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.is theoretical study explores the impact of heat generation/absorption with ramp wall velocity and ramp wall temperature on
the magnetohydrodynamic (MHD) time-dependent Oldroyd-B fluid over an unbounded plate embedded in a porous surface..e
mathematical analysis of fractional governing partial differential equations has been established using systematic and powerful
techniques of Laplace transform with its numerical inversion algorithms. .e fractionalized solutions have been traced out
separately through all fractional differential operators. Nondimensional parameters along with Laplace transformation are used to
find the solution of temperature and velocity profiles. Fractional time derivatives are used to analyze the impact of fractional
parameters (memory effect) on the dynamics of the fluid. While making a comparison, it is observed that the fractional-order
model is the best to explain the memory effect as compared to classical models. .e obtained solutions are plotted graphically for
different values of physical parameters. Our results suggest that the velocity profile decreases by increasing the effective Prandtl
number. Furthermore, the existence of an effective Prandtl number may reflect the control of the thickness of momentum and
enlargement of thermal conductivity.

1. Introduction

.e interest in studying problems involving non-New-
tonian fluid flows has considerably grown for their wide
range of applications: from drilling oil and gas wells and
well completion operations to industrial processes in-
volving waste fluids, synthetic fibre foodstuffs, and the
extrusion of molten plastics. .e attributes of fluid flow
trace the diversity of the physical structure for non-
Newtonian fluid flow. In such a fluid, stress and rate of

strain have a nonlinear relationship. Oldroyd-B fluids
have become a significant model of rate-type fluid. .e
procedure for the flow of rate-type fluids was discussed by
Oldroyd [1]. Viscoelasticity has important implications
due to the characterization of viscoelastic parameters
(relaxation and retardation phenomenon), elastic shear-
ing strain, thermal relaxation, and other rheological
properties [2, 3]. In this regard, the thermodynamical
analysis for the constitutive model of thermoplastic,
viscoelastic, and viscoplastic was observed by Krairi and
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Doghri [4] through the Cattaneo–Christov heat model.
.e temperature distribution and relaxation time of the
heat flux were emphasized by the temperature equation.

.e technique of fractional calculus has been used to
formulate mathematical modeling in various techno-
logical developments, engineering applications, and in-
dustrial sciences. Different valuable work has been
discussed for modeling fluid dynamics, signal processing,
viscoelasticity, electrochemistry, and biological structure
through fractional time derivatives. .is fractional dif-
ferential operator found useful conclusions for experts to
treat cancer cells with a suitable amount of heat source
and has compared the results to see the memory effect of
the temperature function. As compared to classical
models, the memory effect is much stronger in fractional
derivatives. From the past to the present, modeling of
different processes is handled through various types of
fractional derivatives and fractal-fractional differential
operators, such as Caputo (power law), Atanga-
na–Baleanu (Mittag–Leffler law), Caputo–Fabrizio (ex-
ponential law), Riemann–Liouville, and modified
Riemann–Liouville (power law with boundaries) [5–16].
Ramped wall velocity and temperature with MHD fluid
flow are gaining attention of many researchers. Physi-
cally, the implementation of ramped wall velocity with
temperature in real-life problems has a significant role,
but mathematically, it is difficult to handle such con-
ditions. Ramped heating is used to control and increase
the temperature with adiabatic conditions in an effective
way. Firstly, Ahmed and Dutta [17] discussed the si-
multaneous use of ramped velocity and ramped

temperature. Seth et al. [18–20] investigated heat and
mass transfer phenomena with ramp temperature con-
ditions. Recently, Tiwana et al. [21] and Anwar et al. [22]
analyzed the MHD Oldroyd-B fluid under the effect of
ramped temperature and velocity.

In context with fractional differential operators,
convective flow with ramped wall temperature for non-
singular kernel was analyzed by Riaz et al. [23]. Moreover,
Riaz et al. [24] investigated the study of heat and mass
transfer in the MHD Oldroyd-B fluid with ramped wall
temperature using local and nonlocal differential opera-
tors. Additionally, the recent studies on modern fractional
differential operators and viscoelastic fluids can be traced
out in [25–38]. For this problem, the noninteger differ-
entiable operator is chosen for the fractional MHD
Oldroyd-B model which is developed under thermal ra-
diation, ramp velocity, and ramp temperature associated
with physical initial and boundary conditions. .e model
is solved via the Laplace transform technique and in-
version algorithm. .e required results are displayed in
graphs with physical arguments.

2. Problem Statement

We discuss unsteady magnetohydrodynamic (MHD) frac-
tional convective Oldroyd-B fluid flow under Boussinesq
approximations over an infinite plate. Figure 1 represents
the flow geometry of the magnetized Oldroyd-B fluid. Under
these presumptions, the governing equation for the Old-
royd-B fluid with appropriate conditions is defined as fol-
lows [22]:
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.e appropriate conditions are given as follows:
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.e dimensionless parameters in equations (1) to (3) are
mentioned in the following:
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Applying (4) into (1)–(3), we required a set of dimen-
sionless governing equations in the form of PDE’s system
presented as follows:
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Figure 1: Geometrical presentation of the Oldroyd-B model.
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where a1 � 1 + λM + (λr/K) and a2 � M + (1/K).

.e dimensionless corresponding conditions can be
given as follows:

V(ζ , 0) � θ(ζ , 0) � 0,

Vt(ζ, 0) � Vζ(ζ, 0) � 0,

for ζ ≥ 0,

θ(0, t) � V(0, t) �
t, for 0< t< to,

1, for t> to,


V(ζ , τ)⟶ 0, θ(ζ , τ)⟶ 0, for ζ⟶∞.

(7)

2.1.GoverningEquations in termsof Singular andNonsingular
Kernels. We define Caputo time derivative with its Laplace
transform defined in the following [39]:
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.e Caputo–Fabrizio fractional derivative and its Lap-
lace transformation are defined as follows [40]:
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.e Atangana–Baleanu fractional derivative and its
Laplace transformation are defined as follows [40]:
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3. TemperatureProfile via FractionalOperators

3.1. Temperature Profile via the Caputo Approach.
Generating equation (6) for the fractional form, we imposed
equation (8) on equation (6), and we have
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We prefer to apply Laplace transform given in (8) on
equation (11). .e resultant form of the above expression is
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and using equation (7), we find out the arbitrary parameter:
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3.2. Temperature Profile via the Caputo–Fabrizio Approach.
Generating equation (6) for the fractional form, we imposed
equation (9) on equation (6), and we have
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3.3. TemperatureProfile via theAtangana–BaleanuApproach.
Generating equation (6) for the fractional form, we imposed
equation (10) on equation (6), and we have
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and using equation (7), we find out the arbitrary parameter:
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where b1 � 1 − Q + κQ, b2 � −κQ, and b3 � 1 − κ, b4 � κ.

4. Velocity Profile via Fractional Operators

4.1. Velocity Profile via the Caputo Approach. We utilize
Laplace transformation for the solutions of the velocity
profile given by equation (5):
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We prefer to apply Laplace transform given in (8) on
equation (23). .e resultant form of the above expression is
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4.2. Velocity Profile via the Caputo–Fabrizio Approach.
We utilize Laplace transformation for the solutions of the
velocity profile given by equation (5). We prefer to apply

Laplace transform (9) on equation (5). .e resultant form of
the above expression is
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and using (7), we find out the arbitrary parameter:
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where a1 � 1 + λM + (λr/K), a2 � 1 + (M/K), a3 � (1/1−

κ), a4 � (κ/1 − κ), a5 � (1/(1 − c)), a6 � (c/(1 − c)), a7 �

1 + a5λr, a8 � a1a4 + λa3, and a9 � 1 + λa3.

4.3. Velocity Profile via the Atangana–Baleanu Approach.

We utilize Laplace transformation for the solutions of the
velocity profile given by equation (5). We prefer to apply
Laplace transform (10) on equation (5). .e resultant form
of the above expression is
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and using (7), we find out the arbitrary parameter:
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As κ⟶ 1, in the required velocity expressions (27), (30),
and (32), we get the same result for the classical model as
discussed in [22]. Furthermore, if we neglect λ1 � 0 and λ2 � 0,
then the results are identical which were obtained by Riaz et al.

[35]. .is shows the validation of our obtained results. We use
classical computational and numerical techniques such as
Stehfest’s [41] and Tzou’s algorithms [42] for the inverse of
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Laplace transform. Tzou’s calculation for our numerical inverse
Laplace is

v(r, t) �
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⎭
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(33)

where Re(·) is the real part, i represents the imaginary part,
and N1 is the natural number.

5. Results and Discussion

.is section is dedicated to present physical interpretation of
the obtained results via C, CF, and AB differential operators
on the MHD fractional Oldroyd-B fluid over an infinite
vertical plate on the porous medium. Analytical results are

investigated via Laplace transformation with the inversion
algorithm for velocity and energy profiles. .e graphical
representations are depicted for showing the influences of
different physical parameters on velocity and temperature
using the package of Mathcad-15. .e time influence on all
fractional derivative operators is analyzed in Figure 2. It
clearly shows that, for the variation of time, the behavior of
the velocity profile is the same. .e resultant velocity of the
ABC model is larger than the other fractional models.

Effect of κ: the influence of fraction parameter κ on
velocity can been seen through Figure 3. Clearly, fluid
velocity reduces with the increase in the fractional
parameter for small and large time. It is worth men-
tioning that profiles for these are best to explain the
history (memory) of the fluids. While making com-
parison, velocity for the Atangana–Baleanu model is

0.2

0.15

0.1

0.5

0

V 
(ζ

, τ
)

0 0.5 1 1.5 2
ζ

C

M = 0.5
M = 2

M = 4
M = 7

(a)

2

M = 0.5
M = 2

M = 4
M = 7

0.2

0.15

0.1

0.5

0
V 

(ζ
, τ

)
0 0.5 1 1.5

ζ

C

(b)

M = 0.5
M = 2

M = 4
M = 7

0.3

0.2

0.1

0

V 
(ζ

, τ
)

0 0.5 1 1.5 2
ζ

CF

(c)

2

M = 0.5
M = 2

M = 4
M = 7

0.4

0.2

0.3

0.1

0

V 
(ζ

, τ
)

0 0.5 1 1.5
ζ

CF

(d)

M = 0.5
M = 2

M = 4
M = 7

0.4

0.2

0.3

0.1

0

V 
(ζ

, τ
)

0 0.5 1 1.5 2
ζ

ABC

(e)

M = 0.5
M = 2

M = 4
M = 7

0.6

0.4

0.2

0.3

0.5

0.1

0

V 
(ζ

, τ
)

0 0.5 1 1.5 2
ζ

ABC

(f )

Figure 4: Plot via C, CF, and AB approaches for velocity with different values of M.
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greatest because it has a nonlocal kernel. Velocity for
CF is greater than C. .is is because CF has a non-
singular kernel that imitates C with the singular kernel.
Effect of M: Figure 4 investigates the impact of the
magnetic force on all fractional operators. .is
graphical representation indicates that, with an increase
in the magnetic field, the velocity reduces due to
Lorentz force. By increasing the parameter of M, the
Lorentz force also increases. Fluid flow on the
boundary layer slows down due to this force.
Effect of Gr: Figure 5 shows the impact on Gr for the
velocity field versus time. It can be seen that the velocity
field enhances by increasing Gr. It is supported by the
physical fact that Gr is the fraction of buoyancy and
viscous forces. An increase in Gr means that the

buoyancy force gets stronger near the plate such that it
overcomes the viscous force and that the fluid gets
accelerated.
Effect of λ: Figure 6 shows the impact on the velocity
field for λ. As λ increases, the thickness of the mo-
mentum boundary layer reduces which results in the
deceleration of the fluid. As a relaxation time increment
implies that the fluid will take extra time to calm, it
readily justifies the decrease in velocity. It is quite a
reverse behavior as compared to λr.
Effect of λr: Figure 7 shows the behavior of velocity
curves for λr. It is observed that velocity enhances with
the increase in λr for all fractional models. .e velocity
behavior is also observed for the variation of time.
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Figure 5: Plot via C, CF, and AB approaches for velocity with different values of Gr.
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Figure 6: Plot via C, CF, and AB approaches for velocity with different values of λ.
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Figure 7: Continued.
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Figure 7: Plot via C, CF, and AB approaches for velocity with different values of λr.
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Figure 8: Plot via C, CF, and AB approaches for velocity with different values of Preff .
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Effect of Preff : Figure 8 discusses the effect of Preff using
C, CF, and ABC models with the variation of time.
Specific heat boundary thickness depends on Preff . .e
thickness of the momentum and boundary layer is
controlled by Preff . It is seen from the graph that the
decrease in the velocity is observed by the increase in
the value of Preff .
Effect of κ: Figure 9 highlights the effect of the fractional
parameter on the temperature profile for fractionalmodels.
With the increase in κ, the resultant temperature decreases.
Temperature for CF and ABC is more as compared to C in
all cases. Moreover, as κ⟶ 1, temperature curves for
noninteger order approach integer order.

6. Conclusion

.is paper studies MHD Oldroyd-B fluid flow with ramped
wall temperature and velocity under the influence of the
thermal radiation in a porous medium. Fractional derivative
operators with the inversion algorithm are used to acquire
the solution of velocity and temperature. .e significant
remarks for this article are as follows:

(1) Velocity curves show decreasing behavior for frac-
tional parameters κ and M. .e velocity field de-
creases by increasing the value of Pr.

(2) Velocity increases as Gr increases for all fractional
models.
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Figure 9: Plot via C, CF, and AB approaches for the temperature profile with different values of κ.
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(3) Velocity profile is a decreasing function of Preff for all
fractional operators.

(4) Velocity profile shows an opposite behavior for λ1
and λr for all fractional operators.

(5) Temperature decreases by enhancing the value of the
fractional parameter.

(6) ABC fractional operator is more considerable as
compared to all the other fractional operators.
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