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+is paper deals with fuzzy quasinormed spaces in the sense of Alegre and Romaguera. After introducing the concept of the family
of star quasiseminorms, we prove the decomposition theorem for a fuzzy quasinorm with general t-norm, characterize fuzzy
quasinorms in terms of families of star quasiseminorms, and establish the connection between the fuzzy quasinorm and the family
of quasinorms.

1. Introduction

In 1984, Katsaras [1] first introduced an idea of fuzzy norm
on a linear space. In 1992, Felbin [2] introduced the concept
of fuzzy norm on a linear space whose associated metric is
Kaleva and Seikkala type [3]. Inspired by the notion of
probabilistic metric spaces, Kramosil and Michalek [4], in
1975, introduced the notion of fuzzymetric, a fuzzy set in the
Cartesian product X × X × (−∞,∞) satisfying certain
conditions. In 1994, Cheng andMordeson [5] introduced an
idea of fuzzy norm on a linear space in such a manner that
the corresponding fuzzy metric is of Kramosil and Michalek
type. Following Cheng and Mordeson, in 2003, Bag and
Samanta [6] introduced a definition of fuzzy norm and
proved the decomposition theorem of fuzzy norm to a family
of crisp norms. +is concept has been used in developing
fuzzy functional analysis and its applications. Bag and
Samanta [7] first considered a general t-norm in the defi-
nition of fuzzy normed linear space which was introduced in
[6]and proved that if t-norm is chosen other than “min,”
then the decomposition theorem of fuzzy norm may not
hold. Since the decomposition theorem plays an important
role in developing fuzzy functional analysis, it is worthy to
establish a new kind of decomposition theorem of fuzzy
norm with general t-norm. +at is one of the goals of this
article.

On the other hand, Bag and Samanta [6] stated that given
an ascent family of norms on a real linear space X, a fuzzy

norm can be determined on X. Furthermore, in 2009, Sadeqi
and Kia [8] proved that a separating family of seminorms
introduces a fuzzy norm in general, but it is not true in
classical analysis. In 2014, Alegre and Romaguera [9] also
dealt with fuzzy normed spaces in the sense of Cheng and
Mordeson and characterized fuzzy norms in terms of as-
cending and separating families of seminorms. It is worth
noting that the fuzzy normsmentioned above require a strong
restriction on the particular choice of “min” for t-norm.
+erefore, a natural query arises: how far the results of fuzzy
normed linear spaces can be established with the fuzzy norm
in its general form, i.e., waiving the restricted “min” t-norm in
the triangle inequality. To deal with this problem is another
goal of this article.

With the exception of symmetry of a fuzzy norm in [6],
Alegre and Romaguera [10] introduced the concept of fuzzy
quasinorm. +ey proved some results, such as the uniform
boundedness theorem, in fuzzy quasinormed spaces in [11].

In this paper, we are going to conduct research in the
framework of fuzzy quasinormed linear space introduced in
[10]. After investigating some properties of “α-quasisemi-
norms” corresponding to a fuzzy quasinorm, we introduce a
concept of a family of star quasiseminorms in Section 3. +e
novelty of this definition is the validity of a decomposition
theorem for a fuzzy quasinorm N with general t-norm into
the associated family of star quasiseminorms, denoted by
PN. Additionally, we prove that an increasing and separating
family of star quasiseminorms P induces a fuzzy quasinorm,
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denoted by NP. Moreover, we show that a family of star
quasiseminorms coincides with the family of star quasise-
minorms associated to the fuzzy quasinorm induced by P

(see+eorem 4); meanwhile, a fuzzy quasinorm N coincides
with the fuzzy quasinorm induced by the family of star
quasiseminorms associated to N (see +eorem 5). +at is,
P � PNP

andN � NPN
. Combining+eorems 4 and 5, we get

the decomposition theorem for a fuzzy quasinorm with
general t-norm, characterize fuzzy quasinorms in terms of
families of star quasiseminorms, and establish the connec-
tion between the fuzzy quasinorm and the family of
quasinorms.

2. Preliminaries

+roughout this paper, the symbols ∧ and ∨ mean the
operator “min” and “max,” respectively. Let Z+ be the set of
all positive integers, R � (−∞,∞), R+ � (0,∞).

First, let us recall the concept of continuous t-norms
[12].

Definition 1. A binary operation ∗ : [0, 1]× [0, 1]⟶[0, 1] is
a continuous t-norm if it satisfies the following conditions:

(T1): ∗ is associative and commutative
(T2): ∗ is continuous
(T3): a∗ 1 � a, ∀a ∈ [0, 1]

(T4): a∗ b≤ c∗d whenever a≤ c and b≤ d and
a, b, c, d ∈ [0, 1]

+e following are examples of some t-norms that are
frequently used as fuzzy intersections defined for all
a, b ∈ [0, 1].

(i) Standard intersection: aΔ1b � a∧ b

(ii) Algebraic product: aΔ2b � ab

(iii) Bounded difference: aΔ3b � max a + b − 1, 0{ }

Definition 2 (see [10]). A fuzzy quasinorm on a real linear
space X is a pair (N, ∗ ), or N for simplicity, such that ∗ is a
continuous t-norm and N is a fuzzy set in X × [0,∞)

satisfying the following conditions for every x, y ∈ X:

(i) (FQN1): N(x, 0) � 0
(ii) (FQN2): N(x, t) � N(−x, t) � 1 for all t> 0 if and

only if x � 0
(iii) (FQN3): N(cx, t) � N(x, t/c) for all c ∈ R+

(iv) (FQN4): N(x, t)∗N(y, s)≤N(x + y, t + s) for all
s, t≥ 0

(v) (FQN5): N(x, ·): [0,∞)⟶ [0, 1] is left
continuous

(vi) (FQN6): limt⟶∞N(x, t) � 1

Remark 1. We point out that (FQN2) and (FQN4) imply
that N(x, ·) is increasing.

+e following condition will be used in the paper:

(FQN7): for x≠ 0, N(x, ·) is strictly increasing on
t: 0<N(x, t)< 1{ }.

A fuzzy norm [1] on a real linear space X is a fuzzy
quasinorm (N, ∗ ) on X such that N(cx, t) � N(x, t/|c|) for
all x ∈ X and c ∈ R/ 0{ }. Recall that if in Definition 2, we put
∗�∧, then one has the notion of a fuzzy norm as given by
Cheng and Morderson [5].

By a fuzzy (quasi-) normed space, we mean a triple
(X, N, ∗ ) such that X is a real linear space and (N, ∗ ) is a
fuzzy (quasi-) norm on X.

Each fuzzy quasinorm (N, ∗ ) on X defines a topology
(denoted by τN) on X by taking all open balls as a base:

BN(x, r, t): x ∈ X, r ∈ (0, 1), t> 0 , (1)

where BN(x, r, t) � y ∈ X: N(y − x, t)> 1 − r . BN(x, r, t)

is said to be an open ball with center x and radius r. It is easy
to see that the topology τN is T0.

In the rest of the paper, the notation αn↑α (αn↓α, resp.)
means that an increasing (decreasing, resp.) sequence of real
numbers αn  convergences to a real number α.

3. Quasiseminorm Structures in a Fuzzy
Quasinormed Space

It is well known that a quasinorm on a real linear space X is a
function p: X⟶[0, ∞) satisfying the conditions: for all
x, y ∈ X and c ∈ R+,

(i) (QN1): p(x) � p(−x) � 0⇒x � 0
(ii) (QN2): p(cx) � cp(x)

(iii) (QN3): p(x + y)≤p(x) + p(y)

If p satisfies only the conditions (QN2) and (QN3), then
it is called a quasiseminorm.

Remark 2. From (QN2), we get p(0) � 0.

Proposition 1. Let (X, N, ∗ ) be a fuzzy quasinormed space,
and let α ∈ (0, 1). ,e function ‖ · ‖α: X⟶ [0,∞) is given
by

‖x‖α � inf t> 0: N(x, t)≥ α{ }. (2)

+en, for all x ∈ X and t ∈ R+,

(1) ‖x‖α is increasing with respect to α ∈ (0, 1)

(2) ‖x‖α � sup t> 0: N(x, t)< α{ }

(3) N(x, t)≥ α implies that ‖x‖α ≤ t, and equivalently,
‖x‖α > t implies that N(x, t)< α

(4) N(x, t)> α implies that ‖x‖α < t, and ‖x‖α < t implies
that N(x, t)≥ α

+e proof is direct and omitted. ‖ · ‖α: α ∈ (0, 1)  is
called the family of “α-quasiseminorms” corresponding to
fuzzy quasinorm N and denoted by PN.

Proposition 2. Let (X, N, ∗ ) be a fuzzy quasinormed space,
and let x ∈ X. If N(x, ·) is continuous and satisfies (FQN7),
then ‖x‖α is strictly increasing with respect to α ∈ (0, 1).
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Proof. Let α1, α2 ∈ (0, 1) with α1 < α2. Since N(x, ·) is
strictly increasing and continuous, there exist t1, t2 ∈ R+

such that N(x, t1) � α1, N(x, t2) � α2 and
N(x, t) ∈ (α1, α2) when t ∈ (t1, t2). It is easy to see that
‖x‖α2 � t2>t1 � ‖x‖α1. +us, ‖x‖α is strictly increasing with
respect to α ∈ (0, 1). □

Proposition 3. Let (X, N, ∗ ) be a fuzzy quasinormed space,
and let x ∈ X. ,en, the following assertions are equivalent:

(1) N(x, ·) satisfies (FQN7)
(2) ‖x‖α� inf t>0: N(x,t)>α{ }� sup t>0: N(x,t)≤α{ }

for each α ∈ (0,1)

(3) N(x, t)> α if and only if ‖x‖α < t, that is, N(x, t)≤ α
if and only if ‖x‖α ≥ t

Proof

(i) (1) ⇒ (3): from Proposition 1 (4), we only have to
show ‖x‖α < t implies N(x, t)> α. In fact, if ‖x‖α < t,
by the definition of ‖x‖α, there is 0< t1 < t such that
N(x, t1)≥ α. +us N(x, t)> α whenever N(x, ·)

satisfies (FQN7).
(ii) (3) ⇒ (2): let

t0 � inf t> 0: N(x, t)> α{ }. (3)

In the light of (2), we get ‖x‖α ≤ t0. If ‖x‖α < t0, we have
N(x, t0)> α from (3). Since N(x, ·) is left continuous,
there is δ > 0 such that N(x, t0 − δ)> α, which conflicts
with the definition of t0. +us,

‖x‖α � t0 � inf t> 0: N(x, t)> α{ }

inf t> 0: N(x, t)> α{ } � sup t> 0: N(x, t)≤ α{ }.

(4)

can be shown by using the similar technique used in
Proposition 1 (2).

(iii) (2)⇒(1): suppose that N(x, ·) is not strictly in-
creasing. +en, there exist
t1, t2 ∈ t: 0<N(x, t)< 1{ } such that t1 < t2 and
N(x, ·) ≡ α0 on [t1, t2]. +us,

sup t> 0: N(x, t)≤ α0 ≥ t2 > t1 ≥ inf t> 0: N(x, t)≥ α0 

� ‖x‖α0,

(5)

which conflicts with the supposition (2). □

Definition 3. Let I⊆R. A family of real-valued maps
di: i ∈ I  will be called

(1) lower semicontinuous (shortly LSC) if for any i ∈ I,
di � inf j>idj

(2) upper semicontinuous (shortly USC) if for any i ∈ I,
di � supj<idj

(3) continuous if it is both LSC and USC

+e following lemma is obvious.

Lemma 1. Let I be an interval in R. An increasing family of
real-valued maps di: i ∈ I  is

(1) LSC if and only for any sequence αn  in I with
αn↓α∈∈I, dα � limn⟶∞dαn

(2) USC if and only for any sequence αn  in I with
αn↑α∈∈I, dα � limn⟶∞dαn

Proposition 4. Let (X, N, ∗ ) be a fuzzy quasinormed space,
and let α ∈ (0, 1), t> 0. ‖x‖α is defined by (2). ,en,

(1) ‖ · ‖α: α ∈ (0, 1)  is USC
(2) ‖ · ‖α: α ∈ (0, 1)  is LSC if and only if N(x, ·) satisfies

(FQN7)

Proof

(1) Let αn, α ∈ (0, 1) and αn↑α. From Proposition 1 (1),
‖x‖αn

  is increasing and limn⟶∞‖x‖αn
≤‖x‖α. If

limn⟶∞‖x‖αn
< ‖x‖α, then there is a t0 > 0 such that

limn⟶∞‖x‖αn
< t0 <‖x‖α, and hence, ‖x‖αn

< t0 for all
n ∈ Z+, which together with Proposition 1 (4) fol-
lows that N(x, t0)≥ αn for all n ∈ Z+. +us,
N(x, t0)≥ α. Hence, ‖x‖α ≤ t0. +is is a contradic-
tion. +us, limn⟶∞‖x‖αn

� ‖x‖α.
(2) Suppose N(x, ·) satisfies (FQN7). Let αn, α ∈ (0, 1)

and αn↑α; then, limn⟶∞‖x‖αn
≥ ‖x‖α. Suppose

limn⟶∞‖x‖αn
>‖x‖α. +en, there is a t0 > 0 such that

limn⟶∞‖x‖αn
> t0 > ‖x‖α, and then, ‖x‖αn

> t0 for all
n ∈ Z+. By Proposition 1 (3), we have N(x, t0)< αn

for all n ∈ Z+. +erefore, N(x, t0)≤ α.

Case 1: N(x, t0)< α. From Proposition 1 (2), we get
‖x‖α > t0. +is is a contradiction.
Case 2: N(x, t0) � α. Since N(x, ·) satisfies (FQN7),
N(x, t0 − ε)< α for any ε>0. +en, ‖x‖α > t0 − ε
from Proposition 1 (3). Hence, ‖x‖α ≥ t0. +is is a
contradiction.

Combining the abovementioned discussion, we know
limn⟶∞‖x‖αn

� ‖x‖α. From Lemma 1, we know that
‖ · ‖α: α ∈ (0, 1)  is LSC.

Now, we suppose ‖ · ‖α: α ∈ (0, 1)  is LSC. Let
t1, t2 ∈ R+ with t1 < t2. +en, N(x, t1)≤N(x, t2). Suppose
that N(x, t1) � N(x, t2); then, N(x, ·) ≡ α0 on [t1, t2]. Let
m � sup t: N(x, t) � α0 ; then,

‖x‖α0 � inf t> 0: N(x, t)≥ α0 ≤ t1 < t2 ≤m. (6)

Since N(x, ·) is left continuous, N(x, m) � α0. For any
α′ > α0 and any t> 0 with N(x, t)≥ α′, we have t>m; hence,
‖x‖α′ � inf t> 0: N(x, t)≥ α′ ≥m. Let αn ⊆(0, 1) be a
strictly decreasing sequence with αn↓α0; then,
limn⟶∞‖x‖αn

≥m> ‖x‖α0, which conflicts with the suppo-
sition. +us, N(x, t1) <N(x, t2). +at is, N(x, ·) satisfies
(FQN7). □
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Definition 4. Let X be a linear space and ∗ be a continuous
t-norm. For each α ∈ (0, 1), pα is a function from X to R+.
P � pα: α ∈ (0, 1)  is called a family of star quasiseminorms
if it satisfies the conditions: for all x, y ∈ X, α, β ∈ (0, 1), and
c ∈ [0,∞),

(∗QN1): pα(cx) � cpα(x)

(∗QN2): pα∗β(x + y)≤pα(x) + pβ(y)

If P satisfies the condition (∗QN3): pα(x) � 0 for every
α ∈ (0, 1) implies x � 0, then P is said to be separating.

Remark 3. From (∗QN1), we know pα(0) � 0 for every
α ∈ (0, 1).

Remark 4. If ∗�∧, then a family of star quasiseminorms is
just a family of quasiseminorms.

+e following result is obvious:

Proposition 5. Let P � pα: α ∈ (0, 1)  be a family of star
quasiseminorms. For each x ∈ X, let

UP(x) � UP x; α1, α2, . . . , αn; ε( :

· ε> 0; α1, α2, . . . , αn ∈ (0, 1), n ∈ Z
+
,

(7)

where

UP x; α1, α2, . . . , αn; ε(  � y ∈ X: pαi
(y − x)< ε, αi ∈ (0, 1),

i � 1, 2, . . . , n}

∩ n
i�1 y ∈ X: pαi

(y − x)< ε, αi ∈ (0, 1) 

· y ∈ X: pmax αi: 1≤ i≤ n{ }(y − x)< ε .

(8)

+en, UP(x) is a basis of neighborhoods of x.
+e topology taking UP(x) as a basis of neighborhoods

of x is said to be the topology induced by P and denoted by
τP. It is easy to show that τP is T0 if P is separating.

Theorem 1. Let (X, N, ∗ ) be a fuzzy quasinormed space.
PN � ‖ · ‖α: α ∈ (0, 1)  where ‖ · ‖α is defined by (2) for all
α ∈ (0, 1). ,en,

(1) PN is a separating family of ∗ quasiseminorms
(2) the topology τPN

induced by PN coincides the topology
τN

Proof

(1) Let x, y ∈ X, α ∈ (0, 1), and c ∈ R+.

(∗QN1): ‖cx‖α � inf t> 0: N(cx, t)≥ α{ } � inf t>{

0: N(x, t/c)≥ α} � inf ct′ > 0: N(x, t′)≥ α 

� c‖x‖α.
(∗QN2): for any t1 > ‖x‖α and t2 > ‖y‖β, from the
definition of ‖ · ‖α, there exist t∗1 , t∗2 > 0 such that
t∗1 < t1, t∗2 < t2, N(x, t∗1 )≥ α and N(y, t∗2 )≥ β.
Hence,

N x + y, t
∗
1 + t
∗
2( ≥N x, t

∗
1( ∗N y, t

∗
2( ≥ α∗ β. (9)

+erefore,

‖x + y‖α∗β � inf t> 0: N(x + y, t)≥ α∗ β ≤ t
∗
1 + t
∗
2 < t1 + t2.

(10)

By the arbitrariness of t1 and t2, we know that
‖x + y‖α∗β ≤ ‖x‖α + ‖y‖β.
(∗QN3): if ‖x‖α � 0 for every α ∈ (0, 1), then ‖x‖α < t

for all t> 0; hence, N(x, t)≥ α from Proposition 1
(4). By the arbitrariness of α ∈ (0, 1), we get
N(x, t) � 1 for all t> 0. In light of (FQN2), we have
x � 0.

(2) For any x, y ∈ X, r ∈ (0, 1) and t> 0, if
N(y − x, t)> 1 − r, then ‖y − x‖1−r < t from Propo-
sition 1 (4). +erefore, BN(x, r, t)⊆UPN

(x; 1 − r; t).
On the other hand, for any x, y ∈ X, α ∈ (0, 1), and
t> 0, if ‖y − x‖α < t, then there is 0< t1 < t such that
N(y − x, t1)≥ α from (2). Hence,

N(y − x, t)≥N y − x, t1( > 1 − r, (11)

for any 1> r> 1 − α. So, UPN
(x; α; t) ⊆BN(x, r, t).

Combining the abovementioned discussion, we get
τN � τPN

. □

Remark 5. PN � ‖ · ‖α: α ∈ (0, 1)  is said to be the family of
star quasiseminorms associated with the fuzzy quasinorm
(N, ∗ ).

Example 1. Let (X, ‖ · ‖) be a quasinormed space, and let N:
X × [0,∞)⟶[0, 1] given by

N(x, t) �

0, t � 0,

t

t +‖x‖
, t> 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

for all x ∈ X. It is well known that (N, ∗ ) is a fuzzy qua-
sinorm on X, where ∗ is any continuous t-norm. +is fuzzy
quasinorm is called the standard fuzzy quasinorm induced
by ‖ · ‖. Obviously, N(x, t)≥ α is equivalent to
t≥ (α/1 − α)‖x‖ for any α ∈ (0, 1). So, it follows from (2)
that

‖x‖α �
α

1 − α
‖x‖. (13)

+erefore, PN � α/1 − α‖ · ‖: α ∈ (0, 1){ }.

Theorem 2. Let (X, N, ∗ ) be a fuzzy quasinormed space. If
for any x ∈ X, there exists t> 0 such that N(x, t) � 1. ,e
function ‖ · ‖1: X⟶[0, ∞) is given by

‖x‖1 � inf t> 0: N(x, t) � 1{ }, (14)

then, ‖ · ‖1 is a quasinorm on X. Moreover,
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‖x‖1 � sup
α∈(0,1)

‖x‖α � lim
α⟶1−0

‖x‖α. (15)

Proof

(i) (QN1): suppose ‖x‖1 � ‖ − x‖1 � 0. From (2), for any
t> 0, there exists 0< t′, t″ < t such that N(x, t′) � 1
and N(−x, t″) � 1; therefore, N(x, t)

� N(−x, t) � 1, which together with (FQN2) implies
that x � 0.

(ii) (QN2): let λ>0. +en,

‖λx‖1 � inf t> 0: N(λx, t) � 1{ }

� inf t> 0: N
x, t

λ
  � 1 

� inf λt′ > 0: N x, t′(  � 1  � λ‖x‖1.

(16)

(iii) (QN3): take any t1 > ‖x‖1 and t2 > ‖y‖1. From (2),
there exist t∗1 , t∗2 > 0 such that t∗1 < t1, t∗2 < t2,
N(x, t∗1 ) � 1 and N(y, t∗2 ) � 1. +us,

N x + y, t
∗
1 + t
∗
2( ≥N x, t

∗
1( ∗N y, t

∗
2(  � 1∗ 1 � 1.

(17)

+erefore,

‖x + y‖1 � inf t> 0: N(x + y, t) � 1 ≤ t
∗
1 + t
∗
2 . (18)

By the arbitrariness of t1 and t2, we know that
‖x + y‖1 ≤ ‖x‖1 + ‖y‖1. +us, ‖ · ‖1 is a quasinorm.

Now, we prove (15). Since ‖x‖α: α ∈ (0, 1)  is in-
creasing, it is easy to see that

‖x‖1 ≥ sup
α∈(0,1)

‖x‖α � lim
α⟶1−0

‖x‖α, (19)

for all x ∈ X. For any x ∈ X, from the definition of ‖x‖1, we
know t> ‖x‖1 − ε when N(x, t) � 1. +us, N(x, ·)< 1 on
(0, ‖x‖1 − ε]. Hence, N(x, ‖x‖1 − ε)<1. Take α0 > 0 such that
N(x, ‖x‖1 − ε) <1 − α0. By Proposition 1 (4), we get
‖x‖1−α0≥‖x‖1 − ε. Consequently,

‖x‖1 ≤ sup
α∈(0,1)

‖x‖α. (20)

+e inequalities (19) and (20) imply equation (15). □

Theorem 3. Let P � ‖ · ‖α: α ∈ (0, 1)  be an increasing
separating USC family of star quasiseminorms on a real linear
space X. For all x ∈ X and t>0, let X × [0,∞)⟶[0, 1] be
given by

NP(x, t) �
0, t � 0,

sup α ∈ (0, 1): ‖x‖α < t , t> 0.
 (21)

+en,

(1) the pair (NP, ∗ ) is a fuzzy quasinorm on X

(2) the topology τNP
induced by fuzzy quasinorm NP

coincides the topology τP induced by P

Proof

(1) (FQN1) is obvious.

(FQN2): if NP(x, t) � 1 for all t> 0, then ‖x‖α < t for
all α ∈ (0, 1) from (21). +erefore, ‖x‖α � 0 for all
α ∈ (0, 1). Since P is separating, x � 0. Conversely, if
x � 0, then ‖x‖α � 0< t for all t> 0 from Remark 3.
Hence, NP(x, t) � NP(−x, t) � 1 from (21).
(FQN3): let c ∈ R+. From (∗QN1), we have

NP(cx, t) � sup α ∈ (0, 1): ‖cx‖α < t 

� sup α ∈ (0, 1): ‖x‖α <
t

c
 

� NP(x, t/c).

(22)

(FQN4):let x, y ∈ X and s, t> 0. Set NP(x, t) � β,
NP(y, s)� c. For any ε> 0 with ε<min β, c , there
exist α′, α″ ∈ (0, 1) such that α′ > β − ε, α″ > c − ε,
‖x‖α′ < t, and ‖y‖α″ < s. +erefore, ‖x‖β−ε < t and
‖y‖c−ε < s. Hence,

‖x + y‖(β−ε)∗(c−ε) ≤ ‖x‖β−ε +‖y‖c−ε < t + s. (23)

It follows from (21) that

NP(x + y, t + s)≥ (β − ε)∗ (c − ε). (24)

By the arbitrariness of ε> 0 and the continuity of ∗, we
know that

NP(x + y, t + s)≥ β∗ c � NP(x, t)∗NP(y, s). (25)

(FQN5): it is easy to see that NP(0, ·) ≡ 1, and hence,
it is continuous. Now, take x0 ∈ X/ 0{ } and t0 > 0
arbitrarily. If NP(x, t0) � 0, then
NP(x, t) � NP(x, t0) � 0 for all t< t0. So, NP(x, ·) is
left continuous at t0. On the other hand, if
0<NP(x, t0)≤ 1. Given ε> 0 arbitrarily, from (21),
there exists α0 ∈(0, 1) such that ‖x‖α0 < t0 and
NP(x, t0) − ε< α0. For any t with ‖x‖α0 < t< t0, we
have NP(x, t)≥ α0 by (21). Hence,
NP(x, t0) − NP(x, t)≤NP(x, t0) − α0<ε. +erefore,
NP(x, ·) is left continuous at t0.
(FQN6): let x ∈ X and let ε> 0. +ere exists
α0 ∈ (0, 1) such that 1 − α0 < ε. For any t> ‖x‖α0, we
have NP(x, t)≥α0 > 1 − ε. +erefore,
limt⟶∞NP(x, t) � 1.

(2) For all x, y ∈ X, r ∈ (0, 1), and t> 0, if
NP(y − x, t)> 1 − r, then there is α ∈ (1 − r, 1) such
that ‖y − x‖α < t; therefore, BNP

(x, r, t)⊆UP(x; α; t).

On the other hand, for all x, y ∈ X, α ∈ (0, 1), and t> 0,
if ‖y − x‖α < t, then NP(y − x, t)≥ α from the definition of
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NP. Hence, NP(y − x, t)> 1 − r for any 1> r> 1 − α.
+erefore, UP(x; α; t)⊆BNP

(x, r, t).
Combining the abovementioned discussion, we get

τNP
� τP. □

Remark 6. +e abovementioned fuzzy quasinorm (NP, ∗ )

is said to be induced by the family of star quasiseminorms P.

Theorem 4. Let P � ‖ · ‖α: α ∈ (0, 1) , (NP, ∗ ) be as in
,eorem 3.3. PNP

� 〈·〉α: α ∈ (0, 1)  is the family of star
quasiseminorms associated with (NP, ∗ ). ,en, 〈x〉α � ‖x‖α
for all x ∈ X and α ∈ (0, 1). ,at is, PNP

� P.

Proof. For any t> ‖x‖α, we know NP(x, t)≥ α from (21),
which together with Proposition 1 (3) implies that 〈x〉α ≤ t.
By the arbitrariness of t, we have 〈x〉α ≤ ‖x‖α.

For any t> 〈x〉α, from (2), we know there exists
t0 ∈ (0, t) such that NP(x, t0)≥ α.

(i) Case 1: NP(x, t0)> α. From (21), there exists
α0 ∈ (α, 1) such that ‖x‖α0 < t0. Since
‖x‖α: α ∈ (0, 1)  is increasing, we have

‖x‖α < ‖x‖α0 < t0 < t. By the arbitrariness of t, we have
‖x‖α≤〈x〉α.

(ii) Case 2: NP(x, t0) � α. From (21), there exists a
strictly increasing sequence αn ⊆(0, α) with αn↑α
such that ‖x‖αn

< t0. Noting that
P � ‖ · ‖α: α ∈ (0, 1)  is USC, we have ‖x‖α ≤ t0 < t.
By the arbitrariness of t, we have ‖x‖α≤〈x〉α.

Combining the abovementioned discussion, we get
‖x‖α� 〈x〉α. □

Theorem 5. Let (X, N, ∗ ) be a fuzzy quasinormed space.
,en, NPN

� N.

Proof. Let PN � ‖ · ‖α: α ∈ (0, 1)  be the family of star
quasiseminorms induced by the fuzzy quasinorm N, and let
x ∈ X.

It is obvious that NPN
(x, 0) � 0� N(x, 0).

Let t>0. From (21) and Proposition 1 (4), we obtain that
NPN

(x, t) ≤N(x, t) directly. Now, we are going to show that
NPN

(x, t)≥N(x, t). Without loss of generality, we suppose
that N(x, t)> 0. We take a strictly increasing sequence
αn ⊆(0, N(x, t)) with αn↑N(x, t). From Proposition 1 (4),
we get ‖x‖αn

< t. So, NPN
(x, t)≥ αn. +erefore,

NPN
(x, t)≥N(x, t).
Combining the abovementioned discussion, we get

NPN
(x, t)� N(x, t) for all x ∈ X and t≥ 0, and hence,

NPN
� N. □

4. Conclusions

+is paper introduces a concept of the family of star qua-
siseminorms. With this new concept, the decomposition
theorem for a fuzzy quasinorm with general t-norm is
established, and the quasiseminorm structures in a fuzzy
quasinormed space are revealed. Based on these results, the
connection between the fuzzy quasinorm and the quasinorm
is established. +e proposed method provides a powerful

tool to study the fuzzy functional analysis. Many results
about the fuzzy functional analysis may be obtained easily
from the corresponding versions in the functional analysis
with the help of the decomposition theorem for a fuzzy
quasinorm. Conversely, some topics about the functional
analysis can be investigated in the view of the fuzzy func-
tional analysis. For example, the characterizations of those
pseudotopological linear spaces [13] that are fuzzy quasi-
normable may be investigated deeply. Moreover, the de-
composition technique proposed in this paper may be
applied in other research fields such as fuzzy Lie algebras (see
[14–16]) and Pythagorean fuzzy set theory [17].
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