about the spread of a signal
and its Fourier transform by asserting that a signal cannot be
sharply localized in both the time and frequency domains [29].
,at is, if we limit the behaviour of one, we lose control over the
other.,e essence of the uncertainty principle is that it provides
a lower bound for optimal resolution of a signal in both the time
and frequency domains.,is classical uncertainty inequality has
been extended in different settings and, as of now, many an-
alogues have appeared in the literature [28–31]. In analogy to
the uncertainty principles governing the simultaneous locali-
zation of a functionf and its Fourier transform, a different class
of uncertainty principles comparing the localization of f with
the localization of its Gabor or wavelet transform were studied
by Wilczok [28]. Motivated by this fact, we shall also obtain an
uncertainty inequality comparing the localization of the Fourier
transform of a functionf with the corresponding novel curvelet
transform [ΓMΨ f](a, b, θ), regarded as a function of the
translation variable b.

Theorem 4 (Heisenberg-Type Uncertainty Principle). If
[ΓM
Ψ f](a, b, θ) is the novel curvelet transform of any non-

trivial function f ∈ L2(R2), satisfying F[f](ξ) � 0,∀|ξ|<
2/a0B, a0 < π2, the following uncertainty inequality holds:

􏽚
2π

0
􏽚
R2

􏽚
a0

0
|b|

2 ΓMΨ f􏽨 􏽩(a, b, θ)|
2dadbdθ

a3 |􏼨 􏼩

1/2

· 􏽚
R2

|ξ|
2
|F[f](ξ)|

2dξ􏼚 􏼛
1/2
≥
1
2

‖f‖
2
2.

(52)

Proof. ,e classical Heisenberg-Pauli-Weyl inequality is
given by [29]

􏽚
R2

|t|2|f(t)|2dt􏼚 􏼛
1/2

􏽚
R2
ξ2|F[f](ξ)|

2dξ􏼚 􏼛
1/2

≥
1
2

􏽚
R2

|f(t)|2dt􏼚 􏼛.

(53)

Identifying [ΓMΨ f](a, b, θ) as a function of the transla-
tion variable b and invoking (53), we have

􏽚
R2

|b|
2 ΓMΨ f􏽨 􏽩(a, b, θ)|

2db􏼚 􏼛
1/2

· 􏽚
R2

|ξ|
2
F ΓMΨ f􏽨 􏽩(a, b, θ)􏼐 􏼑(ξ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dξ􏼚 􏼛

1/2

≥
1
2

􏽚
R2
ΓMΨ f􏽨 􏽩(a, b, θ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
db􏼚 􏼛.

(54)

Integrating (54) with respect to the measure dadθ/a3, we
obtain

􏽚
2π

0
􏽚

a0

0
􏽚
R2

|b|
2 ΓMΨ f􏽨 􏽩(a, b, θ)|

2db􏼚 􏼛
1/2

· 􏽚
R2

|ξ|
2
F ΓMΨ f􏽨 􏽩(a, b, θ)􏼐 􏼑(ξ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dξ􏼚 􏼛

1/2dadθ
a
3

≥
1
2

􏽚
2π

0
􏽚

a0

0
􏽚
R2
ΓMΨ f􏽨 􏽩(a, b, θ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 dbdadθ

a
3􏼨 􏼩.

(55)

As a consequence of the Cauchy-Schwartz’s inequality,
Fubini’s theorem, and (40), the above inequality can be
expressed as

􏽚
2π

0
􏽚
R2

􏽚
a0

0
|b|

2 ΓMΨ f􏽨 􏽩(a, b, θ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2dadbdθ

a3􏼨 􏼩

1/2

× 􏽚
2π

0
􏽚
R2

􏽚
a0

0
|ξ|

2
F ΓMΨ f􏽨 􏽩(a, b, θ)􏼐 􏼑(ξ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2dadξdθ

a3􏼨 􏼩

1/2

≥
1
2

‖f‖
2
2.

(56)

Invoking (21) and noting that f ∈ L2(R2) satisfies
F[f](ξ) � 0,∀r< 2/a0B, a0 < π2, we have
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􏽚
2π

0
􏽚
R2

􏽚
a0

0
|ξ|

2
F ΓMΨ f􏽨 􏽩(a, b, θ)􏼐 􏼑(ξ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2dadξdθ

a
3

� (2π)
2

􏽚
2π

0
􏽚
R2

􏽚
a0

0
|ξ|

2
|F[f](ξ)|

2
F ΨM

a􏽨 􏽩 Rθξ( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2dadξdθ

a
3

� (2π)
2
􏽚
R2

|ξ|
2
|F[f](ξ)|

2
􏽚
2π

0
􏽚

a0

0
F ΨM

a􏽨 􏽩 Rθξ( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 dadθ

a
3􏼨 􏼩dξ

� 􏽚
R2

|ξ|
2
|F[f](ξ)|

2
B
2

􏽚
a0

0
|W(aBr)|

2 da

a
􏼨 􏼩dξ

� 􏽚
R2

|ξ|
2
|F[f](ξ)|

2
B
2

􏽚
a0Br

0
W r′( 􏼁|

2 dr′

r′
􏼨 􏼩dξ

� 􏽚
R2

|ξ|
2
|F[f](ξ)|

2dξ.

(57)

Plugging (57) in (56), we obtain the desired Heisenberg-
type uncertainty inequality as

􏽚
2π

0
􏽚
R2

􏽚
a0

0
|b|

2 ΓMΨ f􏽨 􏽩(a, b, θ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2dadbdθ

a3􏼨 􏼩

1/2

· 􏽚
R2

|ξ|
2
|F[f](ξ)|

2dξ􏼚 􏼛
1/2
≥
1
2

‖f‖
2
2.

(58)

,is completes the proof of ,eorem 4. □

4. Novel Semidiscrete and Discrete
Curvelet Transforms

In this section, our main aim is to study both the semi-
discrete and discrete analogues of the proposed novel cur-
velet transform defined in [20]. In the beginning of the
section, we formulate the definition of the novel semidiscrete
curvelet transform, wherein the spatial variable b is con-
tinuous, whereas the scalings and orientations vary over a
discrete grid. In the sequel, we obtain a reconstruction
formula associated with the novel semidiscrete curvelet
transform. Towards the culmination, we introduce the
notion of the novel discrete curvelet transform by extending
the aforementioned discretization to the spatial variable b.

4.1. Novel Semidiscrete Curvelet Transform. To formulate the
semidiscrete analogue of the proposed transform (20), we
shall discretize the scaling parameter a and the rotation
parameter θ in the following manner:

(i) For λ> 1, we choose the jth scale as aj � λ− j, j≥ 0,
andj ∈ Z.

(ii) For a fixed L0 ∈ Z, we sample the rotation parameter
θ into L0 equispaced pieces as

θℓ �
2πℓ
L0

, where ℓ ∈ ZL0
� 0, 1, 2, . . . , L0 − 1􏼈 􏼉.

(59)

To prevent the expansion of the angular part as the radial
parameter moves away from origin, it is desirable to make

the spacing between the consecutive angles scale-dependent.
As such, we choose L0 � λ⌊j/2⌋, where 􏼄j/2􏼅 denotes the
integer part of 􏼄j/2􏼅. Consequently, the scale-dependent
angular discretization is given below:

θℓj
�

2πℓ
λ⌊j/2⌋

, where ℓ ∈ Zλ⌊j/2⌋ � 0, 1, 2, . . . , λ⌊j/2⌋
− 1􏽮 􏽯.

(60)

Now, for a given unimodular matrix M � (A, B: C, D),
with B> 0, the radial and angular windows W and V are
chosen to satisfy the discrete admissibility conditions:

B
2

􏽘

∞

j�− ∞
W λj

r􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� 1, λ> 1, r> 0, (61)

(2π)
2

􏽘

∞

ℓ �− ∞
|V(y − ℓ)|2 � 1, y ∈ R. (62)

Having discretized the scale and angular parameters, we
define a semidiscrete family of linear canonical curvelets as

ΨM
j,b,ℓ(t) � ΨM

j Rθℓj
(t − b)􏼒 􏼓, t ∈ R2

, (63)

where the novel basic waveform ΨM
j (t) is defined in the

polar coordinate setting as

F ΨM
j􏽨 􏽩(r,ω) ≔ λ− 3j/4

B exp −
i DB r

2

2
􏼨 􏼩W

Br

λj
􏼠 􏼡V

ω
θ1j

⎛⎝ ⎞⎠

� λ− 3j/4
B exp −

i DB r
2

2
􏼨 􏼩W

Br

λj
􏼠 􏼡V

λ⌊j/2⌋ω
2π

􏼠 􏼡,

(64)

with ΨM
j (t) � exp iA|t|2/2B}Ψj(t)􏽮 .

With the semidiscrete family of novel curvelets ΨM
j,b,ℓ(t)

at hand, we have the following definition.

Definition 5. Given a real, unimodular matrix
M � (A, B: C, D), with B> 0, the novel semidiscrete cur-
velet transform corresponding to any f ∈ L2(R2) is defined
as

ΓMΨ f􏽨 􏽩(j, b, ℓ) �〈f,ΨM
j,b,ℓ〉2 � 􏽚

R2
f(t)ΨM

j,b,ℓ(t)dt, (65)

where the novel semidiscrete familyΨM
j,b,ℓ(t) is given by (63).

We now intend to establish a reconstruction formula
associated with the novel semidiscrete curvelet transform
defined in (65).

Theorem 5 (Reconstruction Formula). For any f ∈ L2(R2)

satisfying F[f](ξ) � 0,∀|ξ|< 2/a0B, a0 < π2, we have

f(t) � 􏽘
j≥ 0

􏽘

λj/2− 1

ℓ�0
􏽚
R2
ΓMΨ f􏽨 􏽩(j, b, ℓ)ΨM

j,b,ℓ(t)
db

λ− 3j/2, (66)
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where the radial and angular windows W and V satisfy their
respective admissibility conditions (61) and (62).

Proof. For λ> 1, we define the function

F
M
j,ℓ(t) � 􏽚

R2
ΓMΨ f􏽨 􏽩(j, b, ℓ)ΨM

j,b,ℓ(t)
db

λ− 3j/2. (67)

,en, we observe that

F F
M
j,ℓ􏽨 􏽩(ξ) � (2π)

2
F[f](ξ) F ΨM

j,0,ℓ􏽨 􏽩(ξ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� (2πB)
2
F[f](ξ) W

Br

λj
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

· V
λ⌊j/2⌋ ω − θℓj

􏼒 􏼓

2π
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

,

(68)

Noting thatF[f](ξ) � 0,∀|ξ|< 2/a0B, a0 < π2, and invoking
the admissibility condition (61), we have

B
2

􏽘
j≥ 0

W
Br

λj
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
� B

2
􏽘

− 1

j�− ∞
W

Br

λj
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
+ B

2
􏽘

∞

j�0
W

Br

λj
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� B
2

􏽘

∞

j�− ∞
W

Br

λj
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� B
2

􏽘

∞

j�− ∞
W λj

Br􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� 1.

(69)

Invoking the admissibility condition (62) yields

(2π)
2

􏽘

λ⌊j/2⌋− 1

ℓ�0
V

λ⌊j/2⌋ ω − θℓj
􏼒 􏼓

2π
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

,

� (2π)
2

􏽘

λ⌊j/2⌋− 1

ℓ�0
V

λ⌊j/2⌋ω
2π

− ℓ􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

,

� (2π)
2

􏽘

λ⌊j/2⌋/2( )− 1

ℓ�− λj/2/2( )

|V(y − ℓ)|2 � 1,

(70)

where y is proportional to the distance from ω to the nearest
θℓj

. ,us, we have

􏽘

λ⌊j/2⌋− 1

ℓ�0
F F

M
j,ℓ􏽨 􏽩(ξ),

� B
2
F[f](ξ) W

Br

λj
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
(2π)

2
􏽘

λ⌊j/2⌋− 1

ℓ�0
V

λ⌊j/2⌋ ω − θℓj
􏼒 􏼓

2π
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

� B
2
F[f](ξ) W

Br

λj
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
.

(71)

Hence,

􏽘
j≥ 0

􏽘

λ⌊j/2⌋− 1

ℓ�0
F F

M
j,ℓ􏽨 􏽩(ξ) � F[f](ξ) B

2
􏽘
j≥ 0

W
Br

λj
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
⎛⎝ ⎞⎠

� F[f](ξ).

(72)

From (72), we obtain the desired reconstruction formula
as

f(t) � 􏽘
j≥ 0

􏽘

λ⌊j/2⌋− 1

ℓ�0
􏽚
R2
ΓMΨ f􏽨 􏽩(j, b, ℓ)ΨM

j,b,ℓ(t)
db

λ− 3j/2. (73)

,is completes the proof of ,eorem 5. □

Corollary 1. Invoking (69) and (70), we observe that

􏽘
j≥ 0

􏽘

λ⌊j/2⌋− 1

ℓ�0
λ3j/2 ΓMΨ f􏽨 􏽩(j, b, ℓ)

�����

�����
2

2
,

� 􏽘
j≥0

􏽘

λ⌊j/2⌋− 1

ℓ�0
λ3j/2

F ΓMΨ f􏽨 􏽩(j, b, ℓ)􏼐 􏼑(ξ)
�����

�����
2

2
,

� 􏽘
j≥0

􏽘

λ⌊j/2⌋− 1

ℓ�0
􏽚
R2

F ΓMΨ f􏽨 􏽩(j, b, ℓ)􏼐 􏼑(ξ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 dξ
λ− 3j/2,

� 􏽘
j≥0

􏽘

λ⌊j/2⌋− 1λλ
⌊j/2⌋− 1

ℓ�0
􏽚
R2

(2πB)
2λ− 3j/2

|F[f](ξ)|
2

W
Br

λj
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

· V
λ⌊j/2⌋ ω − θℓj

􏼒 􏼓

2π
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dξ
λ− 3j/2,

· (j/2) � 􏽚
R2

||F[f](ξ)|
2

B
2

􏽘
j≥ 0

W
Br

λj
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
⎛⎝ ⎞⎠

· (2π)
2

􏽘

λ⌊j/2⌋− 1

ℓ�0
V

λ⌊j/2⌋ ω − θℓj
􏼒 􏼓

2π
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dξ,

� 􏽚
R2

|F[f](ξ)|
2dξ � ‖f‖

2
2.

(74)

4.2. Novel Discrete Curvelet Transform. In this subsection, we
shall present a complete discrete analogue of the proposed
novel curvelet transform defined in (20). Having formulated
the semidiscrete analogue, we need to discretize the spatial
variable b by taking both the previous discretizations of the
scale and angular parameters into consideration. For
m � (m1, m2) ∈ Z2 and β1, β2 > 0, we sample the spatial
variable b as
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bjℓ
m ≔ R− θℓj

K m, β1, β2, j( 􏼁 � R− θℓj

β1m1

λj
,
β2m2

λj/2􏼠 􏼡

T

. (75)

Consequently, the novel discrete family of curvelets takes
the following form:

ΨM
j,m,ℓ(t) � ΨM

j Rθℓj
t − K m, β1, β2, j( 􏼁􏼒 􏼓, t ∈ R2

, (76)

where the basic waveformΨM
j (t) is given by (64). Moreover,

an easy computation yields that

F ΨM
j,m,ℓ􏽨 􏽩(ξ) � exp − i bjℓ

m􏼐 􏼑
T
ξ􏼚 􏼛F ΨM

j􏽨 􏽩 Rθℓj
ξ􏼒 􏼓,

� λ− 3j/4
B exp − i bjℓ

m􏼐 􏼑
T
ξ􏼚 􏼛exp −

i DB r
2

2
􏼨 􏼩

· W
Br

λj
􏼠 􏼡V

λ⌊j/2⌋ ω − θℓj
􏼒 􏼓

2π
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(77)

,e formal definition of the novel discrete curvelet
transform is given below.

Definition 6. Given a real, unimodular matrix
M � (A, B: C, D), with B> 0, the novel discrete curvelet
transform corresponding to any f ∈ L2(R2) is defined as

ΓMΨ f􏽨 􏽩(j,m, ℓ) �〈f,ΨM
j,m,ℓ〉2 � 􏽚

R2
f(t)ΨM

j,m,ℓ(t)dt,

(78)

where the novel discrete family of curveletsΨM
j,m,ℓ(t) is given

by (76).
By implementing Parseval’s formula for the Fourier

transform and taking the benefit of (77), we can express the
above definition as

ΓMΨ f􏽨 􏽩(j,m, ℓ) �〈f,ΨM
j,m,ℓ〉2 �〈F[f],F ΨM

j,m,ℓ􏽨 􏽩〉2

� 􏽚
R2
exp i bjℓ

m􏼐 􏼑
T
ξ􏼚 􏼛F[f](ξ)F ΨM

j􏽨 􏽩 Rθℓj
ξ􏼒 􏼓dξ.

(79)

In analogy to the continuous case, we need to take care of
the low-frequency signals. We introduce another radial
window W0(r) satisfying

W0(Br)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 􏽘
j≥ 0

W
Br

λj
􏼠 􏼡 �

1
(2π)

2. (80)

And, for m ∈ Z2, the father wavelet ΦM
m is defined by

ΦM
m (t) � ΦM

(t − m),whereF ΦM
􏽨 􏽩(ξ) � W0(B|ξ|).

(81)

,ese father wavelets are nondirectional in nature.
,erefore, the complete family of novel discrete curvelets
FΦ,Ψ takes the following form:

FΦ,Ψ ≔ Φ
M
m(t): m ∈ Z2

􏽮 􏽯⋃ ΨM
j,m,ℓ(t): j≥ 0,m ∈ Z2

, ℓ ∈ Zλj/2􏽮 􏽯.

(82)

5. Construction of Novel Curvelets: An Example

In this section, we shall present a lucid construction of the
radial and angular window functions W and V satisfying the
prescribed admissibility conditions. As is evident from (18)
and (64), the construction of basic curvelet waveforms is
governed by the admissible radial and angular window
functions W and V; therefore, the upcoming example also
guides the construction of novel basic curvelet waveforms.
Consequently, the family of novel curvelets can be obtained
by appropriately translating and rotating the basic wave-
form. It is pertinent to mention that our approach is mo-
tivated by [19].

Example 1. Given a 2 × 2 real, unimodular matrix
M � (A, B: C, D), with B> 0, we consider the following
window functions:

W(r) �

1
B
cos

π
2

(](5 − 6r))􏼔 􏼕, 2/3≤ r≤ 5/6,

1
B

, 5/6≤ r≤ 4/3,

1
B
cos

π
2

(](3r − 4))􏼔 􏼕, 4/3≤ r≤ 5/3,

0, elsewhere,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V(ω) �

1
2π

cos
π
2

(](− 3ω − 1))􏼔 􏼕, − 2/3≤ω≤ − 1/3,

1
2π

, − 1/3≤ω≤ 1/3,

1
2π

cos
π
2

(](3ω − 1))􏼔 􏼕, − 1/3≤ω≤ 2/3,

0, elsewhere,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(83)

where ] is a smooth function, such that

](y) �
0, y≤ 0,

1, y≥ 1,
􏼨

](y) + ](1 − y) � 1, y ∈ R.

(84)

Certain choices of the function ] include ](y) � y or even
smoother polynomials like ](y) � 3y2 − 2y3 and
](y) � y5 − 5y4 + 5y3. We note that the smoothness of the
window functions W and V is governed by the function ].
,e smoother ] is, the smoother the window functions are
and consequently the faster the decay of curvelets is. As an
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example, one of the sufficiently smooth functions is given
below:

](y) �

− 0, y≤ 0,

α(y − 1)

α(y − 1) + α(y)
, 0<y< 1

− 1, y≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

,where, α(y) � exp −
1

(1 + y)
2 −

1
(1 − y)

2􏼨 􏼩. (85)

Next, we show that the aforementioned window func-
tions obey the admissibility conditions (61) and (62). By
definition, we have suppV⊆ [− 2/3, 2/3]. Firstly, we shall

compute the sum 􏽐
∞
ℓ �− ∞ |V(ω − ℓ)|2, where ω ∈ R. For a

fixed ω ∈ R, the aforementioned sum contains only two
nonvanishing terms, and for t ∈ [1/3, 2/3] we have

(2π)
2

􏽘

∞

ℓ�− ∞
|V(ω − ℓ)|2 � (2π)

2
|V(ω)|

2
+|V(ω − 1)|

2
􏼐 􏼑,

� cos2
π
2

(](3ω − 1))􏼔 􏼕 + cos2
π
2

(](− 3ω + 2))􏼔 􏼕

� cos2
π
2

(](x))􏼔 􏼕 + cos2
π
2

(](1 − x))􏼔 􏼕

� cos2
π
2

(](x))􏼔 􏼕 + cos2
π
2

(1 − ](x))􏼔 􏼕

� cos2
π
2

(](x))􏼔 􏼕 + sin2
π
2

(](x))􏼔 􏼕 � 1.

(86)

In order to show that the admissibility condition (61)
holds for the window function W we choose the scale λ � 2.
Since suppW ⊂ [1/2, 2], it follows that SuppW(2jr)⊆
[2− j− 1, 21− j]. Consequently, the sum on the left-hand side of

(61) has only two nonvanishing terms corresponding to
r ∈ [1/2, 1], namely, |W(r)|2 and |W(2r)|2. ,us, for
r ∈ [1/2, 1], we have

B
2

􏽘

∞

j�− ∞
W 2j

r􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� B
2

|W(r)|
2

+|W(2r)|
2

􏼐 􏼑,

�

1, 1/2≤ r≤ 2/3,

cos2
π
2

(](6r − 4))􏼔 􏼕 + cos2
π
2

(](5 − 6r))􏼔 􏼕, 2/3≤ r≤ 5/6,

1, 5/6≤ r≤ 1,

0, elsewhere.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(87)
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Moreover, we observe that

cos2
π
2

(](6r − 4))􏼔 􏼕 + cos2
π
2

(](5 − 6r))􏼔 􏼕

� cos2
π
2

(](z))􏼔 􏼕 + cos2
π
2

(](1 − z))􏼔 􏼕

� cos2
π
2

(](z))􏼔 􏼕 + cos2
π
2

(1 − ](z))􏼔 􏼕

� cos2
π
2

(](z))􏼔 􏼕 + sin2
π
2

(](z))􏼔 􏼕 � 1,

(88)

Plugging equation (88) in equation (87), we obtain

B
2

􏽘

∞

j�− ∞
W 2j

r􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� 1. (89)

Finally, if we choose ln 2W′(r) � W(r), then we shall
demonstrate that the window functions W′and V satisfy the
admissibility conditions (15) and (16). We proceed with

1 � (2π)
2

􏽘

∞

ℓ �− ∞
|V(ω − ℓ)|2 � (2π)

2
􏽚
1

0
􏽘

∞

ℓ �− ∞
|V(ω − ℓ)|2dω

� (2π)
2

􏽚
∞

− ∞
|V(ω)|

2dω.

(90)

Finally, for r ∈ (0,∞), we take r � 2x, x ∈ (− ∞,∞) so
that we have

1 � B
2

􏽘

∞

j �− ∞
W 2j

r􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� B
2

􏽘

∞

j �− ∞
W 2j+x

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� B
2

􏽚
1

0
􏽘

∞

j �− ∞
W 2j+x

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dx

� B
2

􏽘

∞

j �− ∞

1
ln 2

􏽚
2j+1

2j

|W(y)|
2dy

y

� B
2

􏽘

∞

j �− ∞
􏽚
2j+1

2j

W′(y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dy

y
� B

2
􏽚
∞

0
W′(y)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dy

y
.

(91)

6. Conclusion and Future Work

In the present study, we intertwined the advantages of the
curvelet and linear canonical transforms and introduced
the notion of the novel curvelet transform. ,e prime
advantage of this intertwining lies in the fact that the novel
curvelet transform enjoys certain degrees of freedom and
the new radial window achieves higher flexibility, which in
turn can be employed in optimizing the concentration of
the curvelet spectrum. As such, the proposed transform
serves as a significant addition to the contemporary tools of
signal and image processing. Nevertheless, the present
study, in itself, appeals several ramifications and devel-
opments thereon. An immediate concern is to study the

frame theory associated with the novel discrete curvelet
transform.
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