Hindawi

Journal of Mathematics

Volume 2020, Article ID 8821553, 11 pages
https://doi.org/10.1155/2020/8821553

Research Article

Hindawi

Approximation of Fixed Points and Best Proximity Points of
Relatively Nonexpansive Mappings

Thabet Abdeljawad , 123 Kifayat Ullah,* Junaid Ahmad ®,* Manuel De La Sen ®,’

and Azhar Ulhaq*

lDepartment of Mathematics and General Sciences, Prince Sultan University, P.O.Box 66833, Riyadh 11586, Saudi Arabia
’Department of Medical Research, China Medical University, Taichung 40402, Taiwan

Department of Computer Sciences and Information Engineering, Asia University, Taichung, Taiwan

*Department of Mathematics, University of Science and Technology, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
*Institute of Research and Development of Processes, University of the Basque Country, Campus of Leioa (Bizkaia),

P.O. Box 644- Bilbao, Barrio Sarriena, 48940 Leioa, Spain

Correspondence should be addressed to Junaid Ahmad; ahmadjunaid436@gmail.com

Received 31 August 2020; Revised 9 September 2020; Accepted 16 September 2020; Published 29 October 2020

Academic Editor: Hijaz Ahmad

Copyright © 2020 Thabet Abdeljawad et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

In this article, we study the Agarwal iterative process for finding fixed points and best proximity points of relatively nonexpansive
mappings. Using the Von Neumann sequence, we establish the convergence result in a Hilbert space framework. We present a new
example of relatively nonexpansive mapping and prove that its Agarwal iterative process is more efficient than the Mann and

Ishikawa iterative processes.

1. Introduction

Let E be a nonempty subset of a Banach space X. A self-map
T of E is said to be nonexpansive mapping if

ITu—-Tv|<|lu-v|, forallu,ve€E. (1)

The class of nonexpansive mappings is important as an
application point of view. One of the celebrated result of Kirk
[1] states that any self nonexpansive mapping of closed
bounded convex subset E of a reflexive Banach space has a
fixed point provided that E has normal structure. This result
was also independently proved in the same year by Browder
[2] and Gohde [3] in uniformly convex Banach space (in short
UCBS). After this celebrated result, many generalizations of
nonexpansive mappings have been published [4-14]. Among
the other things, one of the natural generalization of non-
expansive mappings was given by Eldred et al. [15] as follows.
Let H and L be two nonempty subsets of a Banach space X. A
self-map T of HUL is said to be relatively nonexpansive if

ITu—-Tv|<|lu—-v|, forallu e Handv e L. (2)

Iterative methods played a very important role in var-
iational inequalities and many other areas of applied sciences
(e.g., see [16-27] and others). One of the earlier iterative
scheme is the Picard iteration process, u, , = Tu,, which
converges very well for Banach contraction mappings.
However, this scheme is not suitable for finding fixed points
of nonexpansive mappings and hence for the generalized
nonexpansive mappings. Let E be a nonempty subset set of a
Banach space X. In [30], Eldred and Praveen studied Mann
[29] iterative process for finding fixed points and best
proximity points of relatively nonexpansive mappings. In
[30], Gopi and Pragadeeswara studied Ishikawa [31] iterative
process for finding fixed points and best proximity points of
relatively nonexpansive mappings.

Motivated by the above work, we study the Agarwal [32]
iterative process for finding fixed points and best proximity
points of relatively nonexpansive mappings. We present a
new example of relatively nonexansive mapping and prove
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that its Agarwal iterative process is more efficient than the
Mann [29] and Ishikawa [31] iterative processes.

Now, we present some notations which will be used in
the sequel:

Py(u)={ve H: |lu-v| =d(u H)},
d(H,L) =inf{|lu—v|: ue H,v e L},
H, :{u € H: ||u—v'|| =d(H,L)forsomev € L},
L, :{v €L: ||u' - v" =d(H,L)forsomeu’ € H}.
(3)

Notice that Py; (u) is singleton, provided that H is closed
convex in a reflexive and strictly convex space. Moreover, if
H and L are a closed convex in a reflexive space, such that
one of the H and L is bounded, then H, # &.

A handful of definitions and theorems given below
correspond to our results.

Definition 1. Suppose that H and L be two nonempty
subsets of a metric space. A point u € H is said to be a best
proximity point of the nonself-map T: H — L provided
that

d(u, Tu) =d(H,L). (4)

Theorem 1 (see [15]). Suppose H and L be two nonempty
bounded closed convex subsets of a UCBS. Assume that
T: HUL — HUL satisfies

(i) T(H)SLand T (L)Y<H
(i) ITu—Tv|<|u—-vlforallue Hyvel

Then, there exist (u,v) € Hx Lsuch that||u — Tu| = ||v -
Tv| = d(H,L).

Theorem 2 (see [15]). Suppose H and L be two nonempty
closed bounded convex subsets of a UCBS. If
T: HUL — HUL satisfies the following:

(i) T(H)SH and T (L)CL
(ii) |'Tu - Tv| <llu — vl forallu € H,v € L

Then, there exist u, € Handv, € Lsuchthat Tu, =
uy, Tvy = vy, and |luy — vyl = d (H, L).

Theorem 3 (see [1-3]). Assume that T be a self-map on a
closed convex bounded subset of a UCBS. If T' is nonexpansive,
then T has a fixed point.

Proposition 1 (see [33]). Suppose that X is a UCBS,
a € (0,1) and >0, then for each d >0 and u,v € X be such
that |ul|l <d, vl <d,|lu—v|>¢ then there exists some § =
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6(e/d)>0 such that |lu+ (1-a)v|< (1-26(e/d)(a,1-
a))d.

Lemma 1 (see [34]). Let 0<a<t,<b<1 for every n>1.
Assume that {u,} and {v,} are sequence in a UCBS X such
that  |u,<Llv,<1. Define {b,} in X by
b,= (-t u,+t,v, If  lim,  [lb,l=1, then
lim,_,llu, — v, =0.

Now, we are going to show that, under some appropriate
assumptions, Agarwal’s [32] iteration converges to a fixed
point of a given nonexpansive mapping. This result is useful
for the upcoming main results.

Theorem 4. Suppose E be a nonempty bounded closed
convex subset of a UCBS X, and assume that T be a self-map
nonexpansive map of E. Choose u,€E and set
v, =1 -Bu,+p,Tu,u,, = (1-a,)Tu,+a,Tv, where
B, € (61 -€),n=0,1,2,... and e€(0,1/2) and
Y B, <oo. Then, lim, ., |u,—Tu,ll =0. Moreover, if
T (E) lies in a compact set, then {u, } converges to a fixed point
of T.

Proof. By Theorem 3, there exists some v € E such that
Tv = v. Now,

v, = v =[x = B, + B, Tw, — ]

< (1=B)|un - v| + B Tu, - |
< (1= Bt =] + Bl = ]
= [ =1l

[t = v|| =1 = &) Tua,, + @, Tv, = v (5)
< (1-a,)|Tu, - v| + a,|Tv, - |
< (1= a,)|uy = V|| + v = v
< (1-a,)|u, = V|| + ]|, = v
= =1l

It follows that the sequence {|lu, — v||} is nonincreasing

and bounded below by 0. Hence, we have
lu, — vl — d=0. |
Case 1. If |u, — v| — 0, then
o4 = Tuaa| < et = v +]v = T, |
= ||un - v” +||Tv - Tu,," (6)

< Jun = vl + = -

If n — oo, then |u, — Tu, || — 0. Now,
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||un+1 - un" = ||(1 - a,)Tu, + a,Tv, - un"
= ||Tun
< ocn“Tun - Tvn" + ||Tun - un”

-o,Tu, +a,Tv, - un”

< ocn“vn - un" +||Tun - un“
= Ocn"(l - ﬁn)un +ﬁnTun - un” +||Tun - un"
< anﬂn“Tun - un" +||Tun - un“

= (0,8, + V)| Tut, = 1
u+ D([ T, =] +v =)

< (a8
= (@B, + 1)([ T, = Tv] +]v - ]
<

B+ 1) = v +v =]
(7)

If n — oo, then |u, ., —u,| — 0.

Case 2. If |u,—v| — d>0, we need to show that
lu, — Tu,| — 0. Suppose not, then one have a subse-
quence {un of {u,} and a positive real number ¢ such that
IIunk - Tu,,kll >¢e>0 for all k.

Since the modulus of convexity § of X is continuous as
well as increasing function, one can select some & > 0 as small
such that (1 —cd(e/(d +&)))(d + &) <d, where ¢>0.

Now, we select k, such that IIunk —v|<d+&. By Prop-
osition 1, we have

[v =t =] - )T, +a,Tv, )

= —(( 10, )Ty, + a0, T((1= B, Yty + B, Tt

= (1= )y + v = (1 = @y )Tty + 0, T((1 = By, Yot
+B,T, )|

<(1-a,)|v-"Tu, v=T((1=B,, )ty + By Tt

=(1-a,)|Tv =T((1- B, )y, + B, Tt )

<(1-a,)|v- ((1 =By )b+ B Tthy, )

=(1-a,)d++a, |( ~By)(v—1,) + B, (v=Tu,)
<(1-a,)@d+d+a, (1

_ z@(d%f)min{ﬁnk, 1- /3,&) d+8)
= (1 -t + &, - 20, 5<d E)min{ﬁnk, 1- ﬁm}> @d+9

<1 za( I E)min{ankﬁnk, a, (1- ﬁnk)}> (d+9).
(8)

Since there exist h>0, such that

2min{a,, B, &, (1-B,)}=h

3
( 28<d g)min{ocnkﬂnk,ocnk(l —/j’nk)}> (d+¢&)
9
(1 —h6<d £)>(d+£).
Select very small &>0, we have

(1 -=hd(e/d + &) (d +té) <d, which is contradiction. This
implies that the lim,_,|lu, — Tu,| = 0.
Now, we prove that [u,,, —u,l — 0. We have
i =l G+ DI = )
Now, we define
v, = (Tv, —v)/ (lu, —vl), and u
One can note that [u,[ < 1. Now,

[7v = vl =ITv, - Tv]

U, = V) (lu, = v,

= (u
= (Tu, = v)/ (lu, = vI).

<fv. -]
= "(1 - ﬁn)un + ﬁnTun - V"

:"(1_/511)”71_(1_ﬁn)v+/3n(Tun_v)|| (10)

< (1= B)un = V] + BT, — T4
< (1= Bt = vl + Bullun — |
=, = v

Therefore,  [[v,ll = (1T, = vI/ (llu, = vII) < (lu, = v/

we obtain
Dividing by

(llw,, = vll) = 1. From Agarwal’s iteration,
U, —v=»_0-a,)(Tu,-v)+a,(Tv,—v).
e, — |, we obtain

Uni1 — (1 n) V) +a, (Tvn - V). (11)
[ V|| || Y I T
Hence, b, = (1 -a,)u, +a,v,. Now, we show that
16, — 1. Now,
gim [, = lim_ "ﬁ's“ Vﬁ“ g: L (12

By Lemma 1, |lu,—v,|l — 0. This implies that
lu,, — Tu, | — 0. Therefore, |u,,, —u,ll — 0.

Since T (E) is contained in a compact set, {Tu,} has a
subsequence {Tu k} that converges to point b € H. Also,
{unk} and {unk +1F converge to b. This implies that {u,}
converge to b. Then, Tu, — b. In particular, Tu, — b.
Since T is continuous, implies that Tu,, — Tb. Therefore,
Tb =1b.

Theorem 5 (see [28]). Let H and L be nonempty closed
bounded convex subset of a UCBS. Let T: HUL — HUL

satisfy
(1) T(H)CH and T (L)CL
2) I Tu—-Tv|<lu—-vlforallue HyveL

Let uy, € H and define u, , = P"((1 - a,)u, + a,Tv,),
where «a,€ (e,1-¢),n=0,1,2,... and e€ (0,1/2).



Then, lim,_,|lu, — Tu,| = 0. Moreover, if T'(H) lies in a
compact set, {u,} converges to a fixed point of T.

Assume that H be a convex closed subset of a Hilbert
space X. Then, for u € X, Py (u) is the nearest to u and
element of H. Furthermore, P;; is nonexpansive and dis-
tinguished by Kolmogorove’s criterion:

{u— Py (1), Py (u) —b) >0, forallu e Xandb € H.

(13)

Assume that H and L are two convex closed subsets of X.
Set

P(u) = Py (PL(M)))

Then, the sequences {P" (1)} ¢ H and {P, (P" (u))} c L.
When H and L are closed, the convergence of these se-
quences were established by Von Neumann in [35]. The
sequences {P"(u)} and {P; (P"(u))} are called Von Neu-
mann sequences (sometimes called alternating projection
algorithm for two sets).

foreachu € X. (14)

Definition 2 (see [36]). Suppose H and L are two nonempty
convex closed subsets of a Hilbert space X. Then, (H, L) is
called boundedly regular provided that, for every bounded
subset S of X and for every ¢ >0 one can select a § >0 such
that

max{d (u,H),d(u,L — z)} <d=>d(u,L)<e,Vu € X, (15)

where z = P;—; (0) is the displacement vector from the set H
to set L (z is the unique vector such that|z|| = d(H, L)).

Theorem 6 (see [36]). Suppose (H, L) is boundedly regular;
then, the Von Neumann sequence converges in norm.

Theorem 7 (see [36]). Assume that one of the H and L is
boundedly compact; then, (H, L) is boundedly regular.

Lemma 2 (see [37]). Suppose that H be a nonempty convex
closed subset and L be a nonempty closed subset of a UCBS.
Assume that {u,} and {b,} be sequences in H and {v,} be a
sequence in L such that

(i) llu, = v, — d(H, L)
(ii) b, = v, — d(H, L)

Then, |lu, — b, |l converges to 0.

Corollary 1 (see [37]). Suppose H be a nonempty closed
convex subset and L be a nonempty closed subset of a UCBS.
Assume that {u,} be a sequence in H and v, € L such that
lu, — voll — d(H, L). Then, {u,} converges to Py (v;).
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Proposition 2 (see [15]). Suppose H and L be two closed and
convex subset of a Hilbert space X. Then, P;(H)CL,
Py (L)CH, and |Pu— Pyvl|<|lu—v| for each u € H and
veL

Lemma 3. Suppose H and L be two closed and convex subset
of a Hilbert space X. Then, for each u € X, we have

“Pn+1 (u) - b” < “Pn (u) - b”’ forb € HyUL,. (16)

2. Main Results

Theorem 8. Suppose H and L be nonempty bounded closed
convex subsets of a UCBS X and assume that
T: HUL — HUL such that

(i) T(H)CH and T (L)CL
(ii) |'Tu — TVl <llu—vl, forallu e H,v € L

Select uy,e€H and set wv,=(1-p)u,+pS,Tu,
Uy = (1-a,)Tu, +a,Tv,, where B,a,€ (&1—-¢),n=
0,1,2,... and €€ (0,1/2) and Y a,f,<00. Suppose
d(u,,Hy,) — 0, thenlim, | |lu, — Tu,| = 0. Moreover, if
T (H) lies in a compact set, then {u,} converges to a fixed
point of T.

Proof. If d(H,L) =0, then H, = L, = HNL, and by The-
orem 4, we can establish the theorem from the fact that
T: HNL — HNL is nonexpansive. Let d(H,L)>0. By
Theorem 2, there exists v € L, such that Tv = v. Now,

"Vn - Z" = “(1 - ﬁn)un +ﬁnTun - V"
< (1=B)|u, - V| +Bu|Tu, - TV

gl eibol
= [ =1l
which implies that
||”n+1 - v" = ||(1 -a,)Tu, +a,Tv, - vn
< (- a)|Tw, = v] + o[ Tv, =]
< (1=a,)|u, = || + @ v - | (18)

<(1- ocn)“un - v" + cxn"un - Vn
= [, = v

Hence, the sequence {||u,, — v||} is nonincreasing. So, one
can select a d>0 such that lim, | |lu, — vl = d. Assume
that there is a subsequence {unj of {u,} and an >0 such
that llu,, —Tu, [|2€>0 for every k.
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However, the modulus of convexity § of X is continuous
and increasing function, and we choose £>0 as small that
(1-co(e/(d+8))(d+ &) <d, where ¢>0.

||V - unk+1

= ||V _((l N a”k)Tu”k + a”kT((l - ﬁ”k)unk + ﬁ"kTu”k))

:|K1 — ocnk)v+ ocnkv—((l -«

+ B, Tuy,) )|

v-Tu, ||+«
k

S(l - (xnk)
~(1-4,)

<(1-a,)@d+8&+a,

Tv-Tu,
k

=(1 —ocnk)(d+f)+(xnk

= "v —((1 - “nk)Tunk + ocnkTvnk)

"k V- T((l _ﬁ”k)u"k +ﬂ”kTu"k)

Tv - T((l - ﬁnk)u“k + ﬁ”kTu”k)

+ (Xnk
V_((l _ﬁ”k)u”k +ﬁ"kTu”k)

|(1 - ﬁnk)(v - unk) + [Snk(v - Tunk)

Now, we choose k, such that ||u,,k—v||£d+f. By

Proposition 1, we have

|

”k)Tu"k + “"kT((l - ﬁ"k)u"k

(19)

&

<(1-a,)@d+&+ ocnk<l - z&(d . £>min{ﬁnk, 1 —ﬁnk}) (d+8)

= (1 -, ta, - 2ocnk6(

m)min{ﬁnk, 1- ,Bnk}> (d+§)

= (1 - 25(6%5)min{ankﬁnk, o, (1- ﬁnk)}) d+9).

Since there exist h>0 such that
2 min{ankﬁnk’ Ky, (1- ﬁnk)} >h,

(1 - 28<%M>min{ankﬁnk, (xnk(l - ﬁ”k)}) d+&

(20)
&

Suppose choosing very small &>0, we have
(1-hé(e/(d+8))(d+ & <d, which is a contradiction.
This implies that lim,_,|lu, — Tu,| = 0.

Now, we prove that |u,., —u,| — 0. We have
et — w,ll < (@,B, + DIITu, —u,ll. Now, we define
by = (thyy — 2)/ (lthy = VD, v, = (Tv, =)/ (I, —vl),  and
u, = (Tu, —v)/ (llu,, — vl|). One can note that [u,| < 1. Now,

[T, = v =[[Tv, - ]
<[v,
=[x =B, + BT, — |
= (1= B = (1 = By + B (T, = )| (21)
< (1= B,)u = v| + BT, - T
< (1= Bt =]+ Bullun — |

= e, = v]-
Therefore,  ||v,ll = (ITv, = vI)/ (llu, = vI}) < (llu, = vI})/
(llw,, = vl) = 1. From Agarwal’s iteration, we obtain
U, —v=~01-a,)(Tu,-v)+a,(Tv,—v). Dividing by

lu,, — v[|, we obtain
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(Tu, —v) (Tv,-v)
(l a,) +a, . (22)
||u - VH s =l =1
Then, b,= (1-a,)u, +a,v,. Now, we prove that

6,Il — 1. Now,

lim [|b, | = 1im b =] _d_, (23)
= fu, =] d

By Lemma 1, |lu,—v,|— 0. This shows that
llu,, — Tu, || — 0. Therefore, |u,,, —u,| — 0.

Since T'(H) is contained in a compact set, {Tu,} has a
subsequence {Tunk} that converges to point b € H. Also,
{unk} and {unk +1} converge to b.

Since d (u,, Hy)) — 0, there exists {b,}<H,, such that
lu, —b,ll — 0. Therefore, bnk — b, which gives that
beH,.

Let D=d(H,L) and choose peL, such that
Io— pll =
We have lu,, — pll — b - pl =D, and

I, - pl > I T, —Tpll —> Ib-Tpl. So, Ib—Tpl = D. By
strict convexity of the norm, Tp=p. It follows that
Tb =b. 0

Corollary 2. Suppose H and L are two nonempty bounded
closed convex subsets of a UCBS X, and assume that
T: HUL — HUL is such that

(1) T(H)CH and T (L)<L
2) [ Tu—-Tv|<lu—-vlforallue HyvelL

Choose u, € H and set v, = (1 - B, )u, + B, Tu,, u,,, =
1-a,)Tu, +a,Tv,, whereB,,a, € (&1 —¢),n=0,1,2,...
and €€ (0,1/2) and ) a,f,<co. Then, lim, _|u,—
Tu,|| = 0. Moreover, if T (H) contained in a compact set, then
{u,} converges to a fixed point of T.

Corollary 3. Suppose H and L are two nonempty bounded
closed convex subsets of a Hilbert space X, and assume that
T: HUL — HUL be a relatively nonexpansive mapping
such that

(1) T(H)CH and T (L)CL
2) [ Tu—-Tv|<|lu—-vlforallue HyvelL

Choose u, € H and set v, = (1 - B,)u, + B, Tu,, u,,, =

P ((1-wa,)Tu, +«,Tv,), where f,a,€ (51—-¢),n=
0,1,2,... and e€ (0,1/2) and ) a,f,<oco. Then,
lim,_ . llu, — Tu,| = 0. Moreover, if T (H) is mapped into a

compact subset of L, then {u,,} converges to a fixed point of T.

Proof. One can note that P"((1-a,)Tu,+a,Tv,) =
(1-a,)Tu, +a,Tv,, and by Theorem 8, the result follows.

Now, we present a new example of relatively non-
expansive mappings and prove that its Agarwal [32] iterative
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process is better than the Mann [29] and Ishikawa [31] it-
erative processes. O

Example 1. Take X = R?,

H ={(u,0): —4<u< -3},
(24)
L={u',0):3<u' <4}.
Define
u—4
T: H — Hby T (u,0) :<T’O)’
(25)

"+4
T: L—>LbyT(u',0)=<u5+ ,o).

Let (4,0) € H and (u',0) € L. Then,

s -5
S
_\l(u u' -8 +0 (26)

_ u')z
=, 0) -

From the above process, we get T is relatively non-
expansive mapping. The iterative values for u, = —1.5 are
shown below in Table 1 and Figure 1.

|70~ 7(.0)]

(u', 0)"

Remark 1. From Table 1 and Figure 1, we see that Agarwal
iterates converges faster to —1 than the Ishikawa and Mann
iterates for the class of relatively nonexpansive mappings.
The stronger version for the approximation of fixed
point by using Von Neumann sequences are follows.

Theorem 9. Let H and L be nonempty bounded closed
convex subsets of a Hilbert space X and suppose
T: HUL — HUL is such that

(1) T(H)CH and T (L)CL
2) ITu-Tv|<lu—-vlforallue HyvelL

Let uy € H and define v, = (1 -, )u, + ,Tu,, u,,, =
P ((1-a,)Tu,+a«,Tv,), where f,a,¢c (51—-¢)n=
0,1,2,... with restriction Y, . a,B,<0co and € € (0,1/2)
and Y a,B, <co. Then, lim,__, llu, — Tu,| = 0. Moreover, if
T (H) is lies in a compact set and |lu,, — Tv,|| — 0, then {u,}
converges to a fixed point of T.
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TasLE 1: Sequences generated by Agarwal, Ishikawa, and Mann iterative algorithms.
Agarwal Ishikawa Mann
U, -1.5 -15 -1.5
u; —1.028000072000000 —-1.068000072000000 —1.100000400000000
U, —-1.001568008064010 —-1.009248019584011 —-1.020000160000320
Us —1.000087808677378 —1.001257731995140 —1.004000048000192
U, -1.000004917298577 -1.000171051732452 -1.000800012800077
Us —1.000000275369428 —1.000023263060245 —1.000160003200025
Ug —1.000000015420727 —1.000003163779543 —1.000032000768007
U, —1.000000000863563 —1.000000430274473 —1.000006400179202
Ug —1.000000000048359 —1.000000058517390 —1.000001280040961
Ug —1.000000000002708 —1.000000007958373 —-1.000000256009216
Uy —1.000000000000151 —1.000000001082346 —1.000000051202048
Uy -1.000000000000008 -1.000000000147198 -1.000000010240450
Uy -1 —-1.000000000020019 —1.000000002048098
Uz -1 —1.000000000002722 —1.000000000409621
Uy -1 —-1.000000000000370 —1.000000000081924
Ups - —1.000000000000050 —1.000000000016385
U -1 -1.000000000000007 -1.000000000003277
Uy - —1.000000000000001 —1.000000000000655
Ug -1 -1 —1.000000000000131
Uy -1 -1 —1.000000000000026
Uy, -1 -1 —1.000000000000005
uy=-1.5

-1.00

-1.02 -

-1.04 +

£
N

-1.06 |

-1.08

-1.10 L L s s |

-1.5 -1.4 -1.3 -1.2 -1.1 -1.0

Uy

FiGure 1: Convergence behavior of Agarwal (blue), Ishikawa (magenta), and Mann (cyan) iterates to the fixed point v = —1 of the mapping

T.

Proof. If d(H,L)=0, then Hy=Ly=HNL and
T: HNL — HNL is nonexpansive with u, ; = P"((1-
a)Tu,+a,T((1-B)u,+pB,Tu,)) = (1-o)Tu,+a,T
((1- B, )u,+ 5,Tu,), the usual Agarwal’s iteration. So, let us
take that d (H, L) > 0. By Theorem 2, there exist v € L, such
that Tv = v. Now,

"Vn - 1}" = "(1 - ﬁn)un + ﬁnTun - V"
< (1= B = v] + B[ Tu, ]
< (=B = v + Bl =]

=, =

(27)

which implies that

[t4er = | =[P" (1 - &,)Tus,, + &, Tv,) - v
<|(1 - &) T, + &, Tv, — V|
< (1-a,)|Tu, - v| + a,|Tv, - |
<(1-a,)|Tu, - Tv| + a,|Tv, - Tv|  (28)
< (1-a,)||u, = V|| + v, - v
<(1-a,)|u, = V|| + ||, — ¥
)

Hence, the e sequence {[lu, — v||l} is nonincreasing. So,
one can choose some d >0 with lim,_,|lu, — vl = d. As-
sume that one can find a subsequence, namely, {unk} of {u,}
and some positive ¢ such that ||unk - Tunkll >¢>0 for every k.
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Since the modulus of convexity of § of X is continuous as

well as increasing function, one may choose >0 as small

such that (1 —cd(e/(d +§)))(d + &) <d, where ¢ > 0.

=

= "v — P (((1 - ocnk)Tunk + ocnkTvnk))

Journal of Mathematics

Now, we select k, such that [u, —v|<d+ & By Prop-
osition 1, we have

m+1
< ”v - ((1 - (xnk)Tunk + ocnkTvnk)
= ||V _(((1 - a”k)Tu”k + (X”kT((l - ﬁ”k)unk + ﬁ”kTu”k)))H
= "(1 - a”k)v + a"kv _((1 - ‘x”k)Tu”k + (x”kT((l - ﬁ”k)u”k + ﬁnkTu”k)) |
< (1 - (xnk) v—Tu, | +a,|v- T((l - ﬁnk)unk + ﬁnkTunk)
= (1 - ocnk) Tv-Tu, | +a,|Tv- T((l - ﬁnk)unk + ﬁnkTunk)
(29)
< (1 - (xnk) v, |+ a, |V —((1 - ﬁnk)unk + ﬁnkTunk)
=(1 - ocnk) (d+&+ a, '(1 —/Snk)(v - unk) + ﬁnk(v - Tunk)
<(1-a,)d+5+ (xnk((l - 25(d%f>min{/3nk, 1- ﬁnk})d + f)
& .
= (1 - (Xnk + (Xnk - zanks(m)mln{ﬁnk, 1- ﬁ”k}) (d + E)
= (1 - 26(%%)min{(xnk[3nk, (xnk(l - [j’nk)}> (d+8).
Since there exist h>0 such that u —u =P ((1 a )Tu ta Tv ) _u
2min{a, B, a, (1-B,)}>h: e e e T
< |K1 - ocnk)Tunk +a, Tv, —u,
<1 - 28(%%>min{(xnkﬁnk, “nk(l - ﬂnk)}> (d+¥& = ||Tunk -, T, + o, T, —u,
(30) <a, Tu,,k - Tv,,k + “Tu,,k - U,
S(l —h6<di)>(d+€) SOC”k V”k_u”k +'|Tu”k _unk
" E =&y (1 - ﬂn)unk + ﬁnTunk — Uy, -""Tun,c — Uy,
If we select a small £>0, then = 0ty B | Tk, =ty | + HT”nk ~ Up,
(1-hd(e/d + &) (d + &) < d which is clearly a contradiction. - (“n B, + l)uTu,, —u, |I.
This implies that lim,,_,[lu, — Tu,| =0 o e
Since the set T'(H) is contained in a compact set, so the (31)
sequence {Tu,} has a subsequence {Tunk} such that it con- Since "T“nk _ ”nk" —0 which implies that

verges to a some point z, € H. Also, {un } converge to z,,. From
k
the given sequence, one has

lu, —u,l — 0. Therefore, u, — z,, which implies
My My My
that u, — z,. Also, we have Tv, — z, as k — oo.
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Now, ||Tunk - T(P;(zx))ll < IIunk — P; (zy)l, which gives
thatl|z, — T' (P (zp)ll < llzg — P (zp)ll- Therefore,
T (P (zy)) = P (2y).

Also, [T (P(z0)) =Py (2l =T (P(20)) =T (P (zp))l <
IP(zg)— Py (2)ll. So, T (P(z)) = P(z,)

Now, IT (P, (P(20))) = P(zo)ll = IT (P (P(2,)))-
T (P(zo)I <P, (P(zy)) = P(2p)ll. Thus, T (P (P(z))) =
P, (P(zy)).

For any n, T(P"(z,)) = P"(z,) and T (P (P"(zy))) =
P, (P"(z,)). By Theorem 6, for each u € H, the sequence
{P" (u)} converges to some w(u) € H,. Now,

7 (w(0) = Pr(w(z0))] < lim T (w(z0)) ~ Pr (P" (=)
= lim [T (w(z,)) - T (P (P" (20)))
< nhlnm||w(zo) =P (P"(2))]

= Nw(zo) - P, (w(zo))"-
(32)

lim "P"" ((1 - ocnk)Tunk + ocnkTvnk) - w((l - ocnk)Tunk + ocnkTvnk)

n—~o

Since w((1-a,)Tu, +a,Tv,) — w(zy), we get
u,,, — w(zy), which gives that w(z,) = z,. Therefore,
Tz, =T (w(zy)) = w(zy) = zy, which completes the proof.

Suppose X is a Hilbert space and assume that T be as in
Theorem 1. Consider P;T: H — H and P;T: L — L.

From Proposition 2, |PyT (u) — P,T (V)| <|lu—v| for
u € Hand v € L, by Theorems 8 and 9, we give the following
results on convergence of best proximity points. O

Corollary 4. Suppose H and L are two nonempty bounded
closed convex subsets of a Hilbert space X. Assume that T be
as in Theorem 1. If T (H) is mapped into a compact subset of
L, then for every u, € H, the sequence generated by by u,,,, =
(1-a,)Tu, +a,Py (T((1-B)u,+p,PyTu,)) converges
to u in H, such that |u—Tul| =d(H,L)

Corollary 5. Suppose H and L are two nonempty bounded
closed convex subsets of a Hilbert space X. Assume that T be
as in Theorem 1. If T (H) is mapped into a compact subset of
L, then for any u, € H, the sequence defined by u,, = (1 -
a,)Tu, + o, Py (T((1-B,)u,+B,PyTu,)) converges to u in
H, such that |u—Tull = d(H, L) provided d (u,, H,) — 0.

Corollary 6. Suppose H and L are two nonempty bounded
closed convex subsets of a Hilbert space X. Assume that T be
as in Theorem 1. If T (H) is mapped into a compact subset of
L, then for every u, € H, the sequence generated by u,,,, =

P*((1-a,)Tu, +a, Py (T (1 -B,)u, +B,PyTu,))) con-
verges to u in Hy such that |u —Tul = d(H, L)
Proof. The result follows by Corollary 4. O

So, IT (w(2)) ~ Py (w (2] < w (z0) - Py (w(zp)].

Therefore, T(w(zy)) = w(zy), and similarly
T (PL (w(zo))) =P (w(zo))-

Now, we define
G0 () = 1P () —w (w)].

Since lw(u) —wW =lim,__, |IP" (1) — P"(v) || <
| u —v|, then we conclude that w is continuous. Therefore,
g, (1) is continuous and converges pointwise to zero. Since
w(u) € Hy, by Lemma 3, we obtain g,,,, < g,,. Therefore, g,
converges uniformly on the compact set:

S= {(1 - “nk)Tunk + ocnkTvnk} Uiz} (33)

g H—R by

Therefore,

= 0. (34)

Corollary 7. Suppose H and L are two nonempty bounded
closed convex subsets of a Hilbert space X. Assume that T be
as in  Theorem 1. Choose u,€H and set
v, = (1-Bu,+p,Tu,u,,, =P ((1-a,)Tu,+a,Tv,),
where f3,,a, € (6,1 —¢),n=0,1,2,... and € € (0,1/2) and
Y a,f, <oo. If T (H) is mapped into a compact subset of L
and |u, — Py Tv, | — 0, then {u, } converges to u in H,, such
that |\u—-Tul = d(H,L).

Proof. The result follows by Theorem 9. O

3. Conclusions

In this article, we have used the Agarwal iterative process for
finding fixed points and best proximity points of relatively
nonexpansive mappings. Using the Von Neumann se-
quence, we have established the convergence result in a
Hilbert space framework. We have offered a new example of
relatively nonexpansive mapping and proved that its
Agarwal iterative process is more efficient than the Mann
and Ishikawa iterative processes.
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