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+is study, using the extended simplest method of equation, examines the explicit movement solutions of both the Schwarzian
Korteweg-de Vries (SKdV) and (2 + 1)-Ablowitz-Kaup-Newell-Segur (AKNS.) equation.+ese models show the movement of the
waves in optical fiber mathematically.+e SKdV equation explains the movement of the isolated waves in diverse fields and on the
site in a small space microsection. Some solutions obtained have been developed to show the physical and dynamic behaviors of
these solutions in the obtained wave.

1. Introduction

Partial differential equations (PDEs) have been playing an
essential role in describing and studying some complex
phenomena in distinct branches of science [1–5]. +ese
phenomena have been formulated in nonlinear PDEs with
an integer order or fractional order [6–8]. Studying these
mathematical models have been forcing many research
groups in physics, chemistry, mathematics, and so on to
derive practical and powerful computational schemes (an-
alytical, semianalytical, and numerical techniques) for
constructing exact and numerical solutions [9–15]. +ese
schemes include the modified and generalized Kudryashov
methods, the extended tanh-function method, the improved
tan(ϕ/2) expansion method, the novel, improved, extended,
and generalized (G′/G) expansion method, the extended
and generalized e− ϕ(ξ) expansion method, the Khater
method, the modified Khater method, the Adomian
decomposing method, the B-spline schemes, and so on
[16–24].

In this research, we investigate two primary mathe-
matical models in the optical fiber via the extended simplest
equation method. +e first model is Atangana conformable
fractional SKdV equation that was derived by Krichever and
Novikov in the following form [25]:
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whereU � U(x, t) satisfies Newton’s equation of motion in
a cubic potential. Equation (1) is also given by [26]
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Equation (2) has an essential role in a right-moving soliton
and the nonlocal form. However, we study a new form of
equation (2) that is given in the following system [27]:
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where B � B(x, t), C � C(x, z, t). Additionally, L1,L2
are arbitrary constants. Using the following wave trans-
formation
B(x, t) � B(b), C(x, z, t) � v(f), b � x + z −

(c/q)(t + 1/Γ(q))q and then integrating the second equation
of the transformed system once with zero constant of in-
tegration and substituting the result into the first equation of
the same system lead to
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4
B′ � 0.

(4)

While the second model is the Atangana conformable
fractional (2 + 1) AKNS equation which is so close to the first
model. +is model is given by [28–30]

4Dq
tQx + Qxxxz + 8QxzQx + 4QzQxx � 0, (5)

where Q � Q(x, z, t). Applying the next wave transforma-
tion Q � Q(b), b � x + z − (c/q)(t + (1/Γ(q)))q to equation
(5) gives

− 4cQ′ + Q
‴

+ 6Q′2 � 0. (6)

Balancing the terms in equations (4) and (6) based on the
next principle of homogenous rule,
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leads to N � 1.

+e rest sections are order in the following order. Section
2 gives the implementation of the extended simplest
equation method for the Atangana conformable fractional
SKdV equation (8) and the Atangana conformable fractional
(2 + 1)-AKNS equation (9). Also, some solutions are
sketched to illustrate the physical behaviour of the wave
solutions. Section 3 produces a conclusion of our paper.

2. Application

In this section, we apply the extended simplest equation
method to the SKdV equation and the (2 + 1)-AKNS
equation for constructing the exact traveling and solitary
wave solutions.

2.1.,e SKdVEquation. According to the extended simplest
equation method and value of homogenous balance value,
we get
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+ a0 + f(b)a1, (8)

where a− 1, a0, and a1 are arbitrary constants. Also, f(b)

follows the next ODE:

f′(b) � α + λf(b) + μf(b)
2
, (9)

where α, λ, and μ are the arbitrary constants. Substituting
equation (8) and its derivative along equation (9) into
equation (4) and collecting all terms with the same power of
fi(b), i � (0, 1, 2, . . .) lead to a system of equations. Solving
this system with any computer software yields family one:
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(10)

Subsequently, the explicit solutions of the fractional
SKdV equation are given as follows.
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where H � x + z − (c/q)(t + (1/Γ(q)))q.
Family two:
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Subsequently, the explicit solutions of the fractional
SKdV equation are given as follows.

When λ � 0, αμ< 0,
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When α � 0,
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Figure 1: Periodic kink solitary wave solutions of equation (11) in three-dimensional, two-dimensional, and contour plot 3D
forλ � 6, a1 � 3, μ � − 9, c � − 3, and ϑ � 2.
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Figure 2: Kink solitary wave solutions of equation (21) in three-dimensional, two-dimensional and contour plot 3D for
a0 � 1, α � − 1, μ � 4, and ϑ � 3.
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where H � x + z − (c/q)(t + (q/Γ(q)))q

2.2. ,e (2 + 1)-AKNS Equation. According to the extended
simplest equation method and value of homogenous balance
value, we get

Q(b) � 􏽘
N

i�− N

aif(b)
i

�
a− 1

f(b)
+ a0 + f(b)a1, (18)

where a− 1, a0, and a1 are the arbitrary constants. Also, f(b)

satisfies equation (9). Substituting equation (18) and its
derivative along (9) into equation (6) and collecting all terms
with the same power of fi(b), i � (0, 1, 2, . . .) lead to a
system of algebraic equations. Solving this system with any
computer software yields

a− 1⟶ 0, a1⟶ − μ, c⟶
1
4
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Subsequently, the explicit solutions of the fractional
(2 + 1)-AKNS equation are given as follows.
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3. Conclusion

+is paper has investigated the exact traveling and solitary wave
solutions of the fractional SKdV equation and the fractional
(2+ 1)-AKNS equation. +e extended simplest equation
method has successfully been implemented and some new
distinct optical solitary wave solutions are obtained for both
models. Some solutions have been sketched in three types
(three-dimensional, two-dimensional, and contour plots)
(Figures 1 and 2). +e powerful effect of the used method is
illustrated. Moreover, the ability of applying to different types
of nonlinear evolution equations has been verified.
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integrable evolution equations and the Schwarzian deriva-
tive,” Studies in Applied Mathematics, vol. 143, no. 2,
pp. 139–156, 2019.

[26] M. M. A. Khater, A. R. Seadawy, and D. Lu, “Bifurcations of
solitary wave solutions for (two and three)-dimensional
nonlinear partial differential equation in quantum and
magnetized plasma by using two different methods,” Results
in Physics, vol. 9, pp. 142–150, 2018.

[27] Z. Li, “Diversity soliton excitations for the (2+1)-dimensional
Schwarzian Korteweg-de Vries equation,” ,ermal Science,
vol. 22, no. 4, pp. 1781–1786, 2018.

[28] W. Gao, G. Yel, H. Mehmet Baskonus, and C. Cattani,
“Complex solitons in the conformable (2+1)-dimensional

Journal of Mathematics 5



Ablowitz-Kaup-Newell-Segur equation,” AIMS Mathematics,
vol. 5, no. 1, p. 86, 2019.

[29] A. Issasfa and J. Lin, “Lump and mixed rogue-soliton solu-
tions to the 2+1 dimensional Ablowitz-Kaup-Newell-Segur
equation,” Journal of Applied Analysis and Computation,
vol. 10, no. 1, pp. 314–325, 2019.

[30] G. Xue, Q. Zhou, A. Biswas, A. Kamis Alzahrani, and W. Liu,
“Darboux transformation for a generalized Ablowitz-Kaup-
Newell-Segur hierarchy equation,” Physics Letters A, vol. 384,
Article ID 126394, 2020.

6 Journal of Mathematics


