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The present work deals with the construction, development, and analysis of a viable normalized predictor-corrector-type
nonstandard finite difference scheme for the SEIR model concerning the transmission dynamics of measles. The proposed
numerical scheme double refines the solution and gives realistic results even for large step sizes, thus making it economical when
integrating over long time periods. Moreover, it is dynamically consistent with a continuous system and unconditionally
convergent and preserves the positive behavior of the state variables involved in the system. Simulations are performed to
guarantee the results, and its effectiveness is compared with well-known numerical methods such as Runge-Kutta (RK) and Euler

method of a predictor-corrector type.

1. Introduction

Mathematicians and biologists have been working for a long
time on the biological process of life science. They succeeded
in evaluating some remarkable results from their work. An
important mark in mathematical biology is the mathe-
matical modeling of infectious diseases [1]. Measles is one of
such a highly infectious childhood disease, caused by re-
spiratory infection by a Morbilli virus, measles virus. Arthur
Ransom first observed the irregular cyclic behavior of
measles that is considered as a mainly conspicuous facet of
measles. The age structure of the population, contact, im-
migration rate, and the school seasons were known as a
crucial phase for the swell of measles [2-4]. William
Hammer in 1906 published a discrete numerical model for

the transmission of measles epidemic. Later assumption of
“Mass Action” is applied to that model which is the basic rule
to the current theory of deterministic modeling of infectious
diseases [5].

Society has a keen concern in knowing the major evo-
lution for the spread of diseases. Analytical results give a
solution to these problems but for limited cases and causes
many problems. The homotopy perturbation method and
variational iteration method can be used for the solution of
the epidemic models [6]. However, the first choice to solve
these laws of nature is the numerical method based on a
difference scheme for good approximations [7-9]. In gen-
eral, already developed numerical schemes such as Euler,
Runge-Kutta, and others at times stop working by gener-
ating nonphysical results. These unnecessary oscillations
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contrived chaos and false fixed points [10]. Moreover, some
methods are unsuccessful if we check them on larger step
sizes [11]. To avoid such discrepancies, the numerical
schemes based on the “nonstandard finite difference method
(NSFD)” are established. These techniques were first de-
veloped by R. E. Mickens [7, 12, 13]. The created numerical
schemes preserve the essential properties such as dynamical
consistency, stability, and equilibrium points [14-21]. Re-
searchers have developed competitive NSFD schemes for
epidemic diseases. Many of these NSFD schemes are con-
sistent for small step sizes with the continuous model, but for
large step sizes, the unwanted oscillations have been ob-
served. Piyanwong, Jansen, and Twizel have constructed a
positive and unconditionally stable scheme for SIR and SEIR
models, respectively [22, 23]. Nevertheless, the lack of ap-
plication of conservation law in their developed schemes
explicitly caused impracticable and unrealistic solutions,
while Abraham and Gilberto have developed NSFD schemes
of the SIR epidemic model to obtain the physically realistic
solutions for all step sizes, where they apply the conservation
law in addition to nonlocal approximation [24].

In this paper, we have developed a normalized NSFDM
of predictor-corrector- (PC-) type inspired by the previous
work discussed to double refine the numerical solution of a
nonlinear dynamics regarding the transmission of measles.
To keep the method explicit, we will use the forward dif-
ference approximations for the first derivative terms. The
nonlocal approximations are used to tackle the nonlinear
terms with ¢ (h) as a nonclassical denominator function. By
using this idea, the measles model will converge to equi-
librium points, even for the larger step sizes.

2. The Mathematical Frame of Work

In this work, the dynamics of the measles epidemic de-
scribed by the SEIR mathematical model suggested by Jansen
and E. H. Twizel is considered [23]. In the SEIR model, the
total human population is categorized as susceptible, ex-
posed, infectious, and recovered subpopulations denoted by
S, E, I, and R, respectively. Consider the flow of the SEIR
model for the measles epidemic, as shown in Figure 1.Here

S = susceptible individuals

E =exposed individuals

I = infected individual

R =recovered individual

y = birth rate and death rate

p = the rate at which susceptible individuals are in-
fected by those who are infectious

o = the rate at which exposed individuals become
infected

y = the rate at which infected individuals recover.

Here y, [3, o, and y are considered as positive parameters.
Furthermore, we assume that (E°, I° #0). Consider N is the
constant size of the population so that the number of re-
covered individuals R =R(t) at time t is defined by
R=N-S-E-1I. A susceptible is a move to the exposed
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Fiure 1: Flowchart of the SEIR Model for measles epidemic.

model, where the individual is infected but yet not infec-
tious. After sometimes the individual becomes infectious
and enters into the infected compartment, and in this way,
the disease spreads into the population.

The mathematical model is written as

ds

3 =N -uS—pIS, 1>0,5(0) =",
dE
q = PIS-uE-0E, t>0,E(0) = E,
- (1)
dr
5 = OE-#l VL t>0,1(0) =1
dR
— =yl -pR, £>0,R(0) =K',
d ’
where
S+E+I+R=N. (2)

Equation (2) shows that the total size of the population
remains constant, which is connected with the continuous
system (1). The following two points give the equilibrium
points of (1):

The disease-free equilibrium (DFE) point (N, 0,0)
The endemic equilibrium (EE) point (N/Ry, uN/u+
(1 =1/Ry), ulf(Ry - 1))

Here, Ry = 6N/ (4 + 0) (i + y) is the basic reproductive

number associated with the measles model.

For the sake of brevity, we are not mentioning RK-4 and
Euler-PC scheme.

3. Numerical Modeling

To the construction of NSFD scheme, the continuous system
(1) is discretized using the forward difference approximation
for the first-order time derivatives. Thus, if f(¢) is differ-
entiable, the f'(¢) can be approximated by

df(t) ft+h)—f(8)
e ¢ (h)

+O(h)ash — 0, 3)

where ¢ (h) is a real-valued function satisfying the condition
¢(h) — 0 as h — 0. We have

phy=1-¢" (4)
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Thus, the NSFD scheme for system (1) takes the form

Sn+1 _qn
(p(h) — ‘MN _ [48”+1 _ ﬁsn+11n,
En+1 _ En
(h) — ﬁsnﬂln _ ‘uEnH _ O‘Enﬂ,
¢
In+1 In [ (5)
- n+1 n+1 n+1
=0 —ul™ =y,
¢ (h)
Rn+1 _ Rn
— In+1 _ Rn+1.
oty 7
From equation (5), we have
(1 +¢(h)‘l/l) [S}’H-l +Eﬂ+1 +In+1 +Rn+l] (6)

=@ (huN - @(hu(S"+E"+I"+R").

Thus, if "+ E"+ 1"+ R" = N for all n>0, then S™'+
E™! 4 " 4 R =N for all n>0.

Thus, the conservation law property is satisfied. System
(5) is written as

mi__ S +up(MN
L+o(h) (u+pBI")

En+1 ~ En + (p(l’l)/))SnHIn

“Tremura | @)

w1 I+ @(h)oE™!
L+o(h)(p+y)

Now, the positivity of §™!, E**1, ["*1, and R"*! is guar-
anteed if 0 <§"<1,0<E"<1,0<I"<1,and 0<R"< 1 forall
n>0. Thus, the constructed scheme has the following
properties:

The conservation law is satisfied

The positivity and boundedness of the solution is
satisfied: for system (7), we have that if 0<S"<1,
0<E"<1, 0<I"<1,and0<R"<1, then 0<S"' <1,
0<E™l<1,0<I" <1,and 0 <R™! <1 for all n>0.

4, NSFD Predictor-Corrector Scheme

This section is improved by the approach of a predictor-
corrector-type NSFD scheme (7) to obtain the benefits of
both methods. For the development of this scheme, firstly,
system (7) is taken as a predictor scheme, i.e.,
w1 S"+pp (N
P 1+ ¢@(h)(u+pI"y
E"+ ¢ (h)BSy 1"

n+1_— L
E," = 1+o(h)(u+0)’ ®

n n+1
nl _ I"+ ¢(h)oE,
p L+eh)(u+y)

Now, we evaluate system (1) at time ¢ + ¢ (h) and in-
troduce the term € !S™!/¢ (h) (where € is just like the ac-
celerating factor and its range is (0<e<1)). Thus, the
expression will be NSFDCL scheme that preserves conser-
vation law represented as

Sn+1 _ Sn eflsnﬂ eflsnﬂ
= uN — Sn+1 _ Sn+11n+1 _ L
ot MNP o)
En+1 _ph
W — ﬁSnJrlIn _ (‘bl + U)EnH,
In+1 _ In
— O_En+1 _ ([1 + )/)In,
@ (h)
RWH(;)RH — yInJrl _ Rn+1.
%
9
Thus, the corrector scheme is obtained as
—1antl
o S"+up(h)N +e€ S;+ ’
O 1+e +up(h) + Bo(I
n n+1 n+1
wn _ E (WS s (10)

¢ 1+ (uto)’

an I+ ¢ (h)oEM!
¢ L+o(h)(u+y)

where R™! = N — §7+ — Er1 — [,

5. Convergence Analysis

In this section, the unconditional convergence of the nu-
merical solution is presented by the proposed method.
Taking the values as

_ S+uNg(h)
B ED =+ 17

_ E+Bo(MIF,
BB Ml ol

_ I+o0¢(hF,
F3(S,E,I)——l+¢(h)[‘u+y],

(11)

G (S.ED = S+uN¢(h) +¢ 'F,
T e pg(h) + PH(DF,

_E+p¢(h)G, F,
Gz(S’E’D_1+¢(h)[‘u+a]’

_ T+0¢(h)G,
G“&E”"1+wmm+ﬂ’

where F,, F,, and F; are given as in equation (8).



4 Journal of Mathematics

The convergence and stability analysis of scheme (10) is  evaluated at the fixed points. If (§*, E*, I*) is the fixed point
carried out by calculating the eigenvalues of the Jacobian of ~ of system (1), then the Jacobian matrix JG is given by
the linearized scheme and studying its behavior and

[0G, (S*,E*,I") oG, (S",E",I") 0G,(S",E",I")]

oS O ol
JG(S", B I°) = an(sa,sE ,T7) an(sa,EE T7) an(sa,IE )| (12)

3G, (S",E",I") 0G,(S™,E",I") 9G,(S",E",T")
i ES O ol |

where

oF, _ 1 oF,
3S ~ [1+u¢(h)+Bp(I] OE

OF, _ ~(S+uN¢ (h).p¢ (h)
oI [1+u¢(h)+Be(WI”
OF, P (h)IJF,/0S

S 1+¢(h)[u+o]

OF, 1+ P¢(h)IOF,/OE
0E  1+¢MW)[u+o]’

OF, _Be(W{F, + I3F,/o1}
ol  1+¢(h)[u+oa]

OF,  o¢(h)OF,/oF

0E 1+¢(h)[u+vy)

OF, 1+a¢(WIF,/aS
ol  1+¢(M[u+yl’

3G, (1+€ 'oF,/0S)[1+€ " +pug(h) + Pp (WF;| —(S+uNe¢ (h) + € 'F,).p¢ (h)OF,/3S
o [L+€ +ug(h) + B (DE,)’ ’

G, (€ 'oF/0E)[1+¢ " +u(h) + p(WF;] =(S+uN¢(h) + € 'F,).p¢ (WOF;/0F
3E [1+¢ +ug(h) + B (WFs]’ ’

3G, (e '0F, A1) [1+ € " + pgp(h) + PS(W)F;] (S + uN¢ (h) + € ' F, ).B¢ (h)OF,/0I

ol [1+e +up(h) +Bo(WE;]’

oG, BeUn  [0G, _OF,
as‘1+¢(h)[y+a]{as'F3+Gl as }

3G, 1+ B()[3G,/OE.F, + G,0F JoE]
OE ~ 1+ ¢(h)[u+o0]

>
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G, _ P F&F+Q§%
ol [’

ol  1+¢(h)[u+a]
G, 09 ()G, /aS

oS 1+¢Mlu+yl
0G; _ 0¢(h)dG,/0F

OE  1+¢W)u+yl

3G, 1+0(h)dG,/aI
ol  1+¢Wu+yl

5.1. Disease-Free Equilibrium (S,,E,,1,) = (N,0,0). The

0’ 0’7o
values of functions and its derivatives at DFE point (N, 0,0)
are as

F,(N,0,0) = N,F,(N,0,0) = 0, F5(N,0,0) =0,

G, (N,0,0) = N,G, (N,0,0) = 0,G,(N,0,0) =0,

OF, (N,0,0) 1
oS C1+up(h)
OF,(N,0,0) _
OE -
aFl (N>0>O) _ _Nﬁ(p(h)
or  [1+up(h)]
OF,(N,0,0) _
S -
0F,(N,0,0) 1
OE _1+¢(h)[/,t+a]’
OF,(N,0,0)  B(h)
ol 1+ ¢ [u+ol
0F;(N,0,0) 0
oS -
0F;(N,0,0) o¢ (h)
OE [+ ¢M(u+a)l.[1+¢Mm)(u+pI
OF;(N,0,0) _1+[0p(h)BN(h)/1+¢(h)(u+7)]
ol 1+ ¢(h) [ +y] ’
0G,(N,0,0) 1
aS C 1+up(h)
0G, (N,0,0) —No¢ (h)B¢ (h)

OE  [1+ug(h)+e ' |1+ o) (u+ o]l +¢h) (u+y)]

(13)
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0G,(N,0,0) _ -Npp(h) [ <, N aNpg* (h)
oI [1+e +upM] L 1+upm)  [1+¢M(u+y) [L+¢M)(u+]1+dh) (u+] [
0G,(N,0,0) _ o
S -
9G, (N,0,0) 1 [1 . NBo¢” (h) ]
OE 1+ ¢ (u+o0) 1+ (u+)]1+dm)(u+]]
0G,(N,0,0) B () { 1+ ¢(h) (4 + 0) + Nope® (h) } 9G; (N, 0,0)
oI L+t )] [[1+¢(h) (+ )1+ (k) (p + )] aS
0G;(N,0,0) oo (h) {1 ) oBN¢* (h) }6G3 (N,0,0)
OE  [1+¢(h)(u+0)][1+¢(h)(u+y)] [1+¢(h) (4 +0)][1+¢(h)(p+y)] oI
1 Nop¢* (h) N*Ba*¢* (h)

) (1+¢(h)(p+0)] ’ [1+¢(h) (u+ o)1 +¢(h) (u+y)] ’

For ease in the calculation, we use the following
conventions:

a=uN¢(h)>0, 1, = up(h) >0, 1,

= B¢ (h)>0, 13 = 0 (h) >0,
(15)
O=1+e ' +up(h)=1+€ " +y>1,

S=1+¢M)[u+0ol>1,56,

It is clear that O>#;,1+%,>8,,1+7n,>6,, andd,
=0-¢'+y¢(h). If Ry=0BN/(u+0)(u+y)<1, the Ja-
cobian calculated at disease-free points (Sj,Eg,I;) =
(N,0,0) is given as

3G, (N,0,0) 3G, (N,0,0) 3G, (N,0,0)
3s oE ol

3G, (N,0,0) 3G, (N,0,0) 3G, (N,0,0)

G(N,0,0) =
Gl ) oS OE ol

dG, (N,0,0) G, (N,0,0) 3G, (N,0,0)
L3S OE or
(16)

Since the partial derivatives using the conventions are

[1+¢(h) (+ )’ [1+ ¢ (h) (u+0)]* (14

0G,(N,0,0) 1

s l+py
aGl (N) 0) 0) — _N’72’73

9 00,0, °
0G,(N,0,0) _-Nn, [ €' 1 Nny

a6 |1+, 8, &8 |
9G,(N,0,0) _

s
W=[1+W]

oE 5, &, (17)
3G, (N,0,0) [Nn, Nznina]
—_— = —+2— >

ol 8,8, &%,
9G; (N,0,0) _

oS o
M:[iJFN’Wi]

O 8,8, 86 |

2.2 2

9Gy(N,0,0)_[1 Nogy  N'nir;

ol 6 806 88 |
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So,

[ 1 ALY —-Nn, e’ +i+N’72’13 ]
1+, 05,0, 0 |1+ 06, 6,6,
1 N’72’73] [an Nznins]
G(N,0,0) = 0 <+ =+ . 18
JG(N,0,0) [61 5, 56" g, (18)
m  Nmnyl  [1 Nmns  Ngin
0 + 2 Q2 + 2 + 2 Q2
- 0,0, 610, ) 8,6, 6,0, -

To calculate the eigenvalues, put det (J-AI) =0,
AM=1/1+n =11+p¢(h)<1. And

22 —/1[(8162 + N’72’73> +<6f52 + 0, Nnyns + NZW;’??)]

56, 516
+ [(5162 * N’72’73)<5?52 +0,Nn,15 + Nz’/l;’ﬁ) _<N’7251 + N2’7§’73><’736152 * N”Izﬂg)] -0 (19)
816, 8 86, 86 ’
M -AL+B=0,
where
A =(6162 + N112113/6f82) +(6§82 + 8, Nnyms + Nziﬁfyi/éf(?g) = trace J*,
B= r(8162 + N’72’73)<5?52 +0,Nn,15 + Nz’é’ﬁ) _<N’7251 + N2’7§’73)<’735152 + N’?zﬂg)] — detJ*
820, 5207 829, 8207 '
[ [L, N, Nig,  N'nyns (20)
5 2 8,8, 8%
1 6182 1¥2 192
Jt =
s Nmoys| [1 Ny Nnar
5o T e o > T ow
[ 10102 670, 2 0,0, 0165
r03:)(1calculate the eigenvalues of J*, the following lemma is (1)1-A+B>0,
p : (2)1+A+B>0, (21)
Lemma 1. For the quadratic equation, \* = A\A + B = 0, both ()B<1.

roots satisfy |\l <1,i=2,3 if and only if the following

conditions are satisfied [25]: Let us define A = TraceJ*, B = DetJ*. Therefore,
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A= [(8, +8,) (N3 +8,0,)] + NZW%’Y? 50
- 526 ’
102

B= 1 +N’72’73

0,10, &16;

<1,

f(-1)=1+A+B>0,

(22)
1 Nmpns 1 Nuons 1+ Ny
0)=B=——+ <——4 =
SO =B =5, o 55, 88, o,
1+R 2
- . R+ )t )¢ (1) <1 (sinceR,<1),
L+¢" (W) (p+0)(u+y)+d(h)[(u+0)(u+7y)]
=B<1.
Now, for than one, whenever R, < 1. Thus, the numerical scheme in
F)=1-A+B equations (8) and (10) will converge unconditionally to

disease-free equilibrium (N, 0, 0) for any value of time step h
82824 [(8, + 8,) Nty + 0,8,)] + Nt + Ny + 8,6, Whenever R, <1 which is also computationally verified in
= 262 Figure 2(a).
172

>0.

5.2. Endemic Equilibrium (S, E,I.) = (N/Ry, uN/ p + o (1 -

1/ Ry), u/B(Ry —1)). The value of functions and its deriv-
As all the conditions of the lemma hold for R,<1,  atives at an endemic point is as

therefore the absolute value of both eigenvalues of J* is less

(23)

N
Fl (Se’Ee>Ie) = R7’

0

F, (Se’Ee’Ie) = M
(u+0)
_H
FS (Se’Ee’IE) - B (RO - 1)’
N
G1 (Se>Ee’Ie) :R_’
0
_H
G2 (Se’Ee’Ie) - B (RO - 1)’
N(1-1/R
G3 (Se>Ee’Ie) =M ( / 0)
(u+o0)

(24)
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Eigen values

Jacobian at DFE Jacobian at EE
0.51 T T T 0.989 T T T
0.508 | 0.988
0.506 0.987
0.504 0.986
0.502 | % 0.985
-
0.5} 8 0984
)
0.498 | 0.983
0.496 0.982
0.494 0.981
0.492 . 0.98 —_—
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Step size Step size
(@) (b)
FIGURE 2: Spectral radius of the Jacobian at equilibrium points.
OF, (S, E,1,) 1
oS 1+ up (R,
aFl (Se’Ee’Ie) _
OE o
aFl (Se’Ee’Ie) _ _Nﬂ(/)(h)
oI T 1+up(h)Ry
aFZ (Se’Ee’Ie) — Au¢(h) (RO - 1)
oS [1+‘u¢(h)R0][1+¢(h)(y+0)]’
aFZ (Se’Ee’Ie) _ 1
OE S+ ¢(h)(u+o0) (25)
OF, (S E..1,)  —NBg (h)[ug (DRG - 2u¢ (MR, 1]
ol Ro[1+¢(h) (u+ )1+ ¢(h) (u+ )
aF3 (Se’ Ee>Ie) _ yg(pz (h) (RO B 1)
oS [1+¢(h)(u+0)][1+¢(h)(u+p][1+pd(WR,]
aF3 (Se’Ee’Ie) _ 0¢(h)
oE 1+ ¢ (u+ o)1 +¢h) (u+p)]

OF; (Ses Ees 1) _ Ro[1+ ¢ (1) (u + ) [1 + g (W)Ry] = oNBY” () [ ()Rg — 2u (h) — 1]

ol Ry[1+ ¢ (h) (i + 0)][1 + pp (MR [1 + ¢ (h) ( + y)] ’
9G, (S B, 1) _ 1 _ Nupo@’ (h) (R, ~ 1)

oS [1+ug(MRe]  Ry[1+€™ +pup(MRy|[1+¢(h) (1 + )] [1+ug ()R] [1+ $(h) (s +y)]
aGl (Se’ Ee’Ie) — _Nﬁa(/sz (h)

OF Ro[1+€™ +ug (MRo][1+ ¢ (h) (u + )] [1+ ¢ () (s +y)]
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0G, (S, E,.1,) —-Np¢(h)

e’ e>

ol " [1+€ " +up(MRy|1+ugp (MR,

‘ |:e_1 L Roll+ ¢ (u+0)] [1+ug (R,] — oNB* (h) [ (R)RG - 2u¢p (W)R, — 1]
R+ ¢ (h) (u+0)][1+up (MR, ][1 + ¢ (h) (u +7)] ’

3G, (S, E.. 1) _[ P (h) (R, — 1)
ES BI1+ ¢ (h) (p+0)][1+ud ()R]

. Nup’o¢" (hu (R - 1)’
BRo[1+¢(h) (u+0)*[1+ ¢ (h) (u+p)][1+€ " +pup(RR,|[1+pue (MR

Nﬂﬁtﬂb (h) (R, — 1)
T RolL+ o)+ P11+ ¢ (1) (e + 7)) [1+u¢(h)R,] |

0G, (S Ep L) 1 . Npo¢’ (h)
OE (T+¢)(u+0)]  Ry[1+¢(h)(u+0)*[1+¢d(h)(u+7)]

~ Nup’ o’ (h) (Ry - 1)
BRo[1+ ¢ (h) (u+ ) [1+ ¢ (h) (u+)][1+e +up (MR, ]’

aGZ (Se Ee Ie) _N‘uﬁ2¢2 (h)€7 ' (RO B 1)

ol B+ @) (u+ 0)[L+pp (MR [1+€ " +pg (MR,

Ny/g’ ¢* (h) (Ry = 1){Ry[1 + ¢ (h) (u + 0)] [1 + pp (W)Ry] — NBo” () [u (MR — 2u¢p (R, — 1]}
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TaBLE 1: Comparison of NSFD scheme with Euler and RK-4 schemes.
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It is tedious to calculate the eigenvalues of the Jacobian of
endemic equilibrium analytically, so we have plotted the
largest eigenvalue against each step size, and Figure 2(b)
shows that, for all step sizes, the spectral radius of the Ja-
cobian of EE remains less than one, if R, > 1, which implies
that the numerical scheme in equations (8) and (10) is
unconditionally convergent if R, > 1, for all step sizes.

6. Numerical Results and Discussion

All the methods showed the convergence for small step sizes
in Table 1. However, for large values of step sizes, only the
normalized NSFDPC converge to the correct disease-free
point for B = 0.1 x 10~ as well as the correct endemic point
for f = 0.3 x 10~°. This means that, for the value of the basic

OE ol .

reproductive number (threshold parameter), R, <1; then,
DFE is stable, ie., solution to the system (S, E,I,R) are
converging to it. This can be seen from Figures 3(a)-3(c) for
h =0.01. Also, for the value of the basic reproductive
number (threshold parameter) R, > 1, then EE is stable, i.e.,
solution to the system (S, E, I, R) is converging to it. This can
be seen from Figures 3(d)-3(f) for h = 0.01.

Figures 4(a)-4(c) show how the NSFDPC method of
DFE converges to the equilibrium point for different step
sizes. Figures 4(d)-4(f) show how the NSFDPC method of
EE converges to the equilibrium point for different step sizes.

For comparison with the well-known RK-4 method to
system (1), using the parameter values given in Table 2, it is
found that, in Figures 5(a)-5(f), the numerical solution
converges for h=0.01 for both equilibrium points, and
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(c) h = 1000.
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TABLE 2: Parameters value of the measles model.

Parameters ol H o Y
5 x 107year™! 0.02 45.6 year™! 73 year™!
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FiGure 5: Continued.
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FIGURE 6: Divergence graphs of the population using the RK-4 method with step size h = 0.1.

Figure 6 shows overflow for a critical value of step size, i.e.,
h = 0.1 of DFE and EE, respectively.

Another popular numerical method is the Euler
predictor-corrector (E-PC) technique, which employs the
explicit Euler method as a predictor and the trapezoidal
rule as the corrector. This combination is second-order
accurate but has similar stability properties in PECE
mode to the explicit Euler method alone. Figures 7(a)-
7(f) show convergence results for 4 = 0.01 in both cases
that are DFE and EE. The value of 4 = 0.1 which produces

overflow when solving the system with the parameter
values of Table 2 for the PECE combination can be seen in
Figure 8.

Thus, the presented numerical results demonstrated that
NSEDPC has better convergence property following the
Euler PC and RK-4, as shown in Figure 9. It is proved that
the approximations made by other standard numerical
methods experience difficulties in preserving either the
stability or the positivity of the solutions or both but
NSEDPC is unconditionally convergent.
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7. Conclusions

In this paper, a normalized NSFDPC for the SEIR model
concerning the transmission dynamics of measles is con-
structed and analysed. This proposed numerical scheme is
very competitive. It is qualitatively stable, that is, it double
refines the solution and gives realistic results even for large
step sizes. It is dynamically consistent with a continuous
system and unconditionally convergent and satisfies the

positivity of the state variables involved in the system.
Simulations are carried out and its usefulness is compared
with a well-known numerical method of standard difference
schemes such as RK4 and Euler predictor-corrector method.
The standard finite difference schemes are highly dependent
on step sizes and initial value problems, but NSFDPC is
independent of these two features which make it more
practical. Also, this method saves computation time and
memory.
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