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Using the fixed point approach, we investigate a general hyperstability results for the following k-cubic functional equations
flkx+y)+ flkx—y)=kf(x+y)+kf(x—y)+2k(k®—1)f(x), where k is a fixed positive integer >2, in ultrametric

Banach spaces.

1. Introduction

The starting point of studying the stability of functional
equations seems to be the famous talk of Ulam [1] in 1940, in
which he discussed a number of important unsolved
problems. Among those was the question concerning the
stability of group homomorphisms.

Ulam’s problem: let G, be a group and let G, be a metric
group with a metric d. Given ¢ > 0, there exists § > 0 such that
if a mapping h: G, — G, satisfies the inequality

d(h(xy), h(x)h(y)) <9, (1)

for all x,y € G,, then there exists a homomorphism
H: G, — G, with

d(h(x),H(x))<e, (2)

for all x € G;.

The first partial answer, in the case of Cauchy equation in
Banach spaces, to Ulam question was given by Hyers [2].
Later, the result of Hyers was first generalized by Aoki [3],
and only much later by Rassias [4] and Gdvruta [5]. Since
then, the stability problems of several functional equations
have been extensively investigated [6-10].

We say a functional equation is hyperstable if any
function f satistying the equation approximately (in some

sense) must be actually a solution to it. It seems that the first
hyperstability result was published in [11] and concerned the
ring homomorphisms. However, the term hyperstability has
been used for the first time in [12]. Quite often, hyper-
stability is confused with superstability, which also admits
bounded functions. Numerous papers on this subject have
been published, and we refer, for example, to [3, 12-29].

Throughout this paper, N stands for the set of all positive
integers and N, , the set of integers greater than or equal m,
R, = [0, 00), and we use the notation X, for the set X~{0}.

Let us recall (see, for instance, [30]) some basic defi-
nitions and facts concerning non-Archimedean normed
spaces.

Definition 1. By a non-Archimedean field, we mean a field K
equipped with a function (valuation) |-|: K — [0, 00)
such that, for all r,s € K, the following conditions hold:

(1) |rl=0if and only if r =0

(2) Irs| = Irllsl

(3) |r + s| < max{|r], |s|}

The pair (I, [.|) is called a valued field.

In any non-Archimedean field, we have [1|=|-1] =1

and [n|<1, for neN;. In any field K, the function
|-|: K— R, given by
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0, x=0,
x| = (3)
1, x#0,

is a valuation which is called trivial, but the most important
examples of non-Archimedean fields are p-adic numbers
which have gained the interest of physicists for their research
in some problems coming from quantum physics, p-adic
strings, and superstrings.

Definition 2. Let X be a vector space over a scalar field K
with a non-Archimedean nontrivial valuation |- |. A func-
tion || - ||,: X — R is a non-Archimedean norm (valuation)
if it satisfies the following conditions:

(1) llxll, = 0 if and only if x = 0,
) llrxll, = Irllxll, (r € K, x € X),

(3) The strong triangle inequality (ultrametric), namely,

Il + yll, s max{llx|,, Iyl.}, xyeX (4)
Then, (X, -|l,) is called a non-Archimedean normed
space or an ultrametric normed space.

Definition 3. Let {x,} be a sequence in a non-Archimedean
normed space X.

o0 . . .
(1) A sequence{x,},”, in a non-Archimedean space is a
Cauchy sequence iff the sequence {x, ., —x }OO
y q q n+l nin=1
converges to zero.

(2) The sequence {x,} is said to be convergent if there
exists x € X such that, for any ¢ > 0, there is a positive
integer N such that ||lx,, — x|, <e, foralln> N. Then,
the point x € X is called the limit of the sequence
{x,}, which is denoted by lim X, = x.

n—~oo " n

(3) If every Cauchy sequence in X converges, then the
non-Archimedean normed space X is called a non-
Archimedean Banach space or an ultrametric Banach
space.

Let X and Y be normed spaces. A function f: X — Y is
called a k—cubic function provided it satisfies the functional
equation:

flkx+y)+ flkx—y)=kf(x+y)+kf(x-y)
+2k(k2 - l)f(x), (5)
forallx, y € X,

and we can say that f: X — Y is k—cubic on X, if it
satisfies (5) for all x, y € X,,.

In 2013, Bahyrycz et al. [31] used the fixed point theorem
from Theorem 1 in [24] to prove the stability results for the
generalization of p-Wright affine equation in ultrametric
spaces. Recently, corresponding results for more general
functional equations (in classical spaces) have been proved
in [32-35].

In this paper, by using the fixed point method derived
from [20, 21, 36], we present some hyperstability results for
equation (5) in ultrametric Banach spaces. Before
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proceeding to the main results, we state Theorem 1 which is
useful for our purpose. To present it, we introduce the
following three hypotheses:

(HI1): X is a nonempty set, Y is an ultrametric Banach
space over a non-Archimedean field, fi,..., fi:
X —X,and L,...,L;: X — R, are given.

(H2): 7:YX — Y* is an operator satisfying the
inequality

1578 (x) = Tu ().

< max(L (A ) -u(L @)L (o

LueY  xeX

(H3): A: R¥ — RY is a linear operator defined by
Ad(x) = max{L, (0)3(fi(x)}, e RY, x € X.
1sis

(7)

Thanks to a result due to Brzd¢k and Cieplinski ([25],
Remark 2), we state a slightly modified version of the fixed
point theorem ([24], Theorem 1) in ultrametric spaces. We
use it to assert the existence of a unique fixed point of
operator 7: YX — YX,

Theorem 1. Let hypotheses (H1)-(H3) be valid, and func-
tions & X — R, and ¢: X — Y fulfill the following two
conditions:

x € X,
x € X.

17 ¢(x) = p(x)l. <e(x),
lim A"e(x) =0,

n—=o0

(8)

Then, there exists a unique fixed point ¥ € YX of 7 with

llo(x) —w(x)l, < supA’e(x), xe€X. 9)
neN,
Moreover,
v(x)= lim J"¢(x), xeX. (10)
2. Main Results

In this section, we use Theorem 1 as a basic tool to prove the
hyperstability results of the k-cubic functional equation (5)
in ultrametric Banach spaces.

Theorem 2. Let (X, | -|) and (Y,|-|,) be normed space
and ultrametric Banach space, respectively, c¢>0, p,q € R,
and p+q<0, and let f: X — Y satisfies

If Gex + ) + f (kx = ) = kf (x + y) — kf (x - y)
—2(K = K)F ., <clxlIPlyl,

for all x,y € X, such that kx + y+0, kx — y#0, x+ y #0,
and x — y #0. Then, f is k-cubic on X,,.

(11)
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Proof. Take m € N such that Since p+¢g<0, one of p,q must be negative. Assume
m+ 1P that g <0 and replacing y by mx and x by ((m + 1)/k)x in
a,, = ( P ) <1, m>k. (12) (11), we obtain

||2(k3 k) f (" lx) +kf(%x) +kf(%x) — f(@m+ D)%) - f(x)

*

(13)
p
Sch<m_+1> ||x||P+q.
k
Define operators T i YH0o — %0 and
A, RY — R by
0 =2k k)" %) + kf(’m”k"mx) ' 25(”1_"km+1x) —E(@me R, EeY xeX,
(14)
Y (S SR e
and write and L, (x)=L,(x)=L;(x)=L,(x)=1. Furthermore, (11)
;4 1\P can be written in the following way:
n0) = et (T e, wex, 0 N
k ”Jmf(x)—f(x) L <e, (%), xeX,. (16)
It is easily seen that A,, has the form described in (H3) Moreover, for every &, € YX0, x € X,,,
with k=4, f,(x)=((m+1)/k)x, fo(x)=((km+
m+1)/k)x, f;(x)=((m—-km+1)/k)x, f,(x)=(2m+1)x,
3 m+1 km+m+1 m—km+1
O R (o o DA (G =%
E((2m+ 1)) - 2(K - k)y((m; l)x)—ky<<km+km+1>x> - ku<<m_’;"m)x> +E(@m+ 1)x)
(17)
< max H£(<m+1>x>_ <<m+1>x) £ km+m+1x B km+m+1x
= k A\ . k A A
m—km+1 m—km+1
”f(TX) - .M(Tx) E2m + 1)x) — p((2m + l)x)ll*}.
So, (H2) is valid. where a,, = ((m — 1)/k)P*9. We obtain that (18) holds for
By using mathematical induction, we will show that, for 7 = 0. Next, we will assume that (18) holds for n = r, where

each x € X, we have r € N. Then, we have

m+ 1\P
Al (%) =cmq(T) P9, (18)
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Altle, (x) = A, (AL g, ()

1 1 -m-1
= max{A;sm(mI:r x>>A:nfm<km+++x),/\:n€m(m+x),A;sm ((2m + l)x)}

m+ 1\? m+ 1\t m+ 1\? km+m+ 1\
=maX{cmq< p )le||p+q0€2,< Z ) ,cmq< . )Ilelmafn(i) ,

k
, iy (19)
m+1 km-m-—1
o () Nl (TS ) ol (2 + 17
K k
+ 1\ (km+m+ 1\ (km-m—-1\""
= cm||x||P" o] max <m ) , mym , m-m , 2m + 1)P™
k k k
+1\?
= cmq<mk ) lxlP* et x € X,
This shows that (18) holds for n =r + 1. Now, we can for all x € X,,.
conclude that inequality (18) holds for all n € N,. From (18), Hence, according to Theorem 1, there exists a unique
we obtain solution C,,,;: X, — Y of the equation:
lim A", (x) =0, (20)
n—=o00

1 1 1-
C (%) = 2( - k)Cm<m]: x> + ka(karTerx) + ka<%x) —C, (em+1)x), xeX, (21

such that Moreover,

) 1>p||x||P+qocnm}, x € X,. C(x) = lim T f(x), (23)

I£Go=Cn G0 *SiﬁN‘Z{C’”q(mT

for all x € X,,.

(22) Now, we show that

| 755 Gk + ) + T, f (ke = 3) =T f (e 9) = KT f (= ) = 2K = k)T f () (24)
<ol Il Iy,

for every x, y € X, such that x + y#0, x — y#0. Since the  inequality holds for n=r and every x, y € X, such that
case n =0 is just (11), take » € N, and suppose the last  x+ y#0, x — y#0. Then,
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Gvrﬂf(kx +y) + g Gvrﬂf(kx )/) kc~r+1f(x+y) kc~r+1f(x_y) _2(k3 G~r+1f(x)||

km+m+1 1+m—km

= ||z(k3 - k)?ﬁqf(mTﬂ (kx + y)) + kgjfnf(T (kx + y)> + W:nf(T (kx + y))

km+m+1

- @m0+ 2K k) (P ) ) kT (P ) )

1+m—-km

+k9”:nf<T(kx—y)>_9721f((2m+1)(kx—)/))—2k(k3_k)‘c7:" <mk+1

(x+y)>

- kza‘:ﬂf<km+k7m“ (x + y)) - kzg;f<w (x + y)> kT F(@m+1)(x + )

—2k(k3—k)9‘:nf<m+1(x y)> kzg:nf(km+km+1(x_y)>_k29:nf(l+mk—km (x—y))

e @ 0= -l ) (M ) -2 -9 (M oo
“2H(K KT ((%) <x)> +2(K k)T, f (2m + ) (0,

< max{

k7 f (" L ix- »)-2(€ - K" 1x>

| +
_kgnf<km+m+1( _y))

kT K@ (x y)) 2R k), 4@,6)

||?7"mf((2m+1)(kx+y))+9"mf((2m+ D) (kx - y) - kT, f(2m+1)(x + y))

g;f(’”T”(kx+y))+yfnf<m;1 )—kgl‘nf(m,:l(xw))

. (25)

9nmf<km+m+l(kx+y)> g;f<km+m+1(kx_y))—kgnmf<W(x+y)>

2 9;1 f<km +km+1x>

*

1+m-km

(kx—y))—k?]"mf<7k (x+y)>

9nmf<1 +m—km

(kx+y)>+?7"f(1+m m

*

T f(@m+ 1) (x - ) - 2(K* = k)T, f (2m+ )x)| }

ptq
X m+ 1\ km+m+1
Smax{camuxupnyMQ(T) R T e

1+m-km

P+
k k
camllxllpllyllq<—k ) s ca llxlP iyl (2m + 1)"”’}

1 ptq 1 p*rq _ _1 prq
:C“fn"x”‘l’”}/”qmaml(m; ) ,<km+km+> ,<kmkm> ,(km+m+1)‘”+q]>

k+1
<caylxlP Iy,



for all x, y € X, such that x + y#0 and x — y #0. Thus, by
induction, we have shown that suppose the last inequality
holds for every n € N;. Letting n — 00, we obtain that

C,kx+y)+C, (kx—y)=kC, (x+ y) +kC,,(x - y)
+2(K° - k)C,, (x),
(26)

forall x, y € X, suchthatx + y#0, x — y # 0. In this way, we
obtain a sequence {C,,},,.,, of k—cubic functions on X,

such that
m+ 1\P
L < sup{cmq( - ) ||x||P+qanm})

neN,

If (x) = C,, (x)

(27)

x € X,.

| f Gex + 3) + f Gex = y) = kf Ge+ 3) =k f (x = y) = 2(K* = k) f (0)|, <ellxlPllyl,

forall x,y € X, such that x + y#0 and x — y #0. Then, f is
k—cubic on X,,.

Proof. Take m € N such that

m — 4\P*1
(Xm:<7) <1

(30)

”2(k3 _k)f<";<—;12y>+kf<n;<—;2y>+kf<n;{—;6y>—f<m7_4y>—f(;v)

2\ /m—2\F .
<) () A% xe e

Writing

7,80 =2k - R 2 ) k() (M%) - ¢

q — P
()= (=) (B2 Il x e X,
(31) takes form
|Tmf ()= ()], <&, (%), x€X, (34)

The rest of the proof is similar to the proof of the last
theorem. It easy to show the hyperstability of cubic equation
on the set containing 0. The above theorems imply, in
particular, the following corollary, which shows their simple
application. O
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This implies that

m+1

p
If @ - Co@], <emt (") 1l x e X,
(28)

It follows, with m — o0, that f is k—cubic on X,,. In a
similar way, we can prove the following theorem. O

Theorem 3. Let (X,|-|) and (Y, -|,) be normed space
and ultrametric Banach space, respectively, c>0, p,q € R,
and p+q>0, and let f: X — Y satisfies

(29)

Since p + g >0, one of p, g must be positive, and let g >0
and replace y by (-2/m)y and x by ((m — 2)/km)y in (29).
Thus,

*

(31)

m—4

x), ey x e X,, (32)

m

(33)

Corollary 1. Let (X, |- |I) and (Y, |l,) be normed space
and ultrametric Banach space, respectively, G: X*> — Y and
G (x4, ¥o) #0 for some x,, y, € X, and

IG e, L <cllxlPlyl?,  x,y € X, (35)

where ¢>0, p,q € R. Assume that the numbers pandq
satisfy one of the following conditions:

(1) p+g<0, and (11) holds for all x, y € X,
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(2) p+g>0, and (36) holds for all x,y € X,
Then, the functional equation
fkx+y)+ f(kx +y)
Skf(x+ ) +kf(x—) (36)
+ 2(k3 - k)f(x) +G(x,y), xyeX,

has no solution in the class of functions g: X — Y.

Theorem 4. Let (X, | - ||) be a normed space, (Y, | -|,) be an
ultrametric Banach space over a field K, and ¢: X — R, be
a function such that

U= {neN: a, = max{A(n),A(kn+n-1),

(37)
AM-kn+n+1),A(2kn-1)} <1},

is a nonempty set, where A(a):=inf{t €R,:
¢ (ax) <te(x) for x € X} for all a € K,. Suppose that

lim A(a) =0,

In the following theorem, we present a general hyper- lim A(-a) =0 (38)
stability for the k—cubic equation where the control function a—c0 o
i , which h h intro-
ilsugco e((ic)1 1:— [q; (6 )]/) which corresponds to the approach intro and f: X — Y satisfies the inequality
|f Gex+ 3)+ f Uex+3) = kf Ge+ ) = kf (e =) = 2(K = k) f (0|, <p(x)+ 9 (), (39)

forall x,y € X, suchthat x + y#0and x — y #0. Then, f is
cubic on X,

| £ G0+ £ (@ = 1)) = K f (< + m+ 1)) = K f (km +m = 1)x) = 2K = k) f (mx0)| |

<@ ((=km + 1)x) + ¢ (mx),

for all x € X,,. For each m € U, we define the operator
T i YX0o — Y% by

T € (x) = 2(K° = k)& (mx) + k& (km +m - 1)x)
+ kE((=km +m + 1)x) — E((2km - 1)x),
Ee YX0 x € X
(41)
Furthermore, we put

£, (x) =@ ((=km + 1)x) + ¢ (mx) < (A(—km + 1)

42)
+A(mx))p(x), x¢€X,.
Then, inequality (40) takes the form
||97mf(x) -fx¥)|, <&, (%), x € X, (43)

| € () = Tt ()

Proof. Replacing x by mx and y by (—km + 1)x form € Nin
(39), we get

(40)

For each m € U, the operator A,,,: R — R} which is
defined by A,,8(x) = max{d(mx),5((km+m - 1)x),
8((km +m + 1)x), 8((2km — 1)x)},8 € R}, x € Xy  has
the form described in (H3) with k = 4 and

f1 (x) = mx,
fo(x)=(km+m-1)x,
fi(x)=(-km+m+ 1)x, (44)

fa(x)=(2km-1)x,
L1 (x) = Lz (x) = Lz (x) = L4 (x)=1,

for all x € X,. Moreover, for every & u € YX0, x € X,

. =[2( = k)& (Gm)x) + K& (o + m = 1)) + K& (~km + m + 1))

— E((2km - 1)x) = 2(K® = k)u (m)x) = ku ((km + m — 1)x) = kp ((~km + m + 1)x)

+E((2km — 1)x)||*

(45)

<max{[|§ (m)x) — u(m)x)|l,, 1E((km + m — 1)x) — u(km +m - 1)x)|,,

I1E((=km + m + 1)x) — u((=km + m + D)x)|,, € (2km — 1)x) — u((2km - 1)x)||,. }.
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So, (H2) is valid. By using mathematical induction, we From (42), we obtain that inequality (46) holds for n = 0.
will show that, for each x € X,,, we have Next, we will assume that (46) holds for n = r, where r € N.

A e, (x) < (A(=km + 1) + A (m))a, ¢ (x). (46) Then, we have

A:{lsm (x) = A, (A g, (x) = max{A] g, (mx), A, g, (km +m - 1)x), A g, (=km + m + 1)x), A} g, (2km — 1)x)}
< (A(m) + A(=km + 1))a;,, max{p (mx), ¢ (km + m — 1)x), ¢ ((=km + m + 1)x), ¢ (2km — 1)x)}
< (A(m) + A (=km + 1)a 9 (x)

x € X,.
(47)
This shows that (46) holds for n = r + 1. Now, we can x € X, such that
conclude that inequality (46) holds for all n € N. From (46), n
we obtain lim, A", (x) =0, for all x € X, and all |£ G =C ], < :SNI;{(/‘(W) +A(km + D), 9 ()},
m € U. Hence, according to Theorem 1, there exists, for each
m € U, a unique solution C,,: X, — Y of the equation: x € Xo.
C (%) = 2(K° = k)C,p, (mx) + KC,, ((km + m = 1)x) (49)
B B B Moreover, C,, (x) = lim,__, (I, f) (x), for all x € X,.
+kC,, (-km +m + 1)x) - C,, ((2km l)x)(, | Now, we show that
48
|70 G+ y) + T f (hkx = y) = kT f (x4 ) = kT f (x + ) = 2(K = k)T f ()], 0

<a, (¢(x)+9(»),

for every x, y € X, suchthatx + y#0,x — y#0,andn e N.  (50) holds for n = r, where r € N and every x, y € X, such
Since the case n = 0 is just (39), take k € N and assume that that x + y #0. Then,

|70 f Gex 4 3) + TE f (ke = ) = kT3 F (x4 ) = kT f (= 3) = 2(K2 = k)T £ ()]

=2k - k)T, f (m s+ ) + kT, f (U + = 1) (e -+ )
+ kT, f(~km+m+1) (kx + ) = T, f (2km = 1) (kx + y)) + 2k’ = k)T, f (m) (kx = ))
+ kT f (km+m = 1) (kx = y)) + kT " f (~km +m + 1) (kx = y)) = T" f (kkm = 1) (kx — y))
— k(K> = K)T ), f (m) (x + ) = T, f (km+m = 1) (x + ) = KT, f (~km +m + 1) (x + )
+ kT, f(2km =1) (x + ) = k(K = k)T, f (m) (x = »)) = K> T, f (km +m = 1) (x = y))
— KT f (~km +m + 1) (x = KT, f (2km = 1) (x = ) =(2(K = k) )’ T%, £ ((m) ()
~2k(K* ~ k)T, f (ki + m = 1) (x)) = 2k(K> = k) T}, f ((=km + m + 1) (x))
+2(K ~ k)7, f (2km = 1) ()],

Smax{||9:'nf(m(kx+y)) + T f(m(kx - ) - kT, f(m(x+y)-kT,, f(m(x-y))
2R K7 o]
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ngf((km+m—1)(kx+y))+9":’nf((km+m—1)(kx—y))—k9';f((km+m_1)(x+y))

~T o f ((em+m=1) (x - ) = 2(k> = k)T f (km +m - l)x)“*,

T f (m = km + 1) (kx + y)) + Ty f (m = km + 1) (kx = y)) = kT, f (m = km + 1) (x + y))

~T o f ((m=km+1) (x = ) = 2(k> = k)T, f (m —kem + 1)x)|| .

||9"mf((2km - (kx+ )+ T, f((2km —-1)(kx - y)) = kT, f(2km —1)(x + y))—

T f (@km = 1) (x = ) = 2(K* = k)T, f ((2km = 1)) }

Smax{(xﬁq(q)((mx) + ¢ ((my)), ocﬁ1 (p(km+m—-1)x)+¢(Km+m— l)y)))

a’fn ((p(=km+m+ 1)x) + o ((-km + m + 1)y)), oc’:n ((@p(2km - 1)x) + @ ((2km — l)y))}

S(xfn max{A (m), A (km +m — 1), A (=km + m + 1), A 2km — 1)} (¢ (x) + ¢ (¥))

k+1

=a, (p(x)+9(»).

Thus, by induction, we have shown that (50) holds for
every n € N. Letting n — oo in (50), we obtain that

C,(kx+y)+C, (kx-y)

52
=kC,, (x + y) + kC,, (x - y) + 2(K’ - k)C,, (x), 52

for all x, y € X, such that x + y#0 and x — y#0. In this
way, we obtain a sequence {C,,} ., of k—cubic functions on
X, such that

|f (x)-C,, (x)

. < sup{(A(m) + A (=km + 1)), ¢ (x)},
neNy

9
(51)
This implies that
If ()= C(x)], < A(m) + A (=km + 1) (x), x € X,
(54)

because the precedent inequality holds for over n = 0 and
a,, <1

It follows, with m — oo, that f is cubic on X,. The
following corollary is a particular case of Theorem 4 where
@ (x) = c|x[|? with ¢>0 and p<O0. O

Corollary 2. Let (X, |- |) and (Y, -|,) be normed space

x € Xo. and ultrametric Banach space, respectively, ¢>0, and p <0,
(53)  andlet f: X — Y satisfies
| f Gex + 3)+ f e+ ) = kf (x+ y) = kf (x = ) = 2(K* = k) £ (0|, <c (=l +1y1), (55)

for all x,y € X,. Then, f is k—cubic on X,,.
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