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+is paper introduces the concept of the theta cone metric, studies its various topological properties, and gives some examples of
it. Furthermore, it proves some lemmas and then uses them to give further generalizations of some well-known fixed point
theorems. Specifically, +eorem 2 of the paper is a generalization of Reich’s fixed point theorem.

1. Introduction and Preliminaries

In 2007, Huang and Zhang [1] introduced cone metric
spaces as a generalization of metric spaces. Let E be a real
Banach space, C ⊂ E. C is called a cone in E if

(1) C is nonempty, closed, and C≠ Θ{ }, where Θ is zero
(neutral element) of E

(2) αC + βC ⊂ C for all nonnegative real numbers α, β
(3) C∩ − C � Θ{ }

If intC is the set of all interior points of C, then a cone C

in a normed spaceE induces the following ordered relations
[1, 2]:

u≺ v⟺ v − u ∈ C,

u< v⟺ (v − u ∈ C and u≠ v),

u≠≺ v⟺ v − u ∈ intC.

(1)

A sequence wn n∈N in E is bounded above by w ∈ E iff

wn ≺≠w ∀n ∈ N. (2)

+e cone C is called normal if there is a number M> 0
such that

∀u, v ∈ E ,Θ≺ u≺ v⟹ ‖u‖≤M‖v‖. (3)

+e least positive number satisfying the above is called
the normal constant of C.

Huang and Zhang [1] supposed thatE is a Banach space,
C is a cone in E with nonempty interior, and ≺ is partial
ordering with respect to C. If X is a nonempty set, the
distance d(x, y) of two elements x and y in the space X is
defined to be a vector in the cone C of the ordered Banach
space (E,≺ ).

(1) Θ≺≠ d(x, y)∀x, y ∈ X.
(2) d(x, y) � Θ≺x � y.
(3) d(x, y) � d(y, x)∀x, y ∈ X.
(4) d(x, z)≺ [d(x, y) + d(y, z)] ∀x, y, z ∈ X.

+e triple (X, C, d) is known as the cone metric space.
+ey carefully studied convergence and completeness and
then proved some fixed point theorems for the contractive
type of mappings in this setting.

In 2010, Haghi et al. [3] showed that some generaliza-
tions in fixed point theory are really consequences of Huang
and Zhang results.

In contrast, in 2012, Cakally et al. [4] obtained that any
cone metric space (X, d) is equivalent to the usual metric
space (X, d⋆), where the real-valued metric function d⋆ is
defined by a nonlinear scalarization function [5, 6].

In 2013, Liu and Xu [2] introduced the concept of cone
metric spaces with Banach algebras; they replaced Banach
spaces E by Banach algebrasA, and they proved some fixed
point theorems of generalized Lipschitz mappings with
weaker conditions on generalized Lipschitz constants (the
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constant k is a vector in a normal cone of the Banach algebra,
and the essential conditions on the contraction constant k

are neither order relations nor norm relations but spectrum
radius). A well-formulated example shows that their main
results concerning the fixed point theorems in the setting of
cone metric spaces with Banach algebras are more useful
than the standard results in cone metric spaces presented in
the literature.

In 2013, Khojasteh et al. [7] proposed the notion of the
θ-metric as a proper generalization of a metric.

Definition 1. Let θ: [0,∞) × [0,∞)⟶ [0,∞) be a con-
tinuous mapping with respect to both variables. Let
Im(θ) � θ(s, t): s≥ 0, t≥ 0{ }. +e mapping θ is called a
B-action if and only if it satisfies the following conditions:

(1) θ(0, 0) � 0 and θ(u, v) � θ(v, u) for every u, v≥ 0.
(2)

θ(u, v)< θ(w, t) if either

u<w and v≤ t

or

u≤w and v< t.

⎧⎪⎪⎨

⎪⎪⎩
(4)

(3) For every u ∈ Im(θ) and every v ∈ [0, u], there is
w ∈ [0, u] such that θ(v, w) � u.

(4) θ(u, 0)≤ u for every u> 0.

+ey functionally formulated the notion of θ-metric
spaces, and then, they gave the terminology of open and
closed sets. Furthermore, they gave a detailed and com-
prehensive study of convergence and Cauchyness of se-
quences in this frame of work.

Now, we replace [0,∞) by a cone in a normed space and
introduce the following analogous generalization of the
definition of the θ function.

Definition 2. Let (E,≺ ) be an ordered normed space, where
≺ is the ordered relation induced by a cone C ⊂ E. Let
θ: C × C⟶ C be a continuous mapping with respect to
each variable. Let Im(θ) � t: t ∈ C such that∃u0, v0 ∈

E, θ(u0, v0) � t}. A mapping θ is called an ordered action on
E if and only if it satisfies the following conditions:

(1) θ(Θ,Θ) � Θ and θ(u, v) � θ(v, u) for every u, v ∈ C.
(2)

θ(u, v)< θ(w, t) if either

u<w , v≺ t

or

u≺w , v< t.

⎧⎪⎪⎨

⎪⎪⎩
(5)

(3) For every u ∈ Im(θ) and every Θ≺ v≺ u, there is
Θ≺w≺ u such that θ(v, w) � u.

(4) θ(u,Θ)≺ u for every u ∈ C/ Θ{ }.

Because x − Θ ∈ C for every x ∈ C, one can write instead
Θ≺x for every x ∈ C, [Θ<x for every x ∈ C/ Θ{ }].

Example 1. Let Rm be the vector space of all finite m se-
quences of real numbers with the usual operations of ad-
dition and scalar multiplication, for a � ak 

m

k�1 ∈ R
m.

Denote ‖a‖p �
��������


m
k�1 |ak|pp


and ‖a‖∞ � maxm

k�1|ak|. If 1≤p,
then (Rm, ‖.‖p) is the Banach space. If 0≤p< 1, then
(Rm, ‖.‖p) is the quasi-normed space.

Let E � Mn(Rm) be the vector space of all n-square
matrices whose entries are elements in Rm:

E �
u: u � uij 1≤i,j≤n,

uij � u
ij

k 
m

k�1 ∈ R
m

, ∀1≤ i, j≤ n

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (6)

Operations on E are defined as follows:

αu � α uij 1≤i,j≤n � αu
ij

k 
m

k�1 1≤i,j≤n,

u⊕v � uij 1≤i,j≤n⊕ vij 1≤i,j≤n � u
ij

k + v
ij

k 
m

k�1 1≤i,j≤n.
(7)

+e space E is a Banach space endowed with the fol-
lowing norms:

‖u‖p � 
1≤i,j≤n

u
ij

k 
m

k�1

�����

�����p
,

or

‖u‖∞ � max
1≤i≤n


1≤j≤n

u
ij

k 
m

k�1

�����

�����p
.

(8)

+e zero element of the space E, is the matrix θ, and
every entry of the matrix θ is the all of its entries are the zero
element of Rm, 0 � 0, 0, . . . , 0{ }.

Let C � u: u � u
ij

k 
m

k�1 1≤i,j≤n, 1≤ i, j≤ n, and u
ij

k ≥

0 for all 1≤ i, j≤ n, and 1≤ k≤m}, Each entry is a vector of
the space Rm, and the entries of these vectors are non-
negative real numbers. +en, C is a cone in E. +e cone C

induces the ordered relation u � u
ij

k 
m

k�1 1≤i,j≤n ≺ v �

v
ij

k 
m

k�1 1≤i,j≤n if and only if v
ij

k ≥ u
ij

k for every k ∈
1, 2, . . . , m{ } and every i, j, 1≤ i, j≤ n.

Now, let k be nonnegative real number such that
0≤ k< 1. Define θq: C × C⟶ C, q ∈ 1, 2, 3, 4, 5{ } by

θ1(u, v) � [u⊕v] � u
ij

k + v
ij

k 
m

k�1 1≤i,j≤n,

θ2(u, v) � k[u⊕v] � k u
ij

k + v
ij

k  
m

k�1 1≤i,j≤n,

θ3(u, v) � k u
ij

k + v
ij

k + u
ij

k × v
ij

k  
m

k�1 1≤i,j≤n,

θ4(u, v) � u
ij

k + v
ij

k + u
ij

k × v
ij

k 
m

k�1 1≤i,j≤n,

θ5(u, v) � u
ij

k + v
ij

k  1 + u
ij

k × v
ij

k  
m

k�1 1≤i,j≤n.

(9)

+en, the functions θq, q � 1, 2, . . . , 5, are all ordered
actions on E.

Furthermore, we replace [0,∞) by a cone in a normed
space and use ordered actions to introduce the concept of
action function cone metric spaces.

Definition 3. Let (E,≺ ) be an ordered normed space, where
≺ is the ordered relation induced by a cone C ⊂ E, X be a

2 Journal of Mathematics



nonempty set, and θ be an ordered action on E. +en, the
function dθ: X × X⟶ C is called θ-cone-metric on X if
and only if dθ satisfies the following conditions:

(1) dθ(x, y) � Θ⟺x � y.
(2) dθ(x, y) � dθ(y, x)∀x, y ∈ X.
(3) dθ(x, y)≺ θ (dθ(x, z),dθ(z, y))∀x, y, z ∈ X.

+e triple (X, C,dθ) is defined to be a θ-cone-metric
space or equivalently action function cone metric space.

Remark 1. We mention that the class of metric spaces is
included in the class of θ-metric spaces if we consider
θ(u, v) � u + v, u, v ∈ [0,∞). Also, we mention that the class
of θ-metric spaces is included in the class of θ-cone-metric
spaces if we take (E,≺ ) � ([0,∞), ≤ ).

Example 2. Let E, C, and θ1 be given as in Example 1 X �

Mn(Rm) be the space of all n × n matrices whose entries are
elements of the space Rm . +en, X is a nonempty set. +e
function dθ1, dθ1: X × X⟶ C, defined by

dθ1(x, y) � xij − yij

�����

�����p
δjk 

m

k�1
 

1≤i,j≤n
�

���



k

l�1

p




x
ij

l − y
ij

l




p
δjk

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

m

k�1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
1≤i,j≤n

(10)

is a θ1-cone metric on X, and (X, C,dθ1) is the θ1-cone-
metric space. In fact, conditions (1) and (2) are clear, and for
any x, y, z ∈ X, we have

dθ1(x, z) + dθ1(z, y)  � xij − zij

�����

�����p
δjk 

m

k�1
 

1≤i,j≤n
+ zij − yij

�����

�����p
δjk 

m

k�1
 

1≤i,j≤n
 

� xij − zij

�����

�����p
δjk 

m

k�1
+ zij − yij

�����

�����p
δjk 

m

k�1
 

1≤i,j≤n
  � xij − zij

�����

�����p
+ zij − yij

�����

�����p
 δjk 

m

k�1
 

1≤i,j≤n

�

���



k

l�1

p




x
ij

l − z
ij

l




p

+

���



k

l�1

p




z
ij

l − y
ij

l




p⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦δjk

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

m

k�1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
1≤i,j≤n

.

(11)

Hence,dθ1(x, y)≺ θ1(dθ1(x, z),dθ1(z, y))∀x, y, x ∈ X

because
���



k

l�1

p




x
ij

l − y
ij

l




p ≤

��


k

l�1

p



x
ij

l − z
ij

l




p

+

���



k

l�1

p




z
ij

l − y
ij

l




p⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

∀1≤ i, j≤ n, 1≤ k≤m.

(12)

Example 3. Let E, C, and θ4 be given as in Example 1 and
X � x, y, z  be three elements. +en, the function dθ4,
dθ4: X × X⟶ C, is defined by

dθ4(x, x) � dθ4(y, y) � dθ4(z, z) � Θ,

dθ4(x, y) � dθ4(y, x) � uij 1≤i,j≤n, where u11 � 2, 0, 0, . . .{ }, uij � 0, 0, 0, . . . , 0{ }∀1< i, j≤ n,

dθ4(y, z) � dθ4(z, y) � vij 1≤i,j≤n, where v11 � 3, 0, 0, . . .{ }, vij � 0, 0, 0, . . . , 0{ }∀1< i, j≤ n,

dθ4(x, z) � dθ4(z, x) � wij 1≤i,j≤n, wherew11 � 6, 0, 0, . . .{ }, wij � 0, 0, 0, . . . , 0{ }∀1< i, j≤ n.

(13)

Note that dθ4 is not a metric on X because
dθ4(x, z)>dθ4(x, y) + dθ4(y, z), but it is a θ4-cone metric
on X, and (X, C,dθ4) is a θ4-cone-metric space.

In 2017, J. Fernandez et al. introduced F-cone-metric
spaces over Banach algebra and gave some generalization of
some previous fixed point theorems.
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In 2017, Suzuki [8] introduced different generalized
approaches for the strongest sequentially compatible to-
pology on a ]-generalized metric space and studied its
characterizations.

In 2019, Abou Bakr [9] gave some common fixed point
theorems (and, in particular, fixed points) of the generalized
contraction type of cyclic mappings defined on cone metric
spaces on Banach algebra.

In 2020, Abou Bakr [10] gave a study on the common
fixed point of joint generalized types of contraction map-
pings in quasi-metric spaces.

2. Main Results

We have the following two sections.

2.1. Convergence and Cauchyness in θ-Cone-Metric Spaces.
Let us start with the following definition.

Definition 4. Let (X, C,dθ) be a θ-cone-metric space. An
open ball Ndθ

(x, u) at center x ∈ X with a radius u ∈ Im(θ)

(neighborhood of x at radius u) is defined as

Ndθ
(x, u)≕ y: y ∈ X,dθ(x, y)< u . (14)

A subset Y ⊂ X is bounded if and only if there are x ∈ X

and u ∈ Im(θ) such that Y ⊂ Ndθ
(x, u). Limit and interior

points are defined in the usual way. Additionally, bounded,
open, and closed sets in X are also defined.

Remark 2. A sequence xn n∈N in (X, C,dθ) converges to x

whenever for each u ∈ Im(θ) withΘ< u, there is n0 ∈ N such
that dθ(xn, x)< u for all n≥ n0. We instead write
xn⟶

dθ
n⟶∞x.

A sequence xn n∈N in (X, C,dθ) is Cauchy whenever
for each u ∈ C with Θ< u, there is n0 ∈ N such that
dθ(xn, xm)< u for all n, m≥ n0.

A sequence xn n∈N in (X, C,dθ) is bounded if and only
if there are x ∈ X and u ∈ Im(θ) such that
xn n∈N ⊂ Ndθ

(x, u). Equivalently, a sequence xn n∈N in
(X, C,dθ) is bounded if and only if there are x ∈ X and
u ∈ Im(θ) such that dθ(xn, x)< u for all n ∈ N.

We have the following lemmas.

Lemma 1. Every neighborhood in (X, C,dθ) is an open
subset.

Proof. Let x ∈ X be an arbitrary element and Ndθ
(x, u) be

any neighborhood of x with any radius u ∈ C; we show that,
for every y ∈ Ndθ

(x, u), there is some w ∈ Im(θ) such that
Ndθ

(y, w) ⊂ Ndθ
(x, u). Set v � dθ(x, y), and we have

u ∈ Im(θ) andΘ≺ v≺ u. Using the definition of θ, there is w,
Θ≺w≺ u, such that θ(v, w) � u. We claim that Ndθ

(y, w) is
the required neighborhood. In fact, if z ∈ Ndθ

(y, w) is an
arbitrary element, then dθ(y, z)<w. Now, using the defi-
nition of dθ and then the definition of θ, we have the
following:

dθ(x, z)≺ θ dθ(x, y),dθ(y, z)( < θ(v, w) � u. (15)

Hence, z ∈ Ndθ
(x, u); this completes the proof. □

Lemma 2. A sequence xn n∈N in (X, C,dθ) converges to x if
and only if dθ(xn, x)⟶ n⟶∞Θ converges in E.

Proof. Suppose that xn⟶
dθ
n⟶∞x, and let ε> 0. +en,

choose u ∈ Im(θ), Θ< u with M‖u‖< ε, where M is the
normal constant of C; for this u, there is n0 ∈ N such that
dθ(xn, x)< u for all n≥ n0; hence, ‖dθ(xn, x)‖<M‖u‖ for
all n≥ n0, and accordingly, we have ‖dθ(xn, x)‖< ε for all
n≥ n0. +is proves that dθ(xn, x)⟶ n⟶∞Θ.

Conversely, let dθ(xn, x)⟶ n⟶∞Θ[‖dθ(xn, x)‖

⟶ n⟶∞0]; we show that xn⟶
dθ
n⟶∞x. Let u ∈ Im(θ) be

arbitrary; since θ is continuous, there is a neighborhood of u

with some radius ε> 0, Nε(u) inE and Nε(u) ⊂ C; for this ε,
there is a natural number n0 ∈N such that ‖dθ(xn, x)‖< ε
for every n≥ n0, and since dθ(xn, x) � u − [u − dθ(xn, x)],
we see that ‖u − [u − dθ (xn, x)]‖< ε for every n≥ n0; hence,
[u − dθ(xn, x)] ∈ Nε(u), and consequently, u − dθ(xn, x)

∈ C, that is, dθ(xn, x)≺ u. +is proves that
xn⟶

dθ
n⟶∞x. □

Lemma 3. /e limit of any sequence xn n∈N in (X, C,dθ) is
unique.

Proof. Suppose that xn⟶
dθ
n⟶∞x and xn⟶

dθ
n⟶∞y; we

show that x � y. Using Lemma 2, we have
dθ(xn, x)⟶ n⟶∞Θ and dθ(xn, y)⟶ n⟶∞Θ, and us-
ing the definition of dθ and the continuity of θ, we have

Θ≺dθ(x, y)≺ θ dθ xn, x( ,dθ xn, y( (  ⟶
n⟶∞

θ(Θ,Θ) � Θ.

(16)

Hence, dθ(x, y) � Θ, that is, x � y. □

Lemma 4. Let (X, C,dθ) be a θ-cone-metric space,
xn⟶

dθ
n⟶∞x, and yn⟶

dθ
n⟶∞y. /en,

dθ xn, yn(  ⟶
n⟶∞

dθ(x, y). (17)

Proof. Using Lemma 4, we have dθ(xn, x)⟶ n⟶∞Θ and
dθ(yn, y)⟶ n⟶∞Θ since dθ(x, yn)≺ θ (dθ(x, y),

dθ(y, yn)) and θ is continuous; then, conditions (2) and (4)
of θ imply the following:

dθ x, yn( ≺ θ dθ(x, y),dθ y, yn( ( 

⟶
n⟶∞

θ dθ(x, y),Θ( ≺ dθ(x, y),
(18)

and consequently,

dθ xn, yn( ≼ θ dθ yn, x( ,dθ x, xn( (  use the continuity of θ

⟶
n⟶∞

θ dθ(x, y),Θ(  use condition (4) of θ

≼dθ(x, y),

(19)

Using the continuity of θ once more gives
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dθ(x, y)≺ θ dθ x, xn( , θ dθ xn, yn( ,dθ yn, y( ( ( 

⟶
n⟶∞

lim
n⟶∞

θ dθ x, xn( , θ dθ xn, yn( ,dθ yn, y( ( ( 

≺ θ lim
n⟶∞

dθ x, xn( , lim
n⟶∞

θ dθ xn, yn( ,dθ yn, y( (  

≺ θ lim
n⟶∞

dθ x, xn( , θ lim
n⟶∞

dθ xn, yn( , lim
n⟶∞

dθ yn, y(   

≺ θ Θ, θ lim
n⟶∞

dθ xn, yn( ,Θ  ≺ θ lim
n⟶∞

dθ xn, yn( ,Θ 

≺ lim
n⟶∞

dθ xn, yn( .

(20)

Using inequalities (19) and (20) gives dθ(xn, yn)⟶
n⟶∞dθ(x, y) and completes the proof. □ □

Lemma 5. A sequence xn n∈N in (X, C,dθ) is Cauchy if and
only if

dθ xn, xm(  ⟶
n,m⟶∞

Θ. (21)

Proof. Suppose that xn n∈N is Cauchy, and let ε> 0. +en,
choose u ∈ Im(θ), Θ< u with M‖u‖< ε, where M is the
normal constant of C; for this u, there is n0 ∈ N such that
dθ(xn, xm)< u for all n, m≥ n0; hence,
‖dθ(xn, xm)‖<M‖u‖ for all n, m≥ n0, and accordingly, we
have ‖dθ(xn, xm)‖< ε for all n, m≥ n0. +is proves that
dθ(xn, xm)⟶ n,m⟶∞Θ.

Conversely, letdθ(xn, xm)⟶ n,m⟶∞Θ [‖dθ(xn, xm)‖

⟶ n,m⟶∞0]; we show that xn n∈N is Cauchy. Let
u ∈ Im(θ) be arbitrary; since θ is continuous, there is a
neighborhood of u with some radius ε> 0, Nε(u) in E such
that Nε(u) ⊂ C; for this ε, there is a natural number n0 ∈N
such that ‖dθ(xn, xm)‖< ε for every n, m≥ n0, and since
dθ(xn, xm) � u − [u − dθ(xn, xm)], we see that
‖u − [u − dθ(xn, xm)]‖< ε for every n, m≥ n0. Hence,
[u − dθ(xn, xm)] ∈ Nε(u), and consequently, u − dθ(

xn, xm) ∈ C, that is, dθ(xn, xm)≺ u for every n, m≥ n0. +is
proves that xn n∈N is Cauchy. □

Lemma 6. Every convergent sequence in the θ-cone-metric
space is Cauchy.

Proof. Let xn n∈N in (X, C,dθ) converge to x, and let
m, n ∈ N with m≥ n. +en, the continuity of θ insures the
following:

dθ xn, xm( ≺ θ dθ x, xn( ,dθ x, xm( (  ⟶
n,m⟶∞

θ (Θ,Θ) � Θ.

(22)

+e following lemmas are mainly used in the upcoming
generalizations of fixed point theorems. □

Lemma 7. Let (X, C,dθ) be a θ-cone-metric space and
xn n∈N be in X such that dθ(xn, xn+1) n∈N converges to Θ.
/en, xn n∈N is a Cauchy sequence.

Proof. Suppose that xn n∈N is not Cauchy; then, there exist
u ∈ Im(θ), Θ< u, and sequences J(n){ }n∈N and k(n){ }n∈N of
natural numbers such that, for any J(n)> k(n)> n,

u≺ dθ xJ(n), xk(n)  anddθ xJ(n)− 1, xk(n) < u ∀n ∈ N.

(23)

Using the definition and the continuity of θ and the fact
that any subsequence of dθ(xn, xn+1) n∈N converges to Θ,
we have the following contradiction:

u≺dθ xJ(n), xk(n) 

≺ θ dθ xJ(n)− 1, xk(n) ,dθ xJ(n), xj(n)− 1  

< θ u,dθ xJ(n), xj(n)− 1  

< θ u, lim
n⟶∞

dθ xJ(n), xj(n)− 1  

� θ(u,Θ)< u.

(24)

□

Lemma 8. Let (X, C,dθ) be a θ-cone-metric space and
xn n∈N be in X such that

dθ xn+2, xn+1( ≺ t0dθ xn+1, xn( , n � 0, 1, 2, . . . , (25)

for some real number t0, 0≤t0 < 1./en, xn n∈N is Cauchy.

Proof. Taking into account the conditions αC ⊂ C for every
nonnegative real number α, C + C ⊂ C, and dθ(xn+1, xn)≺
t0dθ(xn, xn− 1) imply

t0dθ xn, xn− 1(  − dθ xn+1, xn(  ∈ C. (26)

Hence,

t0 t0dθ xn, xn− 1(  − dθ xn+1, xn(   ∈ C, (27)

that is,
t
2
0dθ xn, xn− 1(  − t0dθ xn+1, xn(  ∈ C. (28)

Additionally, dθ(xn+2, xn+1)≺t0dθ(xn+1, xn) gives

t0dθ xn+1, xn(  − dθ xn+2, xn+1(  ∈ C. (29)

Inclusions (28) and (29) yield the following:

t
2
0dθ xn, xn− 1(  − t0dθ xn+1, xn(   + t0dθ xn+1, xn( 

− dθ xn+2, xn+1(  ∈ C.

(30)

+us,

t
2
0dθ xn, xn− 1(  − dθ xn+2, xn+1(   ∈ C, (31)

and hence,

dθ xn+2, xn+1( ≺ t0dθ xn+1, xn( ≺t20dθ xn, xn− 1( . (32)

+is implies successively

dθ xn, xn+1( ≺ t0dθ xn− 1, xn( 

≺ t20dθ xn− 2, xn− 1( 

· · ·

≺ tn
0dθ x0, x1( .

(33)
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Since 0≤ t0 < 1, the sequence tn
0 n∈N is convergent to 0,

and taking the limit as n⟶∞ of the two sides of (33)
shows that tn

0dθ(x1, x0)⟶Θ as n⟶∞; hence,
limn⟶∞dθ(xn, xn+1) � Θ. Using Lemma 7 shows that
xn n∈N is Cauchy and completes the proof. □ □

2.2. Fixed Point /eorem for Contraction Types of Mappings.
We have the following definition.

Definition 5. A θ-cone-metric space (X, C,dθ) is complete
whenever every Cauchy sequence converges to an element
belonging to it.

Banach’s contraction principle [11] is one of the pivotal
results of nonlinear analysis and its applications, which
establishes that every contraction mapping defined on a
complete metric space has a unique fixed point. In this
paper, we use the concept of θ-cone-metric spaces to gen-
eralize the Banach contraction principle as follows.

Theorem 1. Let (X, C,dθ) be a complete θ-cone-metric
space on a normed space E and S: X⟶ X be a mapping
that satisfies the following:

dθ(S(x), S(y))≺t0dθ(x, y), ∀x, y ∈ X, (34)

for some real number t0, 0≤ t0 < 1./en, S has a unique fixed
point.

Proof. Let x0 ∈ X be a given element; then, the iterated
sequence Sn(x0) n∈N, xn � Sn(x), satisfies the following:

dθ xn+2, xn+1(  � dθ S xn+1( , S xn( ( 

≺t0dθ xn+1, xn( , n � 0, 1, 2, . . . .
(35)

Using Lemma 8, the sequence of iterates is a Cauchy
sequence. According to the completeness of X, there exists
x ∈ X such that xn⟶

dθ
n⟶∞x; we claim that x is a fixed

point of S. In fact, we have

dθ xn+1, S(x)(  � dθ S xn( , S(x)( , n � 0, 1, 2, . . .

≺ t0dθ xn, x(  ⟶
n⟶∞
Θ.

(36)

It means that xn⟶
dθ
n⟶∞S(x); using Lemma 3 proves

that S(x) � x. Finally, we prove that x is the unique fixed
point of S. Suppose, on the contrary, that x and y are two
distinct fixed points of S; then, dθ(x, y)≠Θ, and on the
other side, (1 − t0)dθ(x, y) ∈ C because (1 − t0)> 0, that
is, t0dθ(x, y)<dθ(x, y). So, we get the following
contradiction:

dθ(x, y) � dθ(S(x), S(y))≺ t0dθ(x, y)<dθ(x, y).

(37)

One of beautiful generalizations of the Banach con-
traction principle was found by Reich [12] and further
generalized by Hardy and Rogers [13]. In this paper, in case
of the above introduced θ-cone-metric space setting, we give
the following further generalization. □

Theorem 2. Let (X, C,dθ) be a complete θ-cone-metric
space on a normed space E and S: X⟶ X be a mapping
that satisfies the following:

dθ(S(x), S(y))≺ adθ(x, y) + bdθ(x, S(x))

+ cdθ(y, S(y)), ∀x, y ∈ X,
(38)

for some real numbers a,b,c, 0<a + b + c< 1./en, S has
a unique fixed point.

Proof. Let x0 ∈ X be a given element. +en, the iterated
sequence Sn(x0) n∈N, xn � Sn(x), satisfies the following:

dθ xn+2, xn+1(  � dθ S xn+1( , S xn( ( , n � 0, 1, 2, . . .

≺adθ xn+1, xn(  + bdθ xn+1, S xn+1( ( 

+ cdθ xn, S xn( ( 

≺ [a + c]dθ xn+1, xn(  + bdθ xn+1, xn+2( ,

(39)

and consequently, [a+c]dθ(xn+1,xn) − [1 − b] dθ(xn+2,

xn+1) ∈ C; hence, [1/1 − b]([a+c]dθ(xn+1,xn) − [1 − b]dθ
(xn+2,xn+1)) ∈C, that is, [a+c]/[1 − b]dθ(xn+1,xn)-
dθ(xn+2,xn+1) ∈C. +erefore, we have

dθ xn+2, xn+1( ≺
[a + c]

[1 − b]
dθ xn+1, xn( , n � 0, 1, 2, . . . .

(40)

Since [a + c]/[1 − b]< 1, dθ(xn+1, xn)⟶ dθ
n⟶∞Θ,

and using Lemma 7 proves that the sequence of iterates is a
Cauchy sequence. According to the completeness of X, there
exists x ∈ X such that xn⟶

dθ
n⟶∞x and limn⟶∞dθ

(xn, x) � Θ; we show thatx is a fixed point of S. In fact, we have

dθ xn+1, S(x)(  � dθ S xn( , S(x)( , n � 0, 1, 2, . . .

≺ adθ xn, x(  + bdθ(x, S(x)) + cdθ xn, S xn( ( 

≺ adθ xn, x(  + bdθ(x, S(x)) + cdθ xn, xn+1( 

⟶
n⟶∞

bdθ(x, S(x)),

(41)

dθ(x, S(x))≺ θ dθ x, xn( ,dθ xn, S(x)( ( 

≺ θ dθ x, xn( , θ dθ xn, xn+1( ,dθ xn+1, S(x)( ( ( 

⟶
n⟶∞

θ Θ, θ Θ, lim
n⟶∞

dθ xn+1, S(x)(   

≺ θ Θ, lim
n⟶∞

dθ xn+1, S(x)(  .

≺ lim
n⟶∞

dθ xn+1, S(x)( .

(42)

Using inequalities (41) and (42) proves that
dθ(x, S(x))≺ bdθ(x, S(x)); hence, (b − 1)dθ(x,S(x)) ∈C,
and consequently, dθ(x,S(x)) �Θ because C∩ − C � Θ{ },
that is, S(x) � x. Finally; we prove that x is the unique fixed
point of S. Suppose, on the contrary, that x and y are two
distinct fixed points of S. So, we get the following:
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dθ(x, y) �dθ(S(x), S(y))≺ adθ(x, y) + bdθ(x, S(x))

+ cdθ(y, S(y)) � adθ(x, y).

(43)
Hence, [adθ(x, y) − dθ(x, y)] ∈ C and [a − 1]dθ

(x, y) ∈ C, but [a − 1]< 0; this implies that dθ(x, y) � Θ
because C∩ − C � Θ{ }, that is, x � y. □

3. Conclusion

In this paper, we generalize the concept of θ-metric space to
the concept of the θ-cone-metric space as a generalization of
a metric by replacing the triangle inequality with a more
generalized inequality using some θ-action functions and
replacing the usual ordered relation of real numbers by
ordered relation induced by a cone in a normed space. We
investigate the convergence and Cauchyness in such a
θ-cone-metric space. Furthermore, we prove some lemmas
and use them to give further generalizations of some well-
known fixed point theorems in this context [14].
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Mathematicae, vol. 3, pp. 133–181, 1922.

[12] S. Reich, “Kannan’s fixed point theorem,” Bollettino dell’U-
nione Matematica Italiana, vol. 4, pp. 1–11, 1971.

[13] G. E. Hardy and T. D. Rogers, “A generalization of a fixed
point theorem of reich,” Canadian Mathematical Bulletin,
vol. 16, no. 2, pp. 201–206, 1973.

[14] J. Fernandez, N. Malviya, S. Radenovi’c, and K. Saxena,
“F-cone metric spaces over Banach algebra,” Fixed Point
/eory and Applications, vol. 7, 2017.

Journal of Mathematics 7


