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Some algebraic properties of Cesáro ideal convergent sequence spaces, CI and CI
0, are studied in this article and some inclusion

relations on these spaces are established.

1. Introduction

Consider the space ω � x � (xk): xk ∈ R orC  of all real
and complex sequences, whereR andC are, respectively, the
sets of all real and complex numbers.

Suppose that ℓ∞, c, and c0 are the linear spaces of
bounded, convergent, and null sequences, respectively,
normed by

‖x‖∞ � sup
k

xk


, where, k ∈ N, (1)

N being the set of all natural numbers.
A sequence space x � (xk) of complex numbers is said to

be (C, 1) summable to L ∈ C if for ρk � 1/k 
k
i�1 xi,

limkρk � L. *e sequence (C, 1) is also called Cesáro sum-
mable sequence of complex numbers over C. Let us denote
by C1 the linear space of all (C, 1) summable sequences of
complex numbers over C, i.e.,

C1 � x � xk(  ∈ ω:
1
k



k

i�1
xi ∈ c

⎧⎨

⎩

⎫⎬

⎭. (2)

Hardy and Littlewood [1] initiated the notion of strong
Cesáro convergence for real numbers which is defined as
follows.

A sequence (xk) on a normed space (X, ‖ · ‖|) is said to be
strongly Cesáro convergent to L if

lim
n⟶∞

1
n



n

k�1
xk − L

����
���� � 0. (3)

In [2–6], the authors have extended the notion of strong
Cesáro convergence in various fields. In 1951, Fast [7] in-
troduced the term statistical convergence, while Steinhaus
[8] independently introduced the term “ordinary and as-
ymptotic convergences.”

Later on, Fridy [9, 10] also studied the statistical con-
vergence and he linked it with the summability theory.
Kostyrko et al. [11] gave the concept of ideal convergence (I-
convergence) which was indeed a generalization of statistical
convergence. Salat et al. [12] studied some properties of
I-convergence, and further investigations in this field are
done by Khan [13], Tripathy and Esi [14], Tripathy and
Hazarika [15], and many others.

In this article, further interesting properties of Cesáro
Ideal Convergent Sequences are established and a few in-
clusion relations are also proved.

2. Definitions of the Terms Used

Let us first present some definitions and notions that are
required in the sequel.

(1) A family of subsets I of N is called an ideal set in N

(i) If ϕ/∈I

Hindawi
Journal of Mathematics
Volume 2020, Article ID 8897155, 4 pages
https://doi.org/10.1155/2020/8897155

mailto:f.khan@seu.edu.sa
https://orcid.org/0000-0001-5053-5028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8897155


(ii) If the sets A, B ∈ I, then A∪B∈I
(iii) If B⊆A and A∈I, then B∈I

(2) A nontrivial ideal set I is said to be admissible if

{{n}: n∈N}} ⊂ I

(3) A nonempty set F ∈ 2N is known as a filter in N if

(a) ϕ/ ∉ F

(b) A, B∈F⇒A∩B∈F
(c) A∈F with A⊆AB⇒B∈F

Remark 1. For every ideal I, there is a filter F(I) (associated
with I) defined as follows:

F(I) � P⊆N:
N

pεI
 . (4)

A sequence (xk)∈X is said to be I-convergent to a
number L if, for every ∈>0, the set {x� (xk) ∈X: {k∈N:
|xk−L|≥ ε} ∈I}. In this case, we write I–lim xk � L. If
L� 0, then it is called I-null.
A sequence xk ∈ω is said to be I-Cauchy if, for every
ε> 0, there exists a number m�m(ε) such that

x � xk ∈ X: xn − xm


≥ ε  ∈ I . (5)

Let If be the class of all finite subsets of N. If I� IfIf,
then I is admissible ideal set in N.
A sequence space X is said to be solid (normal) if
(αkxk)∈X whenever (xk)∈X and (αk) is a sequence of
scalars with |αk|≤ 1, for all k∈N.
A sequence space X is a Sequence Algebra if, for every
(xk), (yk) ∈X, (sk, yk) ∈ X.
Let K� k1 < k2 < k3, ....  ⊂ N and X be a sequence
space. A K-step space of X is a sequence space
λX

K � (xkn
) ∈ ω: (xk) ∈ X .

A canonical preimage of a sequence (xkn)∈λ
X
Kis a se-

quence (yk)∈ω defined by

yk �
xk, if k ∈ K,

0, otherwise,
 (6)

A sequence space is monotone if it contains the ca-
nonical preimages of its step spaces.

3. Result

A canonical preimage of a step space λX
K is a set of preimages

of all elements in λX
K, i.e., y is in the canonical preimage of

λX
Kif and only if y is the canonical preimage of some x ∈λX

K.
Let X and Y be two normed linear spaces. An operator T:

X⟶Y is known as a compact linear operator if [16].
(a) T is linear

(b) If, for every bounded subset D of X, the image M(D)
is relatively compact, i.e, the closure T(D)is compact

Lemma 1 (see [12]). Every solid space is monotone.

Lemma 2 (see [12]). Let K∈F(I) and M ⊆ N. If M ∉ I, then
M∩K ∉ I.

Lemma 3 (see [11]). Let I ⊂ 2N and M⊆N. If M ∉ I, then
M∩K ∉ I.

4. Main Results

Let us first define CI, the space of all Cesáro ideal convergent
sequences and CI

0, the space of all Cesáro ideal null se-
quences which are given as follows:

C
I

� x � xk(  ∈ ω: I − lim
n⟶∞

1
n



n

k�1
xk − L

����
����

⎧⎨

⎩

� 0, for some L ∈ C},

C
I
0 � x � xk(  ∈ ω: I − lim

n⟶∞

1
n



n

k�1
xk

����
���� � 0,

⎧⎨

⎩

⎫⎬

⎭.

(7)

Theorem 1. �e sequence spaces CI and CI
0 are linear.

Proof. Assume that x � (xk), y � (yk) ∈C
I. *en, one has

I − lim
n⟶∞

1
n



n

k�1
xk − L1

����
���� � 0, for some L1 ∈ C,

I − lim
n⟶∞

1
n



n

k�1
yk − L2

����
���� � 0, for some L2 ∈ C.

(8)

Let

A1 � k ∈ N:
1
n



n

k�1
xk − L1

����
����

⎧⎨

⎩

⎫⎬

⎭, (9)

A2 � k ∈ N:
1
n



n

k�1
yk − L2

����
����

⎧⎨

⎩

⎫⎬

⎭. (10)

Let α and  β be some scalers.
By using the properties of norm, one can easily see that

lim
n⟶∞

1
n



n

k�1
axk + βyk(  − αL1 + βL2( 

����
����

≤ lim
n⟶∞

1
n



n

k�1
|α| xk − L1

����
���� + lim

n⟶∞

1
n



n

k�1
|β| yk −L2

����
����.

(11)

*en, from (9) and (10), we have for each ε> 0,
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k ∈ N: lim
n⟶∞

1
n



n

k�1
αxk + βyk(  − αL1 + βL2( 

����
����> ε

⎧⎨

⎩

⎫⎬

⎭

⊂ A1 ∪A2.

(12)

*erefore, (αxk + βyk) ∈C
I, for all scalars α, β and (xk),

(yk)∈C
I.

Hence, CI is a linear space.
On the similar manner, one can prove that CI

0is also
linear. □

Theorem 2. Let x� (xk) ∈ω be any sequence �en, CI
0 ⊂ C

I.

Proof. It can be easily observed. □

Theorem 3. A sequence x� (xk) ∈C
I is I-convergent if and

only if, for every ε > 0, there exists l� l(ε)∈N such that

k ∈ N:
1
n



n

k�1
xk − xl

����
����< ε

⎧⎨

⎩

⎫⎬

⎭ ∈ F(I). (13)

Proof. Suppose that x � (xk) ∈C
I. *erefore, I − limn⟶∞1/n


n
k�1 ‖xk − L‖ � 0. *en, for all ε>0 the set

Cε � k ∈ N:
1
n



n

k�1
xk − L

����
����<

ε
2

⎧⎨

⎩

⎫⎬

⎭ ∈ F(I). (14)

Fix an l(ε)∈∈Cε. *en, we have

1
n



n

k�1
xk − xl

����
����≤

1
n



n

k�1
xk − L

����
���� +

1
n



n

k�1
xl − L

����
����<

ε
2

+
ε
2

� ε,

(15)

which holds for all k ∈∈Cε. Hence,

k ∈ N:
1
n



n

k�1
xk − xl

����
����< ε

⎧⎨

⎩

⎫⎬

⎭ ∈ F(I). (16)

Conversely, suppose that, for all ε> 0, the set

k ∈ N:
1
n



n

k�1
xk − xl

����
����< ε

⎧⎨

⎩

⎫⎬

⎭ ∈ F(I). (17)

*en, for every ε> 0, we have

Bε � k ∈ N:
1
n



n

k�1
xk

����
���� ∈

1
n



n

k�1
xl

����
����⎡⎣

⎧⎨

⎩

− ε,
1
n



n

k�1
xl

����
���� + ε⎤⎦

⎫⎬

⎭ ∈ F(I),

Let, Pε �
1
n



n

k�1
xl

����
���� − ε,

1
n



n

k�1
xl

����
���� + ε⎡⎣ ⎤⎦.

(18)

For fixed ε > 0,one has Bε ∈ F(I)as well as Bε/2∈F(I).
Hence, Bε ∩Bε/2 ∈ F(I).

*is implies that Bε ∩Bε/2 ≠ ϕ, that is,

k ∈ N:
1
n



n

k�1
xk

����
���� ∈ P

⎧⎨

⎩

⎫⎬

⎭ ∈ F(I). (19)

*at is diam P≤ diam Pε, where the diam P denotes the
length of the interval of P.

In this way, by induction, one obtains the sequence of
closed intervals:

Pε � J0⊇J1⊇J2, · · · ,⊇Jk⊇, · · · , (20)

with the property that diam Jk ≤ 1/2diam Jk−1 for k� 1, 2, 3,
. . ., and

k ∈ N:
1
n



n

k�1
xk

����
���� ∈ Jk

⎧⎨

⎩

⎫⎬

⎭ ∈ F(I), (21)

for k� 1,2,3, . . ..,. *en, there exists a L ∈∩ Jk such that
L � I − limn⟶∞1/n 

n
k�1 ‖xk‖showing that x� (xk)∈C

I is
I-convergent. Hence, the result holds. □

Theorem 4. �e space CI
0is solid and monotone.

Proof. Let (xk) ∈CI
0be any element. *en, one has

k ∈ N: I − lim
n⟶∞

1
n



n

k�1
xk

����
���� � 0

⎧⎨

⎩

⎫⎬

⎭. (22)

Let (αk) be a sequence of scalars such that |αk|≤ 1, for all
k∈N, and hence 1/n 

n
k�1 |ak|≤ 1.

*en, the result (that CI
0 is solid) follows from the above

equation and inequality:

1
n



n

k�1
αkxk

����
���� �

1
n



n

k�1
αk


 xk

����
���� �

1
n



n

k�1
αk



1
n



n

k�1
xk

����
����

≤
1
n



n

k�1
xk

����
����,

(23)

for all k∈N.
*e space CI

0is monotone which follows from Lemma 1.
Hence, CI

0is solid and monotone. □

Theorem 5. �e space CI is neither solid nor monotone.

Proof. For this theorem, we provide a counter example for
the proof. □

5. Counter Example

Let I � If, and consider the k-step χk of χ defined as follows.
Let (xk)∈χ and let (yk) ∈χk be such that

yk �
xk, if k is even,

0, otherwise.


(24)

Let us consider the sequence (xk) defined by xk � 1 for
all k ∈N. *en, (xk)∈C

I, but its K-step preimages do not
belong to CI. *us, (xk) ∈C

I is not monotone.
Hence, (xk) ∈C

I is not solid.
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Theorem 6. Let x� (xk) and y� (yk) be two sequences in
such a way that T(x · y) � T(x)T(y). �en, the space CI and
CI
0are sequence algebra.

Proof. Let x� (xk) and y� (yk) be two elements of CI with

T(x · y) � T(x)T(y). (25)

For every ε> 0 select β> 0 in such a way that ε< β, then

k ∈ N:
1
n



n

k�1
T xk(  − L1

����
����<

ε
2β

⎧⎨

⎩

⎫⎬

⎭ ∈ F(I),

k ∈ N:
1
n



n

k�1
T yk(  − L2

����
����<

ε
2 L1




⎧⎨

⎩

⎫⎬

⎭ ∈ F(I).

(26)

Using the above and the property of norm, one obtains

1
n



n

k�1
T xk.yk(  − L1L2

����
���� �

1
n



n

k�1
T xk( T yk(  − L1L2

����
����

�
1
n



n

k�1
T xk( T yk(  − L1T yk(  + L1T yk(  − L1L2

����
����

≤
1
n



n

k�1
T yk( 

����
����
1
n



n

k�1
T xk(  − L1

����
���� + L1



1
n



n

k�1
T yk(  − L2

����
����<

ε2

2β
+ L1




ε
2 L1



< ε.

(27)

*erefore, the set

k ∈ N:
1
n



n

k�1
T xk.yk(  − L1L2

����
����≥ ε

⎧⎨

⎩

⎫⎬

⎭ ∈ I. (28)

*us, (xk).(yk) ∈
ICes. Hence, CI is a sequence algebra.

On the similar manner, one can prove that space CI
0 is

also sequence algebra. □
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