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In this paper, we study the generalized derivations of MA-semirings with involution. We discuss some differential identities
satisfied by the generalized derivations which force the semirings with involution to be commutative.

1. Introduction and Preliminaries

Javed et al. [1] introduced the notion of MA-semiring that is
an additive inverse semiring satisfying A2 condition of
Bandlet and Petrich [2]. ,e notion of MA-semirings is
groundbreaking to use commutators and their related
identities in semirings. ,is enables the algebraists to pro-
duce and extend some remarkable results in this area. MA-
semiring is a generalized structure of rings and distributive
lattices but in spite of semirings we can deal with lie theory in
MA-semirings. For ready reference, one can see [1, 3, 4]. ,e
concept of commutators along with derivations and certain
additive mappings was further investigated and extended in
[1, 3–6]. Involution is one of the important and fundamental
concepts studied in functional analysis and algebra. For
instance, B∗-algebra due to Rickart [7] and C∗-algebra due
to Segal [8] are now well-known concepts that are defined
with involution. Later on, many algebraists used this idea in
groups, rings, and semirings (see [9–22]). Several research
papers have been produced for MA-semirings with invo-
lution; for reference, onemay see [5, 6]. To discuss the results
of rings with involution in MA-semirings with involution
would be of great interest for readers and researchers.

In this paragraph, we compose some necessary defini-
tions and preliminary concepts. By a semiring S, we mean a
semiring with absorbing “0,” in which addition is com-
mutative. A semiring S is said to be additive inverse semring
if for each s ∈ S there is a unique s′ ∈ S such that s + s′ + s �

s and s′ + s + s′ � s′, where s′ denotes the pseudoinverse of s.
An additive inverse semiring S is said to be an MA-semiring
if it satisfies s + s′ ∈ Z(S), ∀s ∈ S, where Z(S) is the center of
S. In fact, every ring is MA-semiring, while converse may not
be true. ,e following is one of the examples of MA-sem-
iring which is not a ring. Such examples motivate us to
generalize the results of ring theory in MA-semirings.

Example 1 (see [1]). ,e set S � 0, 1, 2, 3, 4, . . . .{ } with ad-
dition ⊕ and multiplication ⊙ , respectively, defined by
a⊕ b � sup a, b{ } and a⊙ b � inf a, b{ } is an MA-semiring. In
fact, S is a commutative prime MA-semiring.

,roughout the paper, by S we mean an MA-semiring
unless stated otherwise. We say S is prime if aSb � 0 implies
that a � 0 or b � 0 and semiprime if aSa � 0 implies that
a � 0. S is 2-torsion free if, for s ∈ S, 2s � 0 implies s � 0. An
additive mapping ∗: S⟶ S is involution if, ∀s, t ∈ S,
(s∗)∗ � s and (st)∗ � t∗s∗. An element s ∈ S is Hermitian if
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s∗ � s and skew Hermitian if s∗ � s′. ,e set of Hermitian
elements of S is denoted by H and that of skew Hermitian
elements is denoted by K.

Example 2 (see [5]). Let (S, +, ·) be an MA-semiring. ,en
the set S with addition “+” and multiplication · defined as
a · b � b.a forms an MA-semiring called the opposite MA-
semiring of S. We usually denote it as S°. Consider R � S × S∘

with (a, b)⊕ (c, d) � (a + c, b + d) and (a, b)⊙ (c, d) �

(a.c, b · d) � (ac, db). ,en (R,⊕, ⊙ ) forms an MA-semir-
ing. Define ∗: R⟶ R by (s, t)∗ � (t, s). ,en ∗ defines an
involution on R. ,us, the triplet (R,⊕, ⊙ ) forms an MA-
semiring with involution. We further see that MA-semiring
is ∗ -prime but not prime. ,erefore, this example also
shows that a prime MA-semiring with involution ∗ is a
∗ -prime MA-semiring but converse is not true in general.

An additive mapping d: S⟶ S is a derivation if
d(st) � d(s)t + s d(t). ,e concept of generalized derivation
was studied for MA-semirings in [6]. An additive mapping
Fd: S⟶ S is a generalized derivation associated with a
derivation d if Fd(st) � Fd(s)t + s d(t) (see [23]). ,e
commutator is defined as [s, t] � st + t′s. By Jordan product,
we mean s°t � st + ts for all s, t ∈ S. A mapping f: S⟶ S is
commuting if [f(s), s] � 0, ∀s ∈ S. A mapping f: S⟶ S is
centralizing if [[f(s), s], r] � 0, ∀s, r ∈ S. ,e following
identities are very useful for sequel: for all s, t, z ∈ S,

(1) [s, st] � s[s, t]

(2) [st, z] � s[t, z] + [s, z]t

(3) [s, tz] � [s, t]z + t[s, z]

(4) [s, t] + [t, s] � t(s + s′) � s(t + t′)
(5) (st)′ � s′t � st′

(6) [s, t]′ � [s, t′] � [s′, t]

(7) s ∘ (t + z) � s ∘ t + s ∘ z

For more details, one can see [1, 4].
In the following, we recall a few results forMA-semirings

with involution, which are very useful for proving the main
results.

Lemma 1 (see [24]). Let S be a semiprime MA-semiring with
involution ∗ of second kind./en K∩Z(S)≠ 0 and therefore
H∩Z(S)≠ 0.

Remark 1. Let S be an MA-semiring with involution ∗ of
second kind.

(1) For any k ∈ K, k2 ∈ H

(2) For any h ∈ H∩Z(S) and ho ∈ H, hh0 ∈ H

Idrissi and Oukhtite [25] proved some results on gen-
eralized derivations satisfying certain conditions on rings

with involution. ,e main objective of this paper is to prove
the results for MA-semirings with involution.

2. Main Results

Lemma 2. Let S be a 2-torsion free prime MA-semiring and
let Fd be a generalized derivation associated with a derivation
d of S. If Fd satisfies

Fd[s, t], r􏼂 􏼃 � 0, ∀s, t, r ∈ S, (1)

then S is commutative.

Proof. By the hypothesis, for all s, t, r ∈ S, we have [Fd(st) +

Fd(ts′), r] � 0 and therefore

Fd(s)t + s d(t) + Fd(t)s′ + t d s′( 􏼁, r􏼂 􏼃 � 0. (2)

If d � 0, then (2) becomes

Fd(s)t + Fd(t)s′, r􏼂 􏼃 � 0. (3)

In (3), replacing t by ts, we get

Fd(s)t + Fd(t)s′( 􏼁s, r􏼂 􏼃 � 0. (4)

From (3), we also have Fd(s)t + Fd(t)s′ ∈ Z(S) and
therefore (4) becomes

Fd(s)t + Fd(t)s′( 􏼁[s, r] � 0. (5)

In (5), replacing r by rw and using (5), we obtain

Fd(s)t + Fd(t)s′( 􏼁S[s, w] � 0. (6)

By the primeness of S, we get [s, w] � 0 or
Fd(s)t + Fd(t)s′ � 0. If [s, w] � 0, then S is commutative.
Secondly, if

Fd(s)t + Fd(t)s′ � 0, (7)

it also implies

Fd(s)t � Fd(t)s. (8)

In (7), replacing t by tr, we get Fd(s)tr + Fd(t)rx′ � 0
and, using (8), we obtain

Fd(t)[s, r] � 0. (9)

In (9), replacing s by sw and using (9) again, we get
Fd(t)S[w, r] � 0. As S is prime and Fd ≠ 0, [w, r] � 0.
,erefore, S is commutative.

We now consider the case when d≠ 0. In (2), replacing t

by ts and using (2) again, we have

Fd[s, t][s, r] +[[s, t], r]d(s) � 0, (10)

which further gives
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Fd[s, t][s, r] � [[s, t], r]′d(s). (11)

In (10), replacing r by rw, we obtain

Fd[s, t]r[s, w] + Fd[s, t][s, r]w + r[[s, t], w]d(s)

+[[s, t], r]w d(s) � 0.
(12)

From (2), using Fd[s, t] ∈ Z(S) in the last expression, we
get

r Fd[s, t][s, w] +[[s, t], w]d(s)( 􏼁 + Fd[s, t][s, r]w

+[[s, t], r]w d(s) � 0,
(13)

and, using (10), we obtain

Fd[s, t][s, r]w +[[s, t], r]w d(s) � 0. (14)

Using (11) into (14), we get [[s, t], r][w, d(s)] � 0 and so
[[s, t], r]S[w, d(s)] � 0. By the primeness of S, we have ei-
ther [[s, t], r] � 0 or [w, d(s)] � 0. If [w, d(s)] � 0, then
[d(w), w] � 0, ∀w ∈ G, and therefore, by ,eorem 2.2 of
[26], S is commutative. Secondly, if [[s, t], r] � 0, then,
replacing t by ts, we obtain [s, t][s, r] � 0 and hence
[s, t]S[s, r] � 0. By the primeness of S, we conclude that S is
commutative.

Lemma 3. Let S be a 2-torsion free prime MA-semiring with
involution of second kind. If S satisfies

s ∘ t + t
∗ ∘ s∗, r􏼂 􏼃 � 0, ∀s, t, r ∈ S, (15)

then S is commutative.

Proof. By the hypothesis, for all s, t, r ∈ S, we have

s ∘ t + t
∗ ∘ s∗, r􏼂 􏼃 � 0. (16)

In (16), replacing t by k ∈ K∩Z(S), we get
[s ∘ k + k∗ ∘ s∗, r] � 0, which implies [s ∘ k + k′ ∘ s∗, r] � 0
and therefore 2k[s + s∗ ′ , r] � 0. By the 2-torsion freeness of
S, we have k[s + s∗ ′ , r] � 0, which further means
kS[s + s∗ ′ , r] � 0. In view of Lemma 1, K∩Z(S)≠ 0.
,erefore, by the primeness of S, we obtain [s + s∗ ′ , r] � 0,
which is further simplified to be

[s, r] � s
∗
, r􏼂 􏼃. (17)

In (16), replacing t by h ∈ H∩Z(S), we get
[s ∘ h + h∗ ∘ s∗, r] � 0 and therefore 2h[s + s∗, r] � 0. By the
2-torsion freeness of S, we get h[s + s∗, r] � 0 and therefore
hS[s + s∗, r] � 0. In the view of Lemma 1, H∩Z(S)≠ 0;
therefore, by the primeness of S, we have [s + s∗, r] � 0 and
hence

[s, r] + s
∗
, r􏼂 􏼃 � 0, (18)

and, using (17) into (18), we obtain 2[s, r] � 0 which, by the
2-torsion freeness of S, gives [s, r] � 0. ,is proves that S is
commutative.

Theorem 1. Let S be a 2-torsion free prime MA-semiring
with involution ∗ and let Fd be a nonzero generalized
derivation associated with a derivation d of S. If Fd satisfies

Fd s, s
∗

􏼂 􏼃, r􏼂 􏼃 � 0, ∀s, r ∈ S, (19)

then S is commutative.

Proof. Firstly, suppose that d≠ 0. Linearizing (19) and using
(19) again, we get

Fd s, t
∗

􏼂 􏼃 + Fd t, s
∗

􏼂 􏼃, r􏼂 􏼃 � 0. (20)

In (20), replacing t by t∗, we get

Fd[s, t] + Fd t
∗
, s
∗

􏼂 􏼃, r􏼂 􏼃 � 0. (21)

In (21), replacing t by tk, k ∈ K∩Z(S), we get
[Fd([s, t]k) + Fd([t∗, s∗]k′), r] � 0. As d � 0, k[Fd[s, t]

+Fd[t∗, s∗]′, r] � 0, which further implies kS[Fd[s, t]

+Fd[t∗, s∗]′, r] � 0. In view of Lemma 1, by the primeness of
S, we get [Fd[s, t] + Fd[t∗, s∗]′r] � 0 and therefore

Fd[s, t], r􏼂 􏼃 � Fd t
∗
, s
∗

􏼂 􏼃, r􏼂 􏼃. (22)

Using (22) into (21) and hence using 2-torsion freeness
of S, we get [Fd[s, t], r] � 0. and by Lemma 2 we conclude
that S is commutative.

Secondly, suppose that d≠ 0.
In (21), replacing t by yh, h ∈ H∩Z(S), we obtain

[Fd([s, t]h) + Fd([t∗, s∗]h), r] � 0 and so [Fd[s, t]h+ [s, t]

d(h) + Fd[t∗, s∗]h + [t∗, s∗]d(h), r] � 0. Rearranging the
terms, we get

Fd[s, t] + Fd t
∗
, s
∗

􏼂 􏼃, r􏼂 􏼃h + [s, t] + t
∗
, s
∗

􏼂 􏼃( 􏼁d(h), r􏼂 􏼃 � 0.

(23)

Using (21) into (23), we get

[s, t] + t
∗
, s
∗

􏼂 􏼃d(h), r􏼂 􏼃 � 0. (24)

In (24), replacing t by tk, k ∈ K∩Z(S), we obtain
[[s, t] + [t∗, s∗]′d(h), r]k � 0 and therefore [[s, t]+

[t∗, s∗] ′ d(h), r]Sk � 0. By the primeness S, we have [[s, t] +

[t∗, s∗] ′d(h), r] � 0 and therefore

[s, t]d(h), r � t
∗
, s
∗

􏼂 􏼃d(h), r􏼂 􏼃. (25)

Using (23) into (24) and hence using 2-torsion freeness
of S, we get [[s, t]d(h), r] � 0, which can be further written
as

[[s, t], r]d(h) +[s, t][d(h), r] � 0. (26)

In (26), replacing t by st, we get [s[s, t], r]

d(h) + s[s, t][d(h), r] � 0 and therefore s[[s, t], r] d(h)

+[s, t][s, r]d(h) + s[s, t][d(h), r] � 0. Rearranging the
terms, s([[s, t], r]d(h) + [s, t][d(h), r])+ [s, t][s, r]d(h) � 0.
Using (26) again, we obtain [s, t][s, r]d(h) � 0. ,erefore,
we can easily obtain [s, t][s, r]S d(h) � 0 which, by the
primeness, gives that either S is commutative or d(h) � 0.
Suppose that

d(h) � 0. (27)

In the view of Lemma 1, for any k ∈ K∩Z(S),
k2 ∈ H∩Z(S); therefore, replacing h by k2 in (27), we get
kS d(k) � 0, and, by the primeness of S, we have d(k) � 0.
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Replacing t by tk, k ∈ K∩Z(S) in (21), we get [(Fd[s, t] +

Fd[t∗, s∗] ′), r]k � 0 and therefore [(Fd[s, t] +

Fd[t∗, s∗]′), r]Sk � 0. In the view of Lemma 1, using the
primeness of S, we have [(Fd[s, t] + Fd[t∗, s∗]′), r] � 0,
which further implies

Fd[s, t], r � Fd t
∗
, s
∗

􏼂 􏼃􏼁, r􏼂 􏼃. (28)

Using (28) into (21) and then using 2-torsion freeness of
S, we obtain [Fd[s, t], r] � 0. Employing Lemma 2, we get
the required result.

Proposition 1. Let S be 2-torsion free prime MA-semiring
with involution of second kind and let Fd be a generalized
derivation associated with a derivation d of S. If Fd ≠ I and

Fd s, s
∗

􏼂 􏼃 + s, s
∗

􏼂 􏼃′, r􏼂 􏼃 � 0, ∀s, r ∈ S, (29)

then S is commutative.

Proof. Suppose that Fd ≠ I. Define a mapping ψ: S⟶ S by

ψ(s) � Fd(s) + I′(s) � Fd(s) + s′, (30)

where I′(s) � s′ � pseudo inverse of s. We now prove that ψ
is generalized derivation.

Firstly, for any s, t ∈ S,

ψ(s + t) � Fd(s + t) +(s + t)′ � Fd(s) + Fd(t) + s′ + t′

� Fd(s) + s′ + Fd(t) + t′ � ψ(s) + ψ(t).

(31)

,is shows that ψ is additive. Secondly, for any s, t ∈ S,

ψ(st) � Fd(st) +(st)′ � Fd(s)t + s d(t) + s′t

� Fd(s)t + s′t + s d(t) � Fd(s) + s′( 􏼁t

+ s d(t) � ψ(s)t + s d(t).

(32)

,is shows that ψ is generalized derivation associated
with the derivation d. From (29), we can write

ψ s, s
∗

􏼂 􏼃, r􏼂 􏼃 � 0, ∀s, r ∈ S. (33)

Hence, by ,eorem 1, we conclude that S is
commutative. □

On the similar lines of Proposition 1, we can obtain the
following proposition.

Proposition 2. Let S be 2-torsion free prime MA-semiring
with involution of second kind and let Fd be a generalized
derivation associated with a derivation d of S. If Fd ≠ I′ and

Fd s, s
∗

􏼂 􏼃 + s, s
∗

􏼂 􏼃, r􏼂 􏼃 � 0, ∀s, r ∈ S, (34)

then S is commutative.

Theorem 2. Let S be a 2-torsion free prime MA-semiring
with involution ∗ . If Fd is a nonzero generalized derivation
satisfying

Fd s ∘ s∗( 􏼁, r􏼂 􏼃 � 0, ∀s, r ∈ S, (35)

then S is commutative.

Proof. Linearizing (35) and using (35) again, we get

Fd s ∘ t∗( 􏼁 + Fd t ∘ s∗( 􏼁, r􏼂 􏼃 � 0, (36)

And, replacing t by t∗, we further get

Fd(s ∘ t) + Fd t
∗ ∘ s∗( 􏼁, r􏼂 􏼃 � 0. (37)

Suppose that d � 0. In (37), replacing t by
tk, k ∈ K∩Z(S), we get [Fd((s°t)k) + Fd((t∗°s∗)′k), r] � 0,
which further gives [Fd(s°t) + Fd(t∗°s∗)′, r]Sk � 0. ,ere-
fore, in the view of Lemma 1, by the primeness of S, we
obtain

Fd((s ∘ t)) + Fd t
∗ ∘ s∗( 􏼁′, r􏼂 􏼃 � 0, (38)

and this implies

Fd(s ∘ t), r � Fd t
∗ ∘ s∗( 􏼁, r􏼂 􏼃. (39)

Using (39) into (37) and then using 2-torsion freeness of
S, we obtain

Fd(s ∘ t), r􏼂 􏼃 � 0. (40)

In (40), replacing t by h ∈ H∩Z(S), we obtain
[Fd(s), r]h � 0 and therefore [Fd(s), r]Sh � 0. In view of
Lemma 1, by the primeness, we obtain

Fd(s), r􏼂 􏼃 � 0. (41)

In (41), replacing s by st and using (41) again, we find
Fd(s)[t, r] � 0 and therefore Fd(s)S[t, r] � 0. As Fd ≠ 0, by
the primeness, we have [t, r] � 0. ,is proves that R is
commutative.

Suppose that d≠ 0.
In (37), replacing t by yh, h ∈ H∩Z(S), we obtain

Fd (s ∘ t) + t
∗ ∘ s∗( 􏼁h( 􏼁, r􏼂 􏼃 � 0, (42)

and therefore

Fd((s ∘ t) + t
∗ ∘ s∗( 􏼁, r􏼂 􏼃h + (s ∘ t) + t

∗ ∘ s∗( 􏼁( 􏼁d(h), r􏼂 􏼃 � 0.

(43)

Using (37) again, we obtain

(s ∘ t) + t
∗ ∘ s∗( 􏼁( 􏼁d(h), r􏼂 􏼃 � 0. (44)

In (44), replacing t by tk, k ∈ K∩Z(S), we obtain

(s ∘ t) + t
∗ ∘ s∗( 􏼁′( 􏼁d(h), r􏼂 􏼃k � 0. (45)

In view of Lemma 1, by the primeness of S, we have

(s ∘ t) + t
∗ ∘ s∗( 􏼁′( 􏼁d(h), r􏼂 􏼃 � 0, (46)

and therefore
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[(s ∘ t)d(h), r] � t
∗ ∘ s∗( 􏼁d(h), r􏼂 􏼃. (47)

Using (47) into (44) and the 2-torsion freeness of S, we
obtain

[(s ∘ t)d(h), r] � 0. (48)

In (48), replacing t by st and using (48) again, we obtain
[s, r](s ∘ t)d(h) � 0 and therefore [s, r]S(s ∘ t)d(h) � 0,
which further, by the primeness, implies that either R is
commutative or

(s ∘ t)d(h) � 0. (49)

From (49), we can write

std(h) � ts′d(h). (50)

In (49), replacing t by tr, we get

strd(h) + srtd(h) � 0. (51)

Using (50), we get

[s, t]S d(h) � 0. (52)

By the primeness of S, we have that either S is com-
mutative or d(h) � 0. Suppose that d(h) � 0. Following the
same arguments as those in ,eorem 1, we have d(k) � 0,
∀k ∈ K∩Z(S). In (37), replacing t by tk, k ∈ K∩Z(S) and
using d(k) � 0, we obtain [Fd(s°t) + Fd((t∗°s∗)′), r] � 0,
which further implies

Fd(s ∘ t), r � Fd t
∗ ∘ s∗( 􏼁, r􏼂 􏼃. (53)

Using (53) into (37) and then using 2-torsion freeness of
S, we get

Fd s°t( 􏼁, r􏼂 􏼃 � 0. (54)

In (54), replacing t by h ∈ H∩Z(S) and using the fact
that d(h) � 0, we obtain [Fd(s), r] � 0 and hence, replacing
s by [u, v], we find [Fd[u, v], r] � 0. By Lemma 2, S is
commutative. □

Proposition 3. Let S be 2-torsion free prime MA-semiring
with involution of second kind and let Fd be a generalized
derivation associated with a derivation d of S. If Fd ≠ I and

Fd s ∘ s∗( 􏼁 + s ∘ s∗( 􏼁′, r􏼂 􏼃 � 0, ∀s, r ∈ S, (55)

then S is commutative.

Proof. Define ψ: S⟶ S by ψ(s) � Fd(s) + I′(s) �

Fd(s) + s′, where I′(s) � s′. ,en, following the same lines
of the proof of Proposition 1, we find that ψ is a generalized
derivation satisfying

ψ s ∘ s∗( 􏼁, r􏼂 􏼃 � 0. (56)

Hence, by ,eorem 2, S is commutative. □

On the similar lines, we can obtain the following result.

Proposition 4. Let S be 2-torsion free prime MA-semiring
with involution of second kind and let Fd be a generalized
derivation associated with a derivation d of S. If Fd ≠ I′ and

Fd s°s
∗

( 􏼁 + s°s
∗

( 􏼁, r􏼂 􏼃 � 0, ∀s, r ∈ S, (57)

then S is commutative.

Lemma 4. Let S be 2-torsion free prime MA-semiring with
involution of second kind. If

s, s
∗

􏼂 􏼃, r􏼂 􏼃 � 0, ∀s, r ∈ S, (58)

then S is commutative.

Proof. Linearizing (58) and using (58) again, we get

s, t
∗

􏼂 􏼃 + t, s
∗

􏼂 􏼃, r􏼂 􏼃 � 0, ∀s, t, r ∈ S, (59)

and hence, replacing t by t∗, we further get

[s, t] + t
∗
, s
∗

􏼂 􏼃, r􏼂 􏼃 � 0. (60)

In (60), replacing t by tk, k ∈ K∩Z(S), we obtain
[[s, t] + [t∗, s∗]′, r]k � 0 and therefore [[s, t]+

[t∗, s∗]′, r]Sk � 0. In view of Lemma 1, using the primeness
of S, we have [[s, t] + [t∗, s∗]′, r] � 0 and hence

[[s, t], r] � t
∗
, s
∗

􏼂 􏼃, r. (61)

Using (61) into (60), we obtain 2[[s, t], r] � 0 and since S

is 2-torsion free,

[[s, t], r] � 0. (62)

Replacing t by st in (62) and using (62) again, we obtain
[s, t][t, r] � 0 and therefore [s, t]S[t, r] � 0, which, by the
primeness, implies S is commutative. □

Lemma 5. Let S be 2-torsion free prime MA-semiring with
involution of second kind. If

s ∘ s∗, r􏼂 􏼃 � 0, ∀s, r ∈ S, (63)

then S is commutative.

Proof. Linearizing (63) and using (63) again, we obtain
[s°t∗ + t°s∗, r] � 0 and hence, replacing t by t∗, we obtain

s ∘ t + t
∗ ∘ s∗, r􏼂 􏼃 � 0. (64)

In (64), replacing t by tk, k ∈ K∩Z(S), we obtain [s ∘ t +

(t∗ ∘ s∗)′, r]k � 0 and therefore [s ∘ t + (t∗ ∘ s∗)′, r]Sk � 0. In
view of Lemma 1, we get [s ∘ t + (t∗ ∘ s∗)′, r] � 0 and hence

[s ∘ t, r] � t
∗ ∘ s∗, r􏼂 􏼃. (65)

As S is 2-torsion free, using (65) into (64), we get

[s ∘ t, r] � 0. (66)

In (66), replacing t by h ∈ H∩Z(S), we get [s, r]Sh � 0
and, employing Lemma 1, we conclude that S is
commutative.
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Theorem 3. Let S be 2-torsion free prime MA-semiring with
involution of second kind and let Fd be a generalized deri-
vation associated with a derivation d of S. If Fd satisfies

Fd s ∘ s∗( 􏼁 + s, s
∗

􏼂 􏼃, r􏼂 􏼃 � 0, ∀s, r ∈ S, (67)

then S is commutative.

Proof. When Fd � 0, (67) becomes [[s, s∗], r] � 0, ∀s, r ∈ S.
,erefore, employing Lemma 4, we conclude that S is
commutative.When Fd ≠ 0, firstly suppose that d � 0. Lin-
earizing (67) and using it again, we obtain

Fd s ∘ t∗( 􏼁 + Fd t ∘ s∗( 􏼁 + s, t
∗

􏼂 􏼃 + t, s
∗

􏼂 􏼃, r􏼂 􏼃 � 0, (68)

And, replacing t by t∗, we obtain

Fd(s ∘ t) + Fd t
∗ ∘ s∗( 􏼁 +[s, t] + t

∗
, s
∗

􏼂 􏼃, r􏼂 􏼃 � 0. (69)

In (69), replacing t by tk, k ∈ K∩Z(S) and using the
assumption d � 0, we obtain

Fd(s ∘ t) + Fd t
∗ ∘ s∗( 􏼁′( 􏼁 +[s, t] + t

∗
, s
∗

􏼂 􏼃′, r􏼂 􏼃Sk � 0.

(70)

By the primeness of S, we get

Fd(s ∘ t) + Fd t
∗ ∘ s∗( 􏼁′( 􏼁 +[s, t] + t

∗
, s
∗

􏼂 􏼃′, r􏼂 􏼃 � 0, (71)

and hence

Fd(s ∘ t) +[s, t], r􏼂 􏼃 � Fd t
∗ ∘ s∗( 􏼁( 􏼁 + t

∗
, s
∗

􏼂 􏼃, r􏼂 􏼃. (72)

As S is 2-torsion free, using (72) into (69), we get

Fd(s ∘ t) +[s, t], r􏼂 􏼃 � 0. (73)

From (73), we can write

Fd(s ∘ t), r􏼂 􏼃 � [[s, t], r]′ � [[t, s], r]. (74)

Interchanging s and t in (74), we obtain [Fd(t ∘ s), r]

� [[s, t], r]. But t ∘ s � s ∘ t; therefore

Fd(s ∘ t), r􏼂 􏼃 � [[s, t], r]. (75)

Using (75) into (74), we get 2[[s, t], r] � 0 and, by the 2-
torsion freeness of S, we get

[[s, t], r] � 0. (76)

In (76), replacing t by st and using (76) again, we obtain
[s, t][s, r] � 0 and therefore [s, t]R[s, r] � 0. By the prime-
ness of S, we conclude that S is commutative.

Next, suppose that d≠ 0.
In (69), replacing t by th, h ∈ H∩Z(S) and using (69)

again, we obtain

[s, t] + t
∗
, s
∗

􏼂 􏼃d(h), r􏼂 􏼃 � 0. (77)

In (77), replacing t by tk, k ∈ K∩Z(S), we obtain
[[s, t] + [t∗, s∗]′d(h), r]w � 0 and therefore [[s, t]+

[t∗, s∗]′d(h), r]Sw � 0. In view of Lemma 1, by the
primeness of S, we obtain [([s, t] + [t∗, s∗]′)d(h), r] � 0,
which further gives

[[s, t]d(h), r] � t
∗
, s
∗

􏼂 􏼃d(h), r􏼂 􏼃. (78)

As S is 2-torsion free, using (78) into (77), we get

[[s, t]d(h), r] � 0. (79)

In (79), replacing t by ts and using (79), we obtain
[s, t]d(h)[s, r] � 0 and therefore [s, t]d(h)S[s, r] � 0. By the
primeness of S, we get [s, t]d(h) � 0 and therefore as above
we conclude that either S is commutative or d(h) � 0 and
this further implies d(k) � 0,∀k ∈ K∩Z(S). In (69),
replacing t by th, h ∈ H∩Z(S) and using the fact that
d(h) � 0, we obtain [Fd(s ∘ t) + Fd(t∗ ∘ s∗), r]h � 0, which
further implies [Fd(s ∘ t) + Fd(t∗ ∘ s∗), r]Sh � 0. In view of
Lemma 1, we have

Fd(s ∘ t) + Fd t
∗ ∘ s∗( 􏼁, r􏼂 􏼃 � 0. (80)

In (69), replacing t by tk, k ∈ K∩Z(S) and using the fact
that d(k) � 0, we obtain [Fd(s ∘ t) + (Fd(t∗ ∘ s∗))′, r]k � 0,
which further implies [Fd(s ∘ t) + (Fd(t∗ ∘ s∗))′, r]Sk � 0. In
view of Lemma 1, we obtain [Fd(s°t) + (Fd(t∗°s∗))′, r] � 0
and hence

Fd(s ∘ t), r􏼂 􏼃 + Fd t
∗ ∘ s∗( 􏼁, r􏼂 􏼃. (81)

Using (81) into (80) and then by the 2-torsion freeness of S,
we obtain [Fd[s ∘ t], r] � 0. Following the same steps as ,e-
orem 2 (equation (40)), we conclude that S is commutative. □

On the similar lines of ,eorem 3, we can establish the
following result.

Theorem 4. Let S be 2-torsion free prime MA-semiring with
involution of second kind and let Fd be a generalized deri-
vation associated with a derivation d of S. If Fd satisfies

Fd s ∘ s∗( 􏼁 + s, s
∗

􏼂 􏼃′, r􏼂 􏼃 � 0, ∀s, r ∈ S, (82)

then S is commutative.

Theorem 5. Let S be 2-torsion free prime MA-semiring with
involution of second kind and let Fd be a generalized deri-
vation associated with a derivation d of S. If Fd satisfies

Fd s, s
∗

􏼂 􏼃 + s ∘ s∗( 􏼁, r􏼂 􏼃 � 0, ∀s, r ∈ S, (83)

then S is commutative.

Proof. Suppose that Fd � 0. ,en (83) becomes
[(s°s∗), r] � 0, ∀s, r ∈ S. By Lemma 5, S is commutative.

Now suppose that Fd ≠ 0. Consider the case when d � 0.
Linearizing (83) and using (83) again, we get

Fd s, t
∗

􏼂 􏼃 + Fd t, s
∗

􏼂 􏼃 + s ∘ t∗( 􏼁 + t ∘ s∗( 􏼁, r􏼂 􏼃 � 0. (84)

In (84), replacing t by t∗, we obtain

Fd[s, t] + Fd t
∗
, s
∗

􏼂 􏼃 +(s ∘ t) + t
∗ ∘ s∗( 􏼁, r􏼂 􏼃 � 0. (85)

In (85), replacing t by tk, k ∈ K∩Z(S) and using the
assumption d � 0, we get
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Fd[s, t]k + Fd t
∗
, s
∗

􏼂 􏼃k′ +(s ∘ t)k + t
∗ ∘ s∗( 􏼁k′, r􏼂 􏼃 � 0,

(86)

and therefore, by rearrangement, we have

Fd[s, t] +(s ∘ t) + Fd t
∗
, s
∗

􏼂 􏼃 + t
∗ ∘ s∗( 􏼁( 􏼁′, r􏼂 􏼃k � 0, (87)

and hence

Fd[s, t] +(s ∘ t) + Fd t
∗
, s
∗

􏼂 􏼃 + t
∗ ∘ s∗( 􏼁( 􏼁′, r􏼂 􏼃Sk � 0.

(88)

In view of Lemma 1, by the primeness of S, we obtain

Fd[s, t] +(s ∘ t) + Fd t
∗
, s
∗

􏼂 􏼃 + t
∗ ∘ s∗( 􏼁( 􏼁′, r􏼂 􏼃 � 0, (89)

which further gives

Fd[s, t] +(s ∘ t), r􏼂 􏼃 � Fd t
∗
, s
∗

􏼂 􏼃 + t
∗ ∘ s∗( 􏼁, r􏼂 􏼃, (90)

Using (90) into (85) and the 2-torsion freeness of S, we
obtain

Fd[s, t] +(s ∘ t), r􏼂 􏼃 � 0. (91)

In (85), interchanging s and t, we get [Fd[t, s] +

t ∘ s, r] � 0. But since s°t � t°s, [Fd[t, s] + s ∘ t, r] � 0, which
implies [(Fd[s, t])′ + s°t, r] � 0. Hence,

Fd[s, t], r􏼂 􏼃 � [s ∘ t, r]. (92)

As S is 2-torsion free, using (92) into (91), we find

[s ∘ t, r] � 0. (93)

In (93), replacing t by h ∈ H∩Z(S) and then using 2-
torsion freeness of S, we get h[s, r] � 0 and therefore
hS[s, r] � 0. In view of Lemma 1, by the primeness of S, we
get [s, r] � 0. ,is shows that R is commutative.

Next, suppose that d≠ 0.
In (85), replacing t by yh, h ∈ H∩Z(S), we get

Fd[s, t]h +[s, t]d(h) + Fd t
∗
, s
∗

􏼂 􏼃h + t
∗
, s
∗

􏼂 􏼃d(h) +(s ∘ t)h + t
∗ ∘ s∗( 􏼁h, r􏼂 􏼃 � 0. (94)

Rearranging terms, we can write

Fd[s, t] + Fd t
∗
, s
∗

􏼂 􏼃 + s°t( 􏼁 + t
∗°s∗( 􏼁, r􏼂 􏼃h + [s, t] + t

∗
, s
∗

􏼂 􏼃( 􏼁d(h), r􏼂 􏼃 � 0. (95)

Using (85) again, we get

[s, t] + t
∗
, s
∗

􏼂 􏼃( 􏼁d(h), r􏼂 􏼃 � 0. (96)

In (96), replacing t by tk, k ∈ K∩Z(S), we obtain
[([s, t] + [t∗, s∗]′)d(h), r]k � 0, which further gives
[([s, t] + [t∗, s∗]′)d(h), r]Sw � 0. As S is prime, employing
Lemma 1, we get [[s, t]d(h) + [t∗, s∗]′d(h), r] � 0 and hence

[s, t]d(h), r � t
∗
, s
∗

􏼂 􏼃d(h), r􏼂 􏼃. (97)

Using (97) into (96) and hence using 2-torsion freeness
of S, we obtain

[[s, t]d(h), r] � 0. (98)

Equation (98) is the same as (79) of,eorem 3; therefore,
following the same steps, we conclude that either S is
commutative or d(h) � 0. If d(h) � 0, then
d(k) � 0,∀k ∈ K∩Z(S).

Rearranging the terms of (85), we get

Fd[s, t] +(s ∘ t) + Fd t
∗
, s
∗

􏼂 􏼃 + t
∗ ∘ s∗( 􏼁, r􏼂 􏼃 � 0. (99)

In (99), replacing t by tk, k ∈ K∩Z(S) and using the fact
that d(k) � 0, we get

Fd[s, t] +(s ∘ t) + Fd t
∗
, s
∗

􏼂 􏼃′ + t
∗ ∘ s∗( 􏼁′, r􏼂 􏼃k � 0, (100)

which further implies

Fd[s, t] +(s ∘ t), r􏼂 􏼃 � Fd t
∗
, s
∗

􏼂 􏼃 + t
∗ ∘ s∗( 􏼁, r􏼂 􏼃. (101)

Using (101) into (99) and then by the 2-torsion freeness
of S, we have

Fd[s, t] +(s ∘ t), r􏼂 􏼃 � 0. (102)

Interchanging s and t in (102), we obtain
[Fd[t, s] + (t ∘ s), r] � 0. As t ∘ s � s ∘ t, the last equation
becomes [(Fd[s, t])′ + s ∘ t, r] � 0. ,is implies that

Fd[s, t] � [s ∘ t, r􏼂 􏼃. (103)

Using (103) into (102), we get 2[s ∘ t, r] � 0 and by the 2-
torsion freeness of S, we have

[s ∘ t, r] � 0. (104)

In (104), replacing t by h ∈ H∩Z(S), we obtain
2h[s, r] � 0 and by the 2-torsion freeness of S, it is implied
that h[s, r] � 0 and therefore hS[s, r] � 0. In view of Lemma
1, by the primeness of S, we conclude that S is commutative.

In view of the above results, we can easily conclude the
following results. □

Theorem 6. Let S be 2-torsion free prime MA-semiring with
involution of second kind and let Fd be a generalized deri-
vation associated with a derivation d of S. /en the following
statements are equivalent:
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(i) [S, S] � 0
(ii) [Fd(s ∘ s∗) + [s, s∗], r] � 0, ∀s, r ∈ S

(iii) [Fd[s, s∗] + (s ∘ s∗), r] � 0, ∀s, r ∈ S

Theorem 7. Let S be 2-torsion free prime MA-semiring with
involution of second kind and let Fd be a generalized deri-
vation associated with a derivation d of S. /en the following
statements are equivalent:

(i) [S, S] � 0
(ii) [Fd(s°s∗) + [s, s∗]′, r] � 0, ∀s, r ∈ S

(iii) [Fd[s, s∗] + (s ∘ s∗)′, r] � 0, ∀s, r ∈ S

3. Concluding Remarks

Commutativity is a very important aspect of mathematics
and is discussed in almost all of its branches. ,is article
presents some results on generalized derivations of MA-
semirings with involution of second kind. ,is research is
useful for researchers who want to induce commutativity in
semirings with additive mappings and opens the door for
further research in this area. Other differential identities and
different mappings can be studied to induce commutativity
in semirings.
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