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In the paper, the aggregate constraint-shifting homotopy method for solving general nonconvex nonlinear programming is
considered. +e aggregation is only about inequality constraint functions. Without any cone condition for the constraint
functions, the existence and convergence of the globally convergent solution to the K-K-T system are obtained for both feasible
and infeasible starting points under much weaker conditions.

1. Introduction

+roughout, let Rn, Rn
+, and Rn

++ denote the n-dimensional
Euclidean space, nonnegative orthant, and positive orthant
of Rn, respectively. In the paper, the following general
nonconvex nonlinear programming will be considered:

min f(x)

s.t. gi(x)≤ 0, i � 1, 2, . . . , m

hj(x) � 0, j � 1, 2, . . . , l,

(1)

where x ∈ Rn and f(x): Rn⟶ R, gi(x): Rn⟶ Rm, and
hj(x): Rn⟶ Rl are three continuously differentiable
functions. Denote Ω � x|gi(x)≤ 0, i � 1, 2, . . . , m, hj(x) �

0, j � 1, 2, . . . , l},Ω0 � x|gi (x)< 0, i � 1, 2, . . . , m, hj(x) �

0, j � 1, 2, . . . , l}, and I(x) � x|gi(x) � 0, i � 1, 2, . . . , m .
It is well known that the solution of the optimization

problem can be obtained through solving the K-K-T system
of the convex nonlinear problem, but for the nonconvex
nonlinear problem, we can only obtain the solution to the
K-K-T system of problem (1).

Homotopy method has been paid much attention as an
important globally convergent computational method in
finding solutions to various nonlinear problems since it was
introduced and studied by Kellogg et al. [1], Smale [2], and
Chow et al. [3]. However, the original homotopy is only
single homotopy and needs much strong assumptions when
solving nonlinear problems. In the 1990s, a combined
homotopy interior point (CHIP) method was firstly pro-
posed for solving nonconvex programming under the
normal cone condition by Feng and Yu in [4]. From then on,
various CHIP methods, as an efficiently implementable al-
gorithm, were widely used and newly constructed for solving
general nonconvex programming, fixed point problems,
complementarity problems, variational inequality, and so
on, see, e.g., [5–20].

In 2001, for reducing the dimension of the systems
arising in the numerically tracing process and weakening
convergent conditions, Yu et al. [21] proposed an aggregate
constraint homotopymethod (ACHmethod) for nonconvex
programming by using the so-called aggregate function of
the constraints. In 2018, a new ACH method for nonlinear
programming problems with inequality and equality
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constraints was presented in [22]. However, the ACH
method still belongs to CHIP since it requires the initial
point which was also in the original feasible set. In 2006, to
avoid the disadvantage of CHIPmust choose the initial point
in the feasible set, a constraint-shifting combined homotopy
infeasible interior-point method in which the initial point
can be chosen in both feasible and infeasible sets for solving
nonlinear programming with only inequality constraints
was proposed by Yu and Shang in [23, 24]. In 2012, to extend
the constraint-shifting combined homotopy method to solve
the general nonlinear programming, another new combined
homotopy infeasible interior-point method for solving
nonconvex programming with both inequality and equality
constraints was proposed in [25], in which only inequality
constraints need to satisfy the normal cone condition. From
then on, more constraint-shifting homotopy equations were
constructed and extended for solving nonlinear program-
ming, principal-agent problem, fixed point problem, and so
on, see, e.g., [26–30]. However, these combined homotopy
methods usually required some cone conditions for proving
the strong convergence of the existence of the smooth
homotopy pathway.

By the enlightenment of the above references, without
any cone condition, an aggregate constraint combined
homotopy infeasible interior-point method for solving
nonconvex nonlinear programming with both inequality
and equality constraints is constructed, and the global
convergence under much weaker conditions is obtained in
the paper.

+e remainder of this paper is organized as follows. In
Section 2, the homotopy equation is constructed, and some
lemmas from differential topology are introduced. In Section
3, the main results will be presented, and the existence and
convergence of a smooth path from any given point in the
infeasible set to the solution of K-K-Tsystems are proved. In
Section 4, the numerical algorithm is presented.

2. Preliminaries

+e following assumptions will be used:

(A1) Ω is a bounded and connected set, Ω0 ≠ϕ.
(A2) ∀x ∈ Ω, matrix ∇gi(x)i∈I(x),∇hj(x)  is positive

linearly independent at x, i.e.,


i∈I(x)

αi∇gi(x) + 
m

j�1
βj∇hj(x) � 0, αi ∈ R+, βj ∈ R⟹ αi � βj � 0.

(2)

By [21], the aggregate function g(x, μ) � μln [
m
i�1

exp(gi(x)/μ)], we have

(I)∇xg(x, μ) � 
m

i�1
τi(x, μ)∇gi(x), τi(x, μ)

≜
exp gi(x)/μ( 


m
j�1 exp gj(x)/μ 

,

(II) g(x)≤g(x, μ)≤g(x) + μ lnm.

(3)

We construct the following shifted aggregate constraint
function only with inequality constraint functions:

g(x, μ) � μϕ(x) +(θ − μ)g(x, μ), (4)

where θ ∈ (0, 1) is a parameter and ϕ(x) are convex and
three continuously differentiable functions. +erefore, we
have

g(x, θ) � θϕ(x) (5)

and

lim
μ⟶0+

g(x, μ) � lim
μ⟶0+

[μϕ(x) +(θ − μ)g(x, μ)] � θg(x, μ).

(6)

Obviously, g(x, μ) are also three continuously differ-
entiable functions; let Ωμ � x|g(x, μ)≤ 0 , Ω0μ � x|g

(x, μ)< 0}, zΩμ � Ωμ/Ω0μ, and Ω(0) � Ω.

Lemma 1 (see [21]). If assumptions (A1) and (A2) hold, then
there exists θ1 > 0, for ∀μ ∈ (0, θ1), and

∇xg(x, μ)≠ 0, ∀x ∈ zΩ(μ). (7)

Lemma 2 (see [27]). If assumptions (A1) and (A2) and hold,
there exists θ2 > 0, for ∀μ ∈ (0, θ2), and we haveΩμ which is a
bounded and connected set, and Ω0μ is nonempty.

Lemma 3. If assumptions (A1) and (A2) hold, there exists
θ3 > 0, for any given feasible point x, and ∀μ ∈ (0, θ3], matrix
(∇xg(x, μ),∇hj(x)  is positive linearly independent.

Proof. Proved by contradiction. For ∀μk ∈ (0, θ3] and any
feasible point xk, there exists αk ≥ 0 and βk

j ∈ R belonging to
real part, which are simultaneously not equal to zeros, such
that

αk∇x g x
k
, μk  + 

m

j�1
βk

j∇hj x
k

  � 0. (8)

Let βk � max1≤j≤l |βk
j |  and ξk

� max αk, βk
 ; divide

both sides of (8) by ξk, i.e.,
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αk

ξk
∇xg x

k
, μk  + 

m

j�1

βk
j

ξk
∇hj x

k
  � 0. (9)

When μk⟶ 0, xk⟶ x∗; let (αk/ξk
, βk

j /ξ
k
)⟶

(α∗, β∗j , as k⟶∞, and we have

lim
k⟶∞

αk

ξk
∇xg x

k
, μk  + 

m

j�1

βk
j

ξk
∇hj x

k
 ⎡⎢⎢⎣ ⎤⎥⎥⎦

� lim
k⟶∞

αk

ξk
μk∇ϕ x

k
  + θ − μk( ∇xg x

k
, μk   + 

m

j�1

βk
j

ξk
∇hj x

k
 ⎡⎢⎢⎣ ⎤⎥⎥⎦

� lim
k⟶∞

αk

ξk
μk∇ϕ x

k
  + θ − μk(  

m

i�1
τi x

k
, μk ∇gi x

k
 ⎛⎝ ⎞⎠ + 

m

j�1

βk
j

ξk
∇hj x

k
 ⎡⎢⎢⎣ ⎤⎥⎥⎦

� α∗θ
m

i�1
τi x
∗
, 0( ∇gi x

∗
(  + 

m

j�1
β∗j∇hj x

∗
(  � 0.

(10)

+is is a contradiction with assumption (A2), so ∃θ3 > 0,
for any μ ∈ (0, θ3], matrix (∇xgi(x, μ)i∈Iμ(x)},∇hj(x)  is

positive linearly independent. □

Define θ � min θ1, θ2, θ3 . SinceΩ0θ is nonempty, for any
x0 ∈ Ω0θ, y0 ∈ Rm

++, and z0 ∈ Rl, let w0 � (x0, y0, z0), and we
construct the homotopy equation as follows:

H w, w
0
, μ  �

(1 − μ) ∇f(x) + ∇x g(x, μθ)y + ∇h(x)z  + μ x − x
0

 

Yg(x, μθ) + μη

h(x) − μz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0, (11)

where w � (x, y, z) ∈ Ωμ × Rm
+ × Rl, η ∈ Rm

++, and
Y � diag(y).

When μ � 0, homotopy equation (11) turns to the K-K-T
system

∇f(x) + θ
m

i�1
∇gi(x)yi + 

l

j�1
∇hj(x)zj

Yθg(x)

h(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0. (12)

When μ � 1, homotopy equation (11), H(w, w0, 1) � 0,
has a unique simple solution

(x, y, z) � x
0
, y

0
, z

0
  � x

0
, − diag g x

0
, θ   

− 1
η, h x

0
  .

(13)

+e following lemmas from differential topology will be
used in the next section. At first, let U ⊂ Rn be an open set,
and let ϕ: U⟶ Rp be a Cα(α>max 0, n − p ) mapping;
we say that y ∈ Rp is a regular value for ϕ if

Range
zϕ(x)

zx
  � R

p
, ∀x ∈ ϕ− 1

(y). (14)

Lemma 4 (see [31]). Let V ⊂ Rn andU ⊂ Rm be open sets,
and let ϕ: V × U⟶ Rk be a Cα mapping, where
α>max 0, m − k{ }. If 0 ∈ Rk is a regular value of ϕ, then for
almost all a ∈ V, 0 is a regular value of ϕa � F(a, ·).

Lemma 5 (see [31]). Let ϕ: U ⊂ Rn⟶ Rp be
Cα (α>max 0, n − p ). If 0 is a regular value of ϕ, then
ϕ− 1(0) consists of some (n − p)-dimensional Cα manifolds.

Lemma 6 (see [31]). A one-dimensional smooth manifold is
diffeomorphic to a unit circle or a unit interval.

3. Main Results

For a given w0 ∈ Ω0θ × Rm
++ × Rl, rewrite H(w, w0, μ) in

homotopy equation (11) as

Hw0(w, μ) � H w, w
0
, μ . (15)

+e zero-point set of Hw0(w, μ) is

H
−1
w0(0) � (w, μ) ∈ Ω0θ × R

m
++ × R

l
×(0, 1]: Hw0(w, μ) � 0 .

(16)
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Lemma 7. If assumptions (A1) and (A2) hold, given
w0 ∈ Ω _θ{ }0 × Rm

++ × Rl, and if there exists a smooth curve
Γw0 starting from (w0, 1) in Ωμθ × Rm

++ × Rl × (0, 1], then it
must be bounded.

Proof. If Γw0 ⊂ Ωμθ × Rm
++ × Rl × (0, 1] is unbounded, there

exists (xk, yk, zk, μk) ⊂ Γw0 , and ‖(xk, yk, zk, μk)‖⟶∞.
From the second equation of (11), we have

Y
k
g x

k
, μkθ  + μkη � 0. (17)

By equation (17), Ykg(xk, μkθ)≤ 0, i � 1, 2, . . . ,

m,xk ∈ Ωμkθ, and μkθ≤ θ, and by Lemma 2, Ωμkθ is also
bounded, so xk  is a bounded sequence. +erefore, xk 

must exist a convergent subsequence which is also denoted
as xk . Let xk⟶ x and ‖(yk, zk)‖⟶∞ as k⟶∞.
Denoting I∗ � i ∈ 1, 2, . . . , m{ }|yk⟶∞ , by (17),
I∗ ⊂ Iμθ(x); therefore, we obtain

gi x
k
, μkθ  � −μk y

k
i 

− 1
η, i ∉ I

∗
,

gi(x, μθ) � lim
k⟶∞

gi x
k
, μkθ  � 0, i ∈ I

∗
, i.e. x ∈zΩμθ.

(18)

From the first equation of (11), we have

1 − μk(  ∇f x
k

  + 
m

i�1
y

k
i ∇x gi x

k
, μkθ  + 

m

j�1
∇hj x

k
 z

k
j

⎛⎝ ⎞⎠ + μk x
k

− x
0

  � 0. (19)

(i) When μ � 1, from the third equation of (11), we have
zk⟶ h(x) as k⟶∞, which implies that zk  is
bounded. Hence, ‖yk‖ �∞ and x ∈ Ωθ. If ‖(1 − μk)

yk‖<∞, without loss of generality, and suppose

(1 − μk)yk⟶ y, then yi � 0 for i ∉ Iθ(x) from the
second equation of (11). Taking limits in (19), we have

x
0

� x + lim
k⟶∞

1 − μk(  ∇f x
k

  + 
m

i�1
∇x gi x

k
, μkθ y

k
i + 

l

j�1
∇hj x

k
 z

k
j

⎛⎝ ⎞⎠

� x + lim
k⟶∞



i∈Iθ(x̂)

1 − μk( y
k
i ∇xgi x

k
, μkθ 

� x + 

i∈Iθ(x̂)

yi∇x gi(x, θ),

(20)

but g(x, θ) � θϕ(x) is a convex function; this is
impossible.
If ‖(1 − μk)yk‖⟶∞, the discussion is the same as
the following case (ii).

(ii) When μ ∈ (0, 1), without loss of generality, suppose
that (1 − μk)yk/‖(1 − μk)yk‖⟶ α with ‖α‖ � 1 and
αi � 0 for i ∉ Iμθ(x). +rough dividing both sides of
equation (19) by ‖(1 − μk)yk‖ and taking limits, we
have



i∈Iμθ(x̂)

αi∇x gi(x, μθ) � 0,
(21)

which contradicts with Lemma 3.

(iii) When μ � 0, without loss of generality, suppose that
(yk, zk)/‖(yk, zk)‖⟶ (α, tβ) with ‖(α, tβ)‖ � 1 and
αi � 0, for i ∉ I0(x). +rough dividing both sides of
equation (19) by ‖(yk, zk)‖ and taking limits, we have



i∈I0(x̂)

αi∇xgi(x, 0) + 
l

j�1
βj∇hj(x) � 0, (22)

which contradicts with Lemma 3.
In conclusion, from the above discussion, we obtain that
Γw0 is a bounded curve in Ωμθ × Rm

++ × Rl × [0, 1]. □

Theorem 1. Suppose assumptions (A1) and (A2) hold, for
almost all w0 ∈ Ω0θ × Rm

++ × Rl, the zero-point set of homotopy
equation (11) contains a smooth curve Γw0 ⊂ Ωθ × Rm

+ × Rl ×
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(0, 1] starting from (x0, y0, z0, 1), which terminates or ap-
proaches to the hyperplane μ⟶ 0. If (x∗, y∗, z∗, 0) is a limit
point of Γw0 , then w∗ � (x∗, y∗, z∗) is a solution to the K-K-T
system of problem (11).

Proof. Let H(w, x0, μ): Ωμθ × Rm
+ × Rl ×Ω0θ × (0, 1]⟶

Ωμθ × Rm
+ × Rl be the same map as H(w, x0, μ) but taking x0

as variate. Consider the following submatrix of the Jacobian
DH(w, x0, μ):

z H w, x
0
, μ 

z y, z, x
0

 
�

∗ ∗ −μI

diag(g (x, μθ)) 0 0

0 −μI 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

For all μ ∈ (0, 1] and any x0 ∈ Ω0θ, from (w, μ) ∈ H−1
w0(0)

and Yg(x, μθ) + μη � 0, we get that diag(g(x, μθ)) is
nonsingular, which implies that z H(w, x0, μ)/z(y, z, x0) is
nonsingular.

Hence, matrix D H(w, x0, μ) is full row rank. +at is, 0 is
a regular value of H(w, x0, μ). By Lemma 4, we have that, for
almost all x0 ∈ Ω0θ, 0 is a regular value of H(w, x0, μ).

Note that the matrix

zH w
0
, w

0
, 1 

zw
�

I 0 0

∗ diag g x
0
, θ   0

∗ 0 −I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(24)

is nonsingular. From Lemma 5, if 0 is a regular value of
H(w, w0, μ), zH(w0, w0, 1)/zw is nonsingular, and the fact
H(w0, w0, 1) � 0,H−1

w0(0) must contain a smooth curve Γw0

starting from (x0, y0, z0, 1) and going to
Ωμθ × Rm

+ × Rl × [0, 1]. +en, from Lemma 6, the curve
Γw0 ⊂ Ωμθ × Rm

+ × Rl × (0, 1] must be diffeomorphic to a unit
circle or a unit interval [0, 1).

We have that Γw0 is not diffeomorphic to a unit circle.
+at is, Γw0 is diffeomorphic to [0, 1). Let (x∗, y∗, z∗, μ∗) be a
limit point of Γw0 ; only the following five cases are possible:

(i) x
∗
, y
∗
, z
∗

(  ∈ Ωθ × R
m
+ × R

lμ∗ � 1 y
∗
, z
∗

( 
����

����<∞,

(ii) x
∗
, y
∗
, z
∗

(  ∈ Ωμ∗θ × R
m
+ × R

lμ∗ ∈ [0, 1] y
∗
, z
∗

( 
����

���� �∞,

(iii) x
∗
, y
∗
, z
∗

(  ∈ Ωμ∗θ × zR
m
+ × R

lμ∗ ∈ (0, 1) y
∗
, z
∗

( 
����

����<∞,

(iv) x
∗
, y
∗
, z
∗

(  ∈zΩμ∗θ × R
m
++ × R

lμ∗ ∈ (0, 1) y
∗
, z
∗

( 
����

����<∞,

(v) x
∗
, y
∗
, z
∗

(  ∈ Ω × R
m
+ × R

lμ∗ � 0 y
∗
, z
∗

( 
����

����<∞.

(25)

Since (w0, 1) is only one solution of the equation
H(w, w0, 1) � 0 and (zH(w0, w0, 1)/zw) is nonsingular,
case (i) is impossible. From Lemma 7, case (ii) is also
impossible.

From diag(g(x∗, μ∗θ))y∗ + μ∗η � 0, we have that μ∗ > 0
and y∗ ∈zRm

+ , i.e.,y
∗
i � 0, for some 1≤ i≤m, cannot happen

simultaneously. +erefore, case (iii) is impossible. If the
multipliers y∗ > 0 and the homotopy parameter μ∗ > 0, from
diag(g(x∗,μ∗θ))y∗ +μ∗η� 0, we can get diag(g(x∗,μ∗θ))<
0, which implies that case (iv) is also impossible.

As a conclusion, case (v) is the only possible case.+at is,
curve Γw0 must terminate in or approach to the hyperplane
at μ∗ � 0. And hence, w∗ � (x∗, y∗, z∗) is a solution to the
K-K-T system of problem (1). □

4. Numerical Algorithm

By +eorem 1, homotopy equation (11) generates a smooth
curve Γ0w for almost all (w0, μ] ∈ Ω0θ × Rm

++ × Rl × (0, 1) as
μ⟶ 0, and one can find a solution of homotopy equation
(11). Letting s to be the arc length of Γ0w, we can parameterize
Γ0w with respect to s, i.e.,

H(w(s), μ(s)) � 0,

w(0) � w
0
, μ(0) � 1.

(26)

By differentiating (26), we can get

H′(w(s), μ(s))
_w

_μ
  � 0,

μ(0) � w
0
, μ(0) � 1,

(27)

where H′ is the derivative of H.
As how to trace the homotopy path Γw0 numerically, we

can use the standard predictor-corrector procedure; for
more details, see [32, 33]. In this paper, our contribution is
only the theoretical results about the proposed algorithm
which only requires that any initial point can be chosen in
the shifted feasible set but not necessarily in the original
feasible set. +e relative homotopy algorithms and nu-
merical simulations on the performance for the proposed
algorithm can be implemented as [34].
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