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We propose a stochastic predator-prey model to study a novel idea that involves investigating random noises effects on the
enrichment paradox phenomenon. Existence and stochastic boundedness of a unique positive solution with positive initial
conditions are proved. )e global asymptotic stability is studied to determine the occurrence of the enrichment paradox
phenomenon. We show theoretically that intensive noises play an important role in the occurrence of the phenomenon, where
increasing intensive noises lead to occurrence of the paradox of enrichment. We perform numerical simulations to verify and
demonstrate the theoretical results.)e new results in this study may contribute to increasing attention to study the random noise
effects on some ecological and biological phenomena as the paradox of enrichment.

1. Introduction

)eoretical ecology has grown to the extent that we regularly
see papers in mathematical ecology discussing models in
purely mathematical terms that from time to time bear little
resemblance to real ecological processes. )ere is a desire to
reexamine the situation and study the diverse constructing
blocks once more. Mathematical modeling is a beneficial
tool to reveal how a process works and predict how it will
progress [1]. However, the difficulty in determining eco-
logical principles makes formulating ecological problems a
complicated process [2, 3].

Differential equations are a central tool that are used to
describe many ecological problems mathematically. Preda-
tor-prey interaction is one of the most significant topics in
applied mathematics and mathematical biology [4–8].
Different styles of mathematical models have been used to
study predator-prey interaction. Logistic predator-prey
models have been used by some researchers due to their
realistic descriptions of the growth rates of species [1].
Logistic models display a carrying capacity term that rep-
resents limiting species sustainable by the environment. In
this paper, we use logistic models of predator and prey
equations, in which the carrying capacity of predator is a
proportional to the available amount of prey.

Paradoxical phenomena have attracted much attention
than normal observations. One of the most important
paradoxes in ecology is the paradox of enrichment, which
was firstly mentioned by Rosenzweig [9]. )e paradox of
enrichment states that coexistence equilibrium point will
destabilize when the carrying capacity is increased, and the
destabilization may lead to stochastic extinction for one of
the species or all species. Mathematically, destabilization can
be explained by the oscillations closer to one of the axes or
both axes of phase space. Although the enrichment paradox
phenomenon is interpreted as the variance between the real
world and the mathematical construction in many experi-
mental studies, the paradox of enrichment has occurred as
explained in some recent experimental studies [10–12].

Stochastic process has many applications in different
sciences [13–17]. Random noises are a ubiquitous charac-
teristic of ecological systems, since nearly all environments
are subject to some unexpected factors, which have an
important role in an ecosystem component [18–23]. Ran-
dom noises are important in ecology with regard to focusing
on the variability of ecological systems and moving away
from thinking in terms of equilibrium dynamics. Some
recent studies investigated stochastic predator-prey models
to study the random noise effects on the dynamic behaviors
such as [24–27].We highlight themain points that have been
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focused in the literature on stochastic predator-prey models
topic as follows: firstly, using different stochastic predator-
prey models; secondly, establishing existence and unique-
ness of global solution of these systems; thirdly, establishing
sufficient conditions for the existence of a unique ergodic
stationary distribution; finally, obtaining the persistence and
extinction conditions.

Alebraheem [28] studied the occurrence of the paradox
of enrichment with deterministic models. Motivated by the
results in the previous study, we study a novel idea in this
paper that involves investigating stochastic concept to study
the random noise effects on the occurrence of the paradox of
enrichment in a predator-prey model. In order to study our
idea, we propose a stochastic predator-prey model and prove
the global stability of the stochastic model by constructing
suitable Lyapunov function and using It􏽢o formula, which
determine the occurrence of the phenomenon. )is study
may contribute to increasing attention to study the random
noise effects on some ecological and biological phenomena
as the paradox of enrichment.

)e rest of this paper is organized as follows. In the next
section, we introduce a stochastic predator-prey model. In
Section 3, we prove existence and stochastic boundedness of
a unique positive solution with positive initial conditions.
Section 4 presents the global asymptotic stability and the
occurrence of the enrichment paradox phenomenon in
stochastic and deterministic models, in addition to nu-
merical simulations that verify and demonstrate the theo-
retical results. Finally, in Section 5, discussion and
conclusions are presented.

2. Stochastic Predator-Prey Model

We investigate the random noises in a predator-prey model
to study its effects on the dynamic behaviors of this model,
which have effects on prey and predator species.

)e standard It 􏽢o stochastic differential equation has the
following form [21]:

dX(t) � F(X(t), t)dt + G(X(t), t)dW(t), X t0( 􏼁 � X0,

for t≥ t0,

(1)

where the function F(t, X(t)) is called the drift and
G(t, X(t)) is the diffusion matrix. W is a standardWiener or
Brownian motion processes.

We use stochastic differential equations to describe the
random noises of continuous-time model that have been
applied by some studies [23–27].

We define
R

n
+ � X � X1, X2, · · · , Xn( 􏼁 ∈ Rn

: Xi > 0, 1≤ i≤ n􏼈 􏼉. (2)

Let (Ω,F,P) be a complete probability space with a
filtration Ft􏼈 􏼉t≥ 0, and suppose that the constant initial value
X0 ∈ Rn

+.
)e differential operator L of equation (1) is defined by

the following formula [21]:
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(3)

If L acts on a function V ∈ C2,1(Rn
+,R+), then

LV(X(t), t) � Vt(X(t), t) + VX(X(t), t)f(X(t), t)

+
1
2
trace g

T
(X(t), t)VXX(X(t), t)g(X(t), t)􏽨 􏽩,

(4)

where Vt � (zV/zt), VX � (zV/zX1, zV/zX2, . . . , zV/zXn),
and VXX � (z2V/zXizXj)n×n. By It􏽢o’s formula, we can attain

dV(X(t), t) � LV(X(t), t)dt

+ VX(X(t), t)g(X(t), t)dW(t).
(5)

In this paper, we use the continuous-time predator-prey
model with stochastic perturbations as follows:

dX � X ρ 1 −
X

k
􏼒 􏼓 − αY􏼒 􏼓dt + σ1XdW1, (6a)

dY � Y(−u + eαX − eαY)dt + σ2YdW2. (6b)

Subjecting to initial conditions,

X(0) � X0 > 0, Y(0) � Y0 > 0, (7)

where σi represent the strength of noise and dWi is a
standard Wiener or Brownian motion process for i � 1, 2.

)e meaning of variables and parameters of model ((6a)
and (6b)) are summarized as follows:

X: density of prey species
Y: density of predator species
ρ: inherent growth rate of prey
k: carrying capacity of the environment
u: death rates of predator
α: attack rate of predator
e: efficiency of converting consumed prey into predator
birth

3. Existence, Uniqueness, and Boundedness of
the Positive Solution

Since the model ((6a) and (6b)) is a biological model, the
following theorem shows the existence and uniqueness of
the global positive solution to the model ((6a) and (6b)). For
a model of population dynamics, we have a unique global
(i.e., no explosion in a finite time) solution for any given
initial value whichmeans that there is a finite population size
at a finite time [29] while the solution is positive because of
biological feasibility.
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Theorem 1. If any initial condition (X0, Y0) ∈ R2
+,

then there is a unique positive solution (X(t), Y(t)) of the
model ((6a) and (6b)) almost surely for all t ≥ 0 with prob-
ability one.

Proof. We assume the solution of the model ((6a) and (6b))
is (X(t), Y(t)) for t ∈ (0, τe), where τe indicates the ex-
plosion time.

Let us consider q1(t) � lnX(t) and q2 � lnY(t). We
apply It􏽢o formula on the system ((6a) and (6b)) and then the
equation (6a) becomes as follows:

d(lnX(t)) �
zq1

zt
+

zq1

zX
X ρ 1 −

X

k
􏼒 􏼓 − αY􏼒 􏼓 +

1
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z
2
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2 σ1X( 􏼁

2
􏼢 􏼣dt

+
zq1

zX
σ1XdW1

� 0 +
zq1

zX
X ρ 1 −

X

k
􏼒 􏼓 − αY􏼒 􏼓 −

1
2

1
X

2σ
2
1X

2
􏼢 􏼣dt

+
1
X
σ1XdW1

� ρ −
ρX

k
− αY −

1
2
σ21􏼔 􏼕dt + σ1dW1,

d q1( 􏼁 � ρ −
ρ
k

e
q1 − αe

q2 −
1
2
σ21􏼔 􏼕dt + σ1dW1.

(8)

Similarly, for equation (6b), we obtain

d q2( 􏼁 � −u + eαe
q1 − eαe

q2 −
1
2
σ21􏼔 􏼕dt + σ2dW2, (9)

with initial values q1(0) � lnX0 and q2(0) � lnY0.
)e transformed system becomes

d q1( 􏼁 � ρ −
ρ
k

e
q1 − αe

q2 −
1
2
σ21􏼔 􏼕dt + σ1dW1, (10a)

d q2( 􏼁 � −u + eαe
q1 − eαe

q2 −
1
2
σ21􏼔 􏼕dt + σ2dW2, (10b)

with q1(0) � lnX0 and q2(0) � lnY0.
)e coefficients of the system ((10a) and (10b)) satisfy

local Lipschitz condition; this means that the system ((10a)
and (10b)) has unique local solution (q1(t), q2(t)) for
t ∈ [0, τe). By using the Ito formula, the unique positive
solution of the system ((6a) and (6b)) with initial value
(X0, Y0) is (X(t), Y(t) � (eq1(t), eq2(t)) for t ∈ [0, τe).

We show that the solution is global if we verify τe �∞
a.s.

Since the solution is positive on [0, τe), we find

dX≤ ρXdt + σ1XdW1. (11)

Let ξ1(t) be the unique solution of the equation

d ξ1( 􏼁 � ρξ1dt + σ1ξ1dW1, (12)

with ξ1(0) � X0.
Let U � (1/ξ1(t)). Now, we apply It􏽢o formula, and we

obtain

dU � −
ρξ1
ξ21

+ σ21
ξ21
ξ31

􏼢 􏼣dt −
σ1ξ1
ξ21

dW1

� −
ρ
ξ1

+
σ21
ξ1

􏼢 􏼣dt −
σ1
ξ1

dW1

� −ρ + σ21􏼐 􏼑Udt − σ1UdW1,

dU � −ρ + σ21􏼐 􏼑Udt − σ1UdW1,

(13)

with U(0) � (1/X0).
)e unique solution of stochastic differential equation

(13) is

U �
1

X0
e

−ρ+σ21( )t−σ1W1 ,

i.e. ξ1 � X0e
ρ−σ21( )t+σ1W1 .

(14)

∴X(t)≤ ξ1(t).
We have from the second equation of the system ((6a)

and (6b)) that

dY � Y(−u + eαX − eαY)dt + σ2YdW2,

dY≤ eαXYdt + σ2YdW2.
(15)

Let ξ2(t) be the unique solution of the equation

dξ2 � eαξ1ξ2dt + σ2ξ2dW2, (16)

with ξ2(0) � Y0.
Applying the It􏽢o formula, as doing the same procedure

for first equation of the system ((6a) and (6b)), we obtain the
unique solution of stochastic differential equation (16) as

ξ2(t) � Y0e
eα􏽒

t

0
ξ1(s)ds+σ2W2 . (17)

∴ Y(t)≤ ξ2(t).
Furthermore, for the first equation of the system ((6a)

and (6b)), we have

dX≥X ρ 1 −
X

k
􏼒 􏼓 − αY􏼒 􏼓dt + σ1XdW1. (18)

We can say that

dX≥X ρ 1 −
X

k
􏼒 􏼓 − αξ2􏼒 􏼓dt + σ1XdW1. (19)

Assume H1(t) to be the unique solution of the equation

dH1(t) � H1(t) ρ 1 −
H1(t)

k
􏼠 􏼡 − αξ2􏼠 􏼡dt + σ1H1(t)dW1,

(20)

with H1(0) � X0.
By applying the Ito formula, we have the unique solution

of stochastic differential equation (20) as
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H1(t) �
e

ρ−σ21( )t− α 􏽒
t

0 ξ2(s)ds + σ1W1

1/X0( 􏼁 +(ρ/k) 􏽒
t

0 e
ρ−σ21( )s−α 􏽒

t

0 ξ2(v)du + σ1W1dv

.

(21)

∴ X(t)≥H1(t).
)rough comparison theorems for stochastic differential

equations [30], we get from (14) and (21) that

H1(t)≤X(t)≤ ξ1(t) a.s. for t ∈ 0, τe􏼂 􏼁. (22)

In the same manner, for the second equation of the
system ((6a) and (6b)), we have

dY≥ −uYdt + σ2YdW2. (23)

Suppose that H2(t) be the unique solution of the
equation

dH2(t) � −uH2dt + σ2H2dW2, (24)

with H2(0) � Y0.
By applying It􏽢o formula, we have the unique solution of

stochastic differential equation (24) as

H2(t) � Y0e
− u+σ22( )t+σ2W2. (25)

∴ Y(t)≥H2(t).
Also, through comparison theorems for stochastic dif-

ferential equations [30], we obtain from (17) and (25) that

H2(t)≤Y(t)≤ ξ2(t) a.s. for t ∈ 0, τe􏼂 􏼁. (26)

It follows that ξ1(t), ξ2(t),Η1(t), and Η2(t) exist for all
t≥ 0 and τe �∞ and we can conclude that (X(t), Y(t))

globally exists. )is proves the theorem.
)rough the previous proof, we have the following

theorem. □

Theorem 2. If the unique positive solution (X(t), Y(t)) of
the system ((6a) and (6b)) has any initial condition
(X0, Y0) ∈ R2

+, then there exist the functions
ξ1(t), ξ2(t),Η1(t), and Η2(t) defined to satisfy

Η1(t)≤X(t)≤ ξ1(t),

Η2(t)≤Y(t)≤ ξ2(t), a.s., for all t≥ 0.
(27)

4. Global Asymptotic Stability and
Paradox of Enrichment

4.1.8eoretical Analysis. In this section, we study the global
stability of the stochastic model ((6a) and (6b)) that is an
equivalent of the stationary distribution and ergodicity to
stochastic models by constructing suitable Lyapunov
function and using Ito formula [31]. )ere is not positive
time-independent equilibrium point as deterministic sys-
tems. In this paper, the global asymptotic stability of the
stochastic system ((6a) and (6b)) (i.e., ergodic property) is
studied to determine the occurrence of the enrichment
paradox phenomenon.

Definition 1 (see [32]). )e trivial solution of stochastic
differential equation (1) is defined to be the following:

(i) Stochastically stable ∀ε ∈ (0, 1) and r> 0, ∃ a δ �

δ(ε, r)> 0 such that

P X t, X0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< r∀t≥ 0􏽮 􏽯≥ 1 − ε. (28)

(ii) Stochastically asymptotically stable if it is stochas-
tically stable and, moreover, ∀ ∊ ∈ (0, 1), ∃
δ0 � δ0(ε)> 0 such that

P lim
t⟶∞

X t, X0( 􏼁 � 0􏼚 􏼛≥ 1 − ε, (29)

whenever |X0|< δ0.
(iii) Globally stochastically asymptotically stable if it is

stochastically stable and, moreover, ∀X0 ∈ R with

P lim
t⟶∞

X t, X0( 􏼁 � 0􏼚 􏼛 � 1. (30)

If we assume σ1 � 0 and σ2 � 0, then the model ((6a) and
(6b)) becomes a deterministic model as given by Alebraheem
[28], but in this paper, inherent growth rate of prey (ρ) is an
unknown value, and it was fixed to be 1 in [28]:

dX

dt
� ρX 1 −

X

k
􏼒 􏼓 − αXY,

dY

dt
� −uY + eαXY − eαY

2
.

(31)

)e coexistence equilibrium point of the model (31) is

E2 � (X, Y) �
k(u + ρe)

eαk + e
,

eραk − u

eα2k + eα
􏼠 􏼡. (32)

)e coexistence equilibrium point exists under the
following condition:

eραk> u. (33)

Theorem 3. If k< (ρ(X − _X)2/1/2e( _Xσ21 + _Yσ22) −

α(Y − _Y)2)and for any initial condition (X0, Y)0 ∈ R2
+, then

there is a unique positive solution (X(t), Y(t)) of the system
((6a) and (6b)) for all t≥ 0, which is globally asymptotically
stable almost surely (a.s.).

Proof. Define Lyapunov functions as

V1 � X − _X − _X ln
X

_X
􏼒 􏼓,

V2 � Y − _Y − _Y ln
Y

_Y
􏼒 􏼓.

(34)

We apply Ito formula and so we have
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L V1( 􏼁 � 1 −
X

_X
􏼒 􏼓dX +

1
2

_X

X
2(dX)

2

� (X − _X) ρ 1 −
X

k
􏼒 􏼓 − αY􏼒 􏼓dt + σ1dW1􏼔 􏼕 +

1
2

_Xσ21dt

� (X − _X) ρ −
ρX

k
− αY􏼒 􏼓dt + σ1dW1􏼔 􏼕 +

1
2

_Xσ21dt

� (X − _X)
ρ _X

k
+ α _Y −

ρX

k
− αY􏼠 􏼡dt + σ1dW1􏼢 􏼣 +

1
2

_Xσ21dt

� −
ρ
k

(X − _X)
2

− α(X − _X)(Y − _Y) +
1
2

_Xσ21􏼔 􏼕dt + σ1(X − _X)dW1.

(35)

Similarly, we obtain

L V2( 􏼁 � 1 −
Y

_Y
􏼒 􏼓dY +

1
2

_Y

Y
2(dY)

2

� (Y − _Y) (−u + eαX − eαY)dt + σ2dW2􏼂 􏼃 +
1
2

_Yσ22dt

� (Y − _Y) (eαX − eα _X − eαY + eα _Y)dt + σ2dW2􏽨 􏽩 +
1
2

_Yσ22dt

� (Y − _Y) (eα(X − _X) − eα(Y − _Y))dt + σ2dW2􏽨 􏽩 +
1
2

_Yσ22dt

� eα(X − _X)(Y − _Y) − eα(Y − _Y)
2

+
1
2

_Yσ22􏼒 􏼓dt + σ2(Y − _Y)dW2􏼔 􏼕.

(36)

Now, we define

V � X − _X − _X ln
X

_X
􏼒 􏼓􏼒 􏼓 + Β Y − _Y − _Y ln

Y

_Y
􏼒 􏼓􏼒 􏼓,

L(V) � L V1( 􏼁 + BL V2( 􏼁

≔ L(V)dt + σ1(X − _X)dW1 + σ2(Y − _Y)dW2,

(37)

where

L(V) � −
ρ
k

(X − _X)
2

− eα(Y − _Y)
2

− α(X − _X)(Y − _Y)

+ eα(X − _X)(Y − _Y) +
1
2

_Xσ21 +
1
2

_Yσ22.

(38)

We select B � (1/e) to simplify the mathematical analysis;
then,

L(V) � −
ρ
k

(X − _X)
2

− α(Y − _Y)
2

+
1
2e

_Xσ21 +
1
2e

_Yσ22.

(39)

)erefore, the number of terms is reduced.
If k< (ρ(X − _X)2/(1/2e)( _Xσ21 + _Yσ22) − α(Y − _Y)2),

then this implies L(V)< 0 along all trajectories.
)rough the previous analysis and by removing sto-

chastic terms, the dynamics of deterministic model (31)
always coexist in a globally stable state and there is no bi-
furcation under any conditions. )erefore, the paradox of
enrichment does not arise with deterministic model (31) as it
was proved by Alebraheem [28]. □
Corollary 1. If k< (ρ(X − _X)2/(1/2e)( _Xσ21 + _Yσ22) −

α(Y − _Y)2) is violated, then coexistence equilibrium point
E2 � (X, Y) destabilizes.

Corollary 2. 8e paradox of enrichment arises with the
stochastic model ((6a) and (6b)).

We conclude that the intensive noises affect the stability
as shown through)eorem 3; this leads to occurrence of the
paradox of enrichment in the stochastic model ((6a) and
(6b)) as shown through Corollary 2. )e occurrence of the
enrichment paradox phenomenon depends on the carrying
capacity in one side and stochastic terms in another side as it
is shown in )eorem 3 and Corollary 1.
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Figure 1: Dynamics model (31) when (σ � 0.0): (a) time series; (b) phase plane.
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Figure 2: Dynamics model (6a) and (6b) when (σ � 0.4): (a) time series; (b) phase plane.
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Figure 3: Dynamics model (6a) and (6b) when(σ � 1.0): (a) time series; (b) phase plane.
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4.2. Numerical Simulations. We perform numerical simu-
lations to show the effects of stochastic process on the oc-
currence of the enrichment paradox phenomenon. )e
stochastic Runge–Kutta method based on It􏽢o process is used
to solve the model ((6a) and (6b)). We use a command
“StochasticRungeKuttaScalarNoise” in MATHEMATICA
11.3 program as a method to execute the numerical simu-
lations, according to Wolfram website [33]. )e command
uses stage Rossler Stochastic Runge–Kutta method for scalar
noise that has order 3/2. )e values of the parameters are
selected to satisfy condition (33) with regard to the coex-
istence of prey and predator. )e values of the parameters
and initial conditions are fixed. However, we use different
values of noise strength. )e values are as follows:

r � 1.5, k � 3, α � 1.5, e � 1.0, u � 0.65,

X(0) � 0.7, Y(0) � 0.3.
(40)

Model (31) presents stable dynamic behavior as shown in
Figure 1 when σ � 0, which refers to deterministic model
(31). In our simulations, we observe that the dynamic be-
havior changes from stable to oscillated when investigating
the random noises to be σ � 0.4, σ � 1.0, and σ � 3.0, as
shown in Figures 2–4, respectively. However, the difference
between the second, third, and fourth cases is the size of the
oscillations; with increased values of σ, the size of the os-
cillations increases. )en, we obtain that the random noises
have effects on the occurrence of the paradox of enrichment,
moving from stable dynamic behavior to oscillated dynamic
behavior.

5. Discussion and Conclusions

In this paper, we investigated a stochastic predator-prey
model to study the random noise effects on the enrichment
paradox phenomenon. To the best of our knowledge, this is
the first study to discuss the random noise effects on the
occurrence of the enrichment paradox phenomenon. We
proved the existence, uniqueness, and boundedness of the
model as shown in)eorems 1 and 2.)e global stability was

studied to determine the occurrence of the enrichment
paradox phenomenon; therefore, we proved the global
stability of the stochastic model by constructing suitable
Lyapunov function and using It􏽢o formula as demonstrated
in )eorem 3. )is is an equivalent of the stationary dis-
tribution and ergodicity to stochastic models.

)e theoretical results showed that intensive noises play
an important role in occurrence of the paradox of enrich-
ment, where increasing intensive noises lead to occurrence
of the paradox of enrichment as demonstrated in)eorem 3
and Corollaries 1 and 2. Finally, we performed the numerical
simulations to verify and demonstrate the theoretical results.
In addition, our simulations showed that the size of the
oscillations increases with increased values of intensive
noises.

Overall, this study corresponds with the literature, in
which the random noises focus on the variability of eco-
logical systems and moving away from thinking in terms of
equilibrium dynamics. We proved theoretically and showed
by the numerical simulations that the random noises make
our model destabilize with increased values of intensive
noises, although with no noises, our model is stable without
conditions. Hence, the paradox of enrichment arises with the
random noises. )is study may contribute to increasing
attention to study the random noise effects on some eco-
logical and biological phenomena as the paradox of en-
richment for future work.
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