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In this paper, we establish some theorems of fixed point on multivalued mappings satisfying contraction mapping by using gauge
function. Furthermore, we use Q- and R-order of convergence. Our main results extend many previous existing results in the
literature. Consequently, to substantiate the validity of proposed method, we give its application in integral inclusion.

1. Introduction

A well-known mathematician, Banach, gave a main source of
the existence of fixed points. An iterative method was used in
the Banach contraction principle which converges to the fixed
point linearly. In order to obtain higher order of convergence,
Proinov [1] generalized Banach contraction theorem by gen-
eralizing the contractive condition which involves a gauge
function of order r≥ 1. Later, Kiran and Kamran [2] extended
his work and generalized using multivalued maps from a
complete metric space into the space of all nonempty prox-
iminal closed spaces. In this context, we study the multivalued
contractionmapping involved inmetric space from [3–7]. And
some details formultivaluedmapping and their fixed points are
included in [1, 2, 8–15]. Recently, Petrusel investigated the local
fixed point results for graphic contractions and multivalued
locally contractive operators and proposed their application in
optimization theory in [16, 17]. Sow proposed the strong
convergence of a modified Mann algorithm for multivalued
quasi-nonexpansive mappings and monotone mappings with
an application in [18, 19]. (Proinov, General local convergence
theory for a class of iterative processes and its applications to

Newton’s method. Journal of Complexity, 25, 1, 38–62). We
extend some results of Proinov to the case of multivaluedmaps
from a metric space V into the space of all bounded closed
subspace of V. We recall some notations which we used in this
paper. Let (V, d) be a metric space and A be a subset of V;
distance from every v ∈ V to subset A is defined as there is a
element a ∈ A such that d(v, a) � d(v, A). Now, distance
from the point to set is defined as v ∈ V and A ⊂ V, where
d(v, A) � inf d(v, w): w ∈ A{ }. We denote CB(V) as the class
of all nonempty closed and bounded subsets of V. Let H be the
generalized Hausdorff metric on CB(V) generated by metric d

as

H(A, B) � max sup
v∈A

d(v, B), sup
w∈B

d(w, A) , (1)

for each A, B ∈ CB(V). .e fixed point of T: V⟶ CB(V)

is a point v ∈ V if v ∈ Tv. .roughout this paper, L denotes
an interval onR+ containing 0, this interval is represented as
[0, A ]t, n[0, a) or [0,∞), and for polynomial, we used
Sb(e) � 1 + e + · · · + eb− 1. We use the order of convergence
as Q-order and R-order with r≥ 1 for iterative process:
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vb+1 ∈ Tvb, b � 0, 1, 2, . . . , (2)

and use gauge function ϱ on L, that is, ϱ: L⟶ L. In this
paper, we present some theorems of fixed point on multi-
valued mappings satisfying contraction mapping by using
gauge function. Also, we use Q- and R-order of convergence.
In the last section, we applied our proposed method in
integral theory.

2. Preliminaries

In this section, we take some results and definitions from
[1, 19].

Definition 1. A gauge mapping with order r which is greater
than 1 defines with ϱ: L⟶ L on L if it fulfills the following
conditions:

(1) ϱ(ce)≤ crϱ(e) for each c ∈ (0, 1) and e ∈ L

(2) ϱ(e)≤ e for each e ∈ L

.e first condition of the above definition can easily
show that it is equivalent to the condition ϱ(0) � 0 and
ϱ(e)/er is nondecreasing on L − 0. Fixed point theory in
metric space is full of fixed point theorems in different
classes of contraction, which can be obtained by different
properties of gauge function ϱ.

Example 1. ϱ: L⟶ L where L � [0,∞) and ϱ(e) � ce

where c ∈ (0, 1). .en,

(1) ϱ(ce) � c2e � c.ce � c(ce) � cϱ(e), where
e ∈ L⇒ϱ(ce) � cϱ(e)

(2) ϱ(e) � ce< e because ϱ ∈ (0, 1)

Lemma 1. A mapping ϱ of order r on L fulfills the gauge
condition and there is another mapping π on L which is
nondecreasing and nonnegative such that

ϱ(e) � eπ(e), for each e ∈ L. (3)

Now, the properties which the mapping π has are

0≤ π(e)≤ 1, for each e ∈ L,

π(ct)≤ c
r− 1π(t), for each c ∈ (0, 1), and each e ∈ L.

(4)

Now, the gauge mapping which is defined on ϱ is written
as

0≤ π(e)≤ 1, for each e ∈ L. (5)

For Q-order of convergence with at least order r≥ 1,
sequence (vb) converges to η. If a constant c exists which is
greater then zero such that d(vb+1, η)≤ c(d(vb, η))r for
sufficiently large b, then there are the different cases which

depend on r; but, in that case, r � 1 and b≤ 1. Now, the type
of convergence linearly and quadratically depends on the
order r, respectively, 1 and 2.

Assume a sequence (vn) whose converges with order R

with constant η and r≥ 1. Let us take a real number sequence
(αb) whose order of convergence is Q and that converge to
zero with r≥ 1 such that d(vb, η)≤ αb.

3. Main Result

Definition 2. Let (V, d) be a metric space and define a
mapping T: V⟶ CB(V) such that H(Tv, Tw) be a
Hausdorff metric defined on CB(V); then,

d(Tv, w)≤H(Tv, Tw),

H(Tv, Tw)≤ ϱ(d(v, w)),
(6)

where the gauge mapping is ϱ.

Lemma 2. Let V be a nonempty and arbitrary set and define
a mapping T: C ⊂ V⟶ CB(V) such that a mapping which
has the starting condition of T with gauge mapping of order r

is ϱ on the interval L which is D: C⟶ R+. Now, for T, each
starting point v0 ∈ C and each b≥ 0. We have

D vb+1( ≤ ϱ D vb( ( ,

D vb( ≤D v0( λSb(r)
.

(7)

Proof. Here, vb+1 ∈ D and v0 is the starting point of T. As
vb+1 ∈ Tvb, using Definition 2 and Lemma 2, we obtain

D vb+1(  � d vb+1, Tvb+1( 

≤H Tvb, Tvb+1( 

≤ ϱ D vb( ( .

(8)

.us, we obtain

D vb+1( ≤ ϱ D vb( ( . (9)

Now prove

D vb( ≤E v0( λsb(r)
. (10)

As ϱ is nondecreasing on L, we have

D vb( ≤ ϱ D vb− 1( ( ≤ ϱ ϱ D vb− 2( ( ( ≤ · · · ≤ ϱb D v0( ( ,

(11)

where ϱ is thw gauge function and λ � (ϱ(D(v0)))
sb(r)..en,

D vb(  � ϱb D v0( ( 

≤D v0(  ϱ D v0( ( ( 
sb(r)

� D v0( λsb(r)
.

(12)

□

2 Journal of Mathematics



Theorem 1. Assume a metric space (V, d) and define a
mapping T: C ⊂ V⟶ CB(V). >e initial condition of T is
D: C⟶ R+ and gauge mapping ϱ: L⟶ L fulfills the
condition ϱ(e)≤ e for all e ∈ L. Let η be in C. Assume that

H(Tv, Tη)≤ c(D(x))d(v, η), ∀v ∈ CwithD(η) ∈ L,

d(Tv, η)≤H(Tv, Tη),

(13)

where c is a nondecreasing mapping on L such that
c(e) ∈ [0, 1), ∀e ∈ L. >en, T has a unique fixed point η at
which we define E � v ∈ C: D(v) ∈ L{ }. Furthermore, for
every starting point v0 of T, Picard iteration vb+1 ∈ Tvb re-
mains in V and converges Q-linearly to η with error which we
can estimate as

d vb+1, η( ≤g d vn, η( ,

d vn, η( ≤g
b
d v0, η( ,

(14)

where g � c D(v0).

Proof. Substitute v � η and obtain

d(Tη, η)≤H(Tη, Tη)≤ c D(η)d(η, η), (15)

where d(η, η) � 0.
.us,

d(Tη, η) � 0, this implies that η ∈ Tη. (16)

Now, we prove that η is unique. Suppose that contrary μ
is another fixed point such that μ ∈ Tμ and μ≠ η. .en,

d(η, μ)≤H(Tη, Tμ)

≤ c(D(η))d(η, μ)

<d(η, μ).

(17)

.is implies that

d(η, μ)<d(η, μ), (18)

which is a contradiction such that

η � μ, (19)

given v0 is the initial point of Picard iteration. We obtain

d vb+1, η( ≤H Tvb
, Tη ≤ c D vb( ( d vb, η( , (20)

as D(vb)≤D(v0). .en, we obtain c(E(vb))≤ c(E(v0)).
Now, following from the above inequality, we obtain

d vb+1, η( ≤H Tvb
, Tη ≤ c D vb( ( d vb, η( , (21)

and this implies that

d vb+1, η( ≤ c D vb( ( d vb, η( ≤ c D v0( ( d vb, η( ,

d vb+1, η( ≤ c D v0( ( d vb+1, η( ,
(22)

given g � c(D(v0)). So

d vb+1, η( ≤g d vb, η( , (23)

and d(vb, η)≤g d(vb− 1, η)≤g(g d(vb− 2, η)), . . . , gbd(v0, η).
.erefore,

d vb, η( ≤g
b
d v0, η( . (24)

.is proof is complete and it is necessary to note that
0≤g≤ 1. □

Remark 1. Let η be a number in C. It is easily represented
that following the assumption of theorem, the important
point D(η) ∈ L is fulfilled iff the gauge mapping has ϱ as the
fixed point. Now, take η as the root of mapping C which can
be selected from the theorem. So the fixed point of ϱ is 0.

Remark 2. Without using the measurement of the error, the
above result will be true. If gamma is used as one of the
nondecreasing mappings on L, then gamma is right
continuous.

Theorem 2. Assume a metric space (V, d) and define a
mapping T: C ⊂ V⟶ CB(V). >e initial condition of T is
D: C⟶ R+ and gauge mapping ϱ: L⟶ L fulfills the
condition ϱ(e)≤ e for all e ∈ L. Let η be in C. Assume that

H(Tv, Tη)≤ c(D(v))d(v, η), ∀v ∈ CwithD(η) ∈ L,

(Tv, η)≤H(Tv, Tη),

(25)

where c is a nondecreasing mapping on L such that ec(e) is a
gauge mapping which is strict of order r on L. Furthermore,
for e ∈ L: ω(e) � 0, it implies that c(e) � 0ω is a nonde-
creasing nonnegative function on J fulfilling

φ(e) � eω(e), ∀e ∈ L. (26)

.en, η is fixed point of T which is unique with
E � v ∈ C: D(v) ∈ L{ }. Furthermore, for every starting point
v0 of T, the following conditions are fulfilled:

(1) .e iterative sequence vb+1 ∈ Tvn is in the set E and it
will converge to η. Ifω(D(v0))< 1, then the sequence
vb+1 ∈ Tvb converges with R-order r.

(2) For each b≥ 0, the error estimate is

d vb, η( ≤ ϕnμsb(r)
d v0, η( , (27)

where μ � ω(D(v0)), ϕ � ψ(D(v0)), and ψ is a
nonnegative mapping of L such that
c(e) � ω(e)ψ(e) for each e ∈ L.

(3) If there is another mapping which is continuous
B: G⟶ R+ at η, then D(v)≤B(v)d(v, η), ∀v ∈ G.
Hence, we use the sequence which is iterative vb+1 �

Tvb and converges to η with the order Q- with r as

d vb+1, η( ≤Bv d vb, η( ( 
r
, ∀b≥ 0, (28)
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where Bv � (B(vb))r− 1η(D(vb))⟶ B(η)r− 1η(0) is
b⟶∞ and a mapping which is real, η: L⟶ R+

is continuous at 0, and c(e) � er− 1η(e) for all e ∈ L.

Proof. We have already proved that fixed point is unique. Now,
we have to prove R-order of convergence. Given that c(e) �

ω(e)ψ(e) for all e ∈ L, we select a arbitrary number b which is
nonnegative and represented as τ: L⟶ R+ as follows:

τ(e) �

c(e)

ω(e)
, if ω(e)> 0,

b, if ω(e) � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(29)

Now, by result, we observe that

0≤ μ≤ 1,

ω≥ 0,
(30)

and 0≤ωμ< 1. .en,

d vb+1, η( ≤H Tvb
, Tη 

≤ c E vb( ( d vb, η( 

≤ c E v0( ( d vb, η( 

≤d vb, η( 

≤d vb, 0( .

(31)

Here, d(vb, η) � αb. According to abovementioned
lemma, the function c satisfies

c(πe)≤ πr− 1
c(e), for all π ∈ [0, 1] and e ∈ L. (32)

Now, we shall prove the next part by induction. Sub-
stitute b � 0 and obtain d(v0, η) � d(v0, η). Assume that it
fulfills for b. Now, we prove that for b + 1,

d vb+1, η( ≤H Tvb
, Tη 

≤ c D vb( ( d vb, η( 

≤ c D vb( ( ωnμsb(r)
d v0, η( ,

c(μe)≤ μr− 1
c(t), ∀μ ∈ [0, 1] and e ∈ L,

c vb( ≤D v0( μs
b(r),

c D vb( ( ≤ c D v0( ( μsb(r)

≤ μ(r− 1)sb(r)
c D v0( ( 

� ωμ1+(r− 1)sb(r)
,

Sb(r) � 1 + r + r
2

+ r
3

+ · · · + r
b− 1

,

(r − 1)Sb(r) � r + r
2

+ · · · + r
b

− 1 − r − r
2

− · · · − r
b− 1

� − 1 + r
n
,

c D vb( (  � ωμrb

,

d vb+1, η( ≤ωn+1μS
b+1(r)d v0, η( .

(33)

Now, we have to prove that
d(vb+1, η)≤ cbd(vb, η)r, ∀b≥ 0.

We already know that

d(Tv, η)≤H(Tv, Tη)≤ c(D(v))d(v, η),

c(e) � e
r− 1μ(e),

D(v)≤C(v)d(v, η),

d vb+1, η( ≤H Tvb
, Tη ≤ c D vb( ( d vb, η( 

� D vb( 
r− 1μ D vb( ( d vb, η( 

≤C vb( 
r− 1

d vb, η( 
r− 1μ D vb( ( d vb, η( 

� C vb( 
r− 1

� Cbd vb, η( 
r
.

(34)

□

Corollary 1. Let (V, d) be a metric space and define an
operator T: C ⊂ V⟶ CB(V) and η ∈ C. Assume that

H(Tv, η)≤ ϱ(d(v, η)), ∀v ∈ C and d(v, η) ∈ L, (35)

where a gauge mapping which is strict with order r≥ 1 is ϱ.
>en, the fixed point T which is unique is η contains the set
E � v ∈ C: d(v, η) ∈ L . Furthermore, if T: V⟶ V, then
for every point v0 ∈ L, the following conditions are fulfilled:

(1) >e sequence vb+1 ∈ Tvb remains in V and converge to
η with Q- order r

(2) Now, we have to estimate for all b≥ 0 as

d vb, η( ≤ μsb(r)
d v0, η( , (36)

where μ � D(v0) and ω is a nondecreasing nonneg-
ative mapping on L satisfying ϱ(e) � eω(e), ∀e ∈ L

(3) ∀ we have to estimate d(vb+1, η)≤φ(d(vb, η))

Proof. As we know that d(Tv, η)≤H(Tv, Tη), now sub-
stitute v � η and obtain

d(Tη, η)≤H(Tη, Tη)≤ ϱ(d(η, η))<d(η, η) � 0, (37)

where η ∈ Tη and it is unique. Picard sequence converges
with Q-order as

d vb+1, η( ≤H Tvb
, Tη 

≤ ϱ d vb, η( ( 

<d vb, η(  � D vb( 

≤Cbd vb, η( 
r
,

d vb+1, η( ≤Cbd vb, η( 
r
.

(38)
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Now, we prove the other part by induction. Suppose
b � 0; then, equality holds d(v0, η) � d(v0, η). Suppose that
it is true for b,

d vb, η( ≤ μSb(r)
d v0, η( . (39)

For b + 1,

d vb+1, η( ≤H Tvb
, Tη 

≤ ϱ d vb, η( ( 

� d vb, η( ω d vb,ω( ( 

≤ μSb(r)
d vb, η( ω D vb( ( 

� μSb(r)
d v0, η( μrb

� μSb+1(r)
d v0, η( .

(40)

□

Theorem 3. Assume a metric space (V, d) and define a
mapping T: C ⊂ V⟶ CB(V). >e initial condition of T is
D: C⟶ R+ and gauge mapping ϱ: L⟶ L fulfills the
condition ϱ(e)≤ e for all e ∈ L. Let η be in C. Assume that

H(Tv, η)≤ c(D(v))d(v, η), ∀v ∈ CwithD(η) ∈ L,

(41)

where c is a nondecreasing mapping on L such that ec(e) is a
gauge mapping which is strict of order r on L. Furthermore,
for e ∈ L: ω(e) � 0, this implies that c(e) � 0:

c(ϱ(e))≤ c(e)
e
, ∀e ∈ L. (42)

Now, for the fixed point of the mapping T, η contains the
set E � v ∈ C: D(c) ∈ L{ }. Furthermore, for the starting
point v0 of T, the following statements hold:

(1) Picard sequence vb+1 ∈ Tvb
remains in V and con-

verges to η with order of convergence R-order r. It
converges with Q-order r given that
D(v)≤B(v)d(v, η), ∀v ∈ C, where B: C⟶ R+ is
contentious at η.

(2) For each b≥ 0, we estimate that

d vb, η( ≤g
sb(r)

d v0, η( , (43)

where g � c(D(v0)) and ω is nondecreasing and
nonnegative on L satisfying ϱ(e) � rω(e).

Proof. First, we prove that η is a fixed point which is unique:

d(Tv, η)≤H(Tv, Tη),

H(Tv, Tη)≤d(v, η).
(44)

Now, substituting v � η above, then

d(Tη, η)≤H(Tη, Tη)c(D(η))d(η, η),

d(Tη, η)≤ 0.
(45)

.is implies that η ∈ Tη. Now, for uniqueness, suppose μ to
be another fixed point and η≠ μ, i.e.,

d(η, μ)≤H(Tη, Tμ)≤ c(D(η))d(η, μ)≤d(η, μ), (46)

which implies that

d(η, μ)<d(η, μ), (47)

which is a contradiction so η � μ. Now, the first part of the
theorem is already proved in the previous theorem. Now, we
have the second part:

c D vb( ( ≤g
(r)b

. (48)

We prove it by mathematical induction. Take b � 0; then,
equality holds, i.e.,

c D v0( (  � c D v0( ( . (49)

Assume that it is true for n. Now, we prove that for b + 1,

c D vb+1( ( ≤ c ϱ vb( ( 

≤ c D vb( (  
r

≤ g
rb

 
r

� g
rb+1

,

H Tvb
, Tη ≤g

rb

d vb, η( .

(50)

We prove this by mathematical induction; now, for b � 0,

d v0, η(  � d v0, η( . (51)

Assume that it is true for b; now, we prove that for b + 1,

d vb+1, η( ≤H Tvb
, Tη ≤g

rb

d vb, η( , (52)

and also note that

d vb, η( ≤g
sb(r)

d v0, η( . (53)

Now,

d vb+1, η( ≤H Tvb
, Tη 

≤g
rb+sb(r)

d v0, η( 

� g
rb+1

d v0, η( .

(54)

Hence,

d vb+1, η( ≤g
rb+1

d v0, η( . (55)
□

4. Application

We apply the proposed multivalued contraction mappings
in integral theory.

Theorem 4. Consider the integral

v(e) ∈ G 
e

e0

p(τ, v(τ))dτ + η, ∈ GVv(e) + η, (56)
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where Vv(e) � 
e

e0
p(τ, v(τ))dτ, G is a compact subset of real

lineR, and p: R × R⟶ R satisfies the following conditions:

(1) p is continuous on the rectangle
R � (e, v): |e − e0|≤ (1/λ), |v − η|≤ (c/λ2) , where
λ � maxg∈G|g|, 0< c< a

(2) p is continuous and bounded as |p(e, v)|< (1/λ2) for
all (e, v) ∈ R:

|p(e, v(e)) − p(e, η(e))|≤ c(y)|v(e) − η(e), (57)

where y � |v(e) − η − (1/λ)| with v(e) ∈ L and y ∈ I. >en,
the interval I � [(e0 − 1/λ), (e0 + 1/λ)] has the solution of
integral.

Proof. Let C(I) denote those spaces which contain all those
mappings which are continuous. And define metric space as
d(v, η) � sup|v(e) − η(e)|. Consider C to be a closed sub-
space of the space C(I) which is defined as
C: � v ∈ C(I): d(v, η)≤ (1/λ) . Define T: C⟶ P(C) as

Tv(t) � G 
et

e0

p(τ, v(τ))d(τ) + η � GPv(e) + η. (58)

Finding the solution of integral (56) becomes equivalent
to the fixed point problem of (58). We represent that T is
well defined and T is defined for every v ∈ C, Tv is a compact
subset of C for each v ∈ C. For s ∈ I and by definition of C,
we obtain |v(s) − η|≤ (1/λ). .us, (s, v(s)) ∈ R. Since p is
continuous on R, way integral also exists. So T is defined for
each v ∈ C. Now, we prove for each v ∈ C andTv is a
compact subset of C. Let f(e) ∈ Tv(e). .en,
f(e) � gKv(e) + η for some g ∈ G and

|f(e) − η| � gPv(e)




� g‖ Pvt(e)




≤ λ
e

e0

|P(τ, v(τ))dτ|

≤ λ
e

e0

|P(τ, v(τ))|dτ

< λ ×
1
λ2

  �
1
λ
,

(59)

which prove that d(f, η)≤ (1/λ); then, f ∈ C since f ∈ Tv

was arbitrary and so Tv ⊂ C for each v ∈ C. Now, for
compactness, first we prove that Tx is compact. Consider a
sequence bn ⊂ Tv and bn � gnPv(t) + η for some
gn ∈ G; n � 1, 2, 3, . . .. Since G is compact, then there exists
subsequence gni

  of gn  such that gni
⟶ g. Let

b � pKv(e) + η; then, we obtain

d bn, b(  � sup
e∈I

|gni
− g‖ Pv(e) ≤ gni



− g
 sup

e∈I
Pv(e)


⟶ 0, as j⟶∞,

(60)

and we note that D(v) � d(v, Tv), where
Tv(e) � G 

e

e0
p(τ, v(τ))dτ + η and

d(v, Tv) � inf
w∈Tv

d(v, w)

� inf d v, g 
e

e0
p(τ, v(τ))dτ + η 

� infsup v(e) − g 
e

e0
p(τ, v(τ))dτ − η





� infsup v(e) − η − g  e0e
p(τ, v(τ))dτ




,

(61)

where inf apply on g and λ> infg:

≥ sup v(e) − η − λ
e

e0
p(τ, v(τ))dτ





≥ sup v(e) − η −
1
λ

 





≥ sup(w), ∀w ∈ I

� sup e0 +
1
λ

 





≥ sup(e), ∀e ∈ I.

(62)

Now, c is a nondecreasing function such that

c(D(v))≥ supc(w), ∀w ∈ I. (63)

Furthermore, note that

H(Tv, Tη) � H GKv(e) + η, GPη(e) + η ≤H GPv(e), GPη(e) ,

H GPv(e), GPη(e)  � max max
a∈GPv

(e)d a, GPη(e) , max
b∈GPη

d b, GPv(e)(  .
(64)

Now,

6 Journal of Mathematics



max
a∈GPv

(e)d a, GPη(e)  � max
a∈GPv

max
b∈GPη

d(a, b)

� max
g∈G

max
g∗∈G

d gp(e, v), g
∗
p(e, η)( 

� maxg ∈ Gmax
g∗∈G

sup
e∈I

gp(e, v) − g
∗
p(e, η)




≤ max
g∈G

max
g∗∈G

sup
e∈I

gp(e, η) − g
∗
p(e, η)


 +|gp(e, η) − gp(e, v)| 

≤ max
g∈G

max
g∗∈G

|g| sup
e∈I

gp(e, v), g
∗
p(e, η)


 + g − g

∗
 sup

e∈I
|p(e, η)| 

� maxg ∈ G|g| sup
e∈I

|p(e, η) − p(e, v)|

� λ sup
e∈I

|p(e, η) − p(e, v)|.

(65)

and we have

|p(e, η) − p(e, v)|≤ 
e

e0
|p(τ, η(τ)) − p(τ, v(τ))|dτ

≤ 
e

e0
c(w)/|η(τ) − v(τ)|dτ

≤ sup
e∈I

c(w)|η(e) − v(e)| 
e

e0
dτ

≤ c(D(v))d(v, η) e − e0




≤ c(D(v))
1
λ

d(v, η).

(66)

.us, we obtain

max a ∈ GPvd a, GPη(e) ≤ λc(D(v))
1
λ

d(v, η)

� c(D(v))d(v, η).

(67)

Now, interchanging V and η, we obtain

max b ∈ GPηd b, GPv(e)( ≤ c(D(η))d(η, v). (68)

.us,

H(Tv, Tη)≤ c(D(v))d(v, η). (69)

□
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