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A space X is said to be set selectively star-ccc if for each nonempty subset B of X, for each collectionU of open sets in X such that
B ⊂ ∪U, and for each sequence (An: n ∈ N) of maximal cellular open families in X, there is a sequence (An: n ∈ N) such that, for
each n ∈ N, An ∈ An and B ⊂ St(⋃n∈NAn,U). In this paper, we introduce set selectively star-ccc spaces and investigate the
relationship between set selectively star-ccc and other related spaces. We also study the topological properties of set selectively
star-ccc spaces. Some open problems are posed.

1. Introduction

In 1996, Scheepers [1] initiated the systematic study of se-
lection principle in topology and their relations to game
theory and Ramsey theory (also see [2]). After this study, it
becomes one of the most active areas in set theoretic to-
pology. Kočinac [3, 4] applied the star operator to these
selection principles and introduced and studied the new
selection principles called star selection principles. It should
be noted that classical selection principles have been used to
define and characterize various covering properties such as
Rothberger [5], Menger [6], and star-Menger [3]. In this
paper, we use the following selection principle of the
Scheepers type from [1]. Let A and B be families of sets.

,en, S1(A,B) denotes, for each sequence (An: n ∈ N)

of elements of A, there is a sequence (An: n ∈ N) such that,
for each n, An ∈ An and An: n ∈ N  is an element of B.

If O is the family of all open covers of a space X, then
S1(O,O) is the Rothberger covering property.

On the contrary, Arhangel’skii [7] defined a cardinal
function sL and spaces X such that sL(X) � ω; we call
s-Lindelöf: a space X is s-Lindelöf if, for each nonempty
subset A of X and each open coverU of A by sets open in X,
there is a countable set V ⊂ U such that A ⊂ ⋃V. Fol-
lowing this idea and modifying it, Kočinac and Konca [8]

considered new types of selective covering properties called
set-covering properties. A space X is said to have the set-
Menger property [8, 9] if, for each nonempty subset A of X

and each sequence (Un: n ∈ N) of collections of sets open in
X such that A ⊂ ⋃Un, there is a sequence (Vn: n ∈ N) such
that, for each n ∈ N, Vn is a finite subset of Un and
A ⊂ ⋃n∈N⋃ Vn. Recently, Kočinac, Konca, and Singh ini-
tiated a study of star versions of the set-Menger covering
property.

In [10], Aurichi introduced the class of selectively ccc
spaces. Bal and Kočinac [11] introduced and studied the star
version of selectively ccc spaces called selectively star-ccc
spaces.

,e purpose of this paper is to introduce the set se-
lectively star-ccc spaces, the class which lies between
Lindelöf spaces and selectively star-ccc spaces. We investi-
gate the relationship between set selectively star-ccc and
other related spaces and study the topological properties of
set selectively star-ccc spaces. Some open problems are
posed.

2. Preliminaries

By “a space” we mean “a topological space.” ,roughout the
paper, an open coverU of a subset A ⊂ X means elements of
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U are open in X such that A ⊂ ⋃U � ⋃ U: U ∈ U{ }, unless
otherwise stated.

If A is a subset of a space X and U is a collection of
subsets of X, then

St(A,U) � ⋃ U ∈ U: U∩A≠∅{ }. (1)

We usually write St(x,U) � St( x{ },U). One defines St0
(A,U) � A, and for k≥ 1, Stk+1(A,U) � St(Stk(A,U),U).

A family of pairwise disjoint open sets in a topological
spaceX is called a cellular open family. A spaceX is said to be
a ccc space if every cellular open family in X is countable.

Definition 1 (see [10]). A space X is said to be selectively ccc
space if for each sequence (An: n ∈ N) of maximal cellular
open families inX, there is a sequence (An: n ∈ N) such that,
for each n ∈ N, An ∈ An and ⋃n∈NAn is dense in X.

Definition 2 (see [12–14]). A space X is said to be R-sep-
arable if, for each sequence (Dn: n ∈ N) of dense subsets of
X, there is a sequence (xn: n ∈ N) such that, for each n ∈ N,
xn ∈ Dn and xn: n ∈ N  is dense in X.

Every R-separable space is a selectively ccc, and every
selectively ccc space is ccc.

Definition 3 (see [11]). A space X is said to be selectively
star-ccc if, for each open coverU of X and for each sequence
(An: n ∈ N) of maximal cellular open families in X, there is
a sequence (An: n ∈ N) such that, for each n ∈ N, An ∈ An

and X � St(⋃n∈NAn,U).

Definition 4 (see [15]). A space X is said to be strongly star-
Lindelöf if, for each open cover U of X, there is a countable
subset F of X such that X � St(F,U).

Note that strongly star-Lindelöf spaces are also called
star countable in [16].

In a similar way, Kočinac, Konca, and Singh defined the
following.

Definition 5. Let k ∈ N. A space X is said to be set strongly
k-starcompact (resp., set strongly k-star-Lindelöf ) if, for
each nonempty subset A of X and for each collection U of
open sets in X such that A ⊂ ⋃U, there is a finite (resp.,
countable) subset F of X such that A ⊂ Stk(F,U).

We say set strongly starcompact and set strongly star-
Lindelöf instead of set strongly 1-starcompact and set
strongly 1-star-Lindelöf, respectively. It is clear, by the
definitions, that every set strongly star-Lindelöf space is
strongly star-Lindelöf and every set strongly k-starcompact
space is set strongly k-star-Lindelöf, k≥ 1.

Definition 6 (see [17, 18]). A space X is said to be absolutely
countably compact (shortly, acc) if, for each open coverU of
X and for each dense subset Y of X, there is a finite subset F

of Y such that X � St(F,U).
Clearly, a compact space is acc, and an acc Hausdroff

space is countably compact (see [17]). In a similar way, we
define the following.

Definition 7. A space X is said to be set absolutely countably
compact (shortly, set-acc) if, for each nonempty subset B of
X, for each collection U of open sets in X such that
B ⊂ ⋃U, and for every dense subset Y of X, there is a finite
subset F of Y such that B ⊂ St(F,U).

Lemma 1. Every compact space is set-acc.

Proof. Let B be any nonempty subset of X, U be any col-
lection of open sets in X such that B ⊂ ⋃U, and Y be any
dense subset of X. Since a closed subset of a compact space is
compact, B is compact; hence, there exists a finite subset V
of U such that B ⊂ ⋃V. For each V ∈V, V∩Y≠∅. Take
xV ∈ V∩Y. Put F � xV ∈ Y: V ∈ V . ,en, F is a finite
subset of Y and B ⊂ B ⊂ ⋃V ⊂ St(F,U). ,us, X is set-acc.

It is clear from the definitions that every set-acc space is
acc and thus we have the following corollary. □

Corollary 1. Every Hausdorff set-acc space is countably
compact.

,e following is an open question.

Problem 1. Does an acc space which is not set-acc exist?
Recall that a subspace Y of a space X is ω-dense in X if,

for every a ∈ X, there is a countable A ⊂ Y such that a ∈ A.

Lemma 2. If X is countably compact and every dense sub-
space of X is ω-dense in X, then X is set-acc.

Proof. Let B be any nonempty subset of X, U be any col-
lection of open sets in X such that B ⊂ ⋃U, and Y be any
dense subset of X. Since a closed subset of a countably
compact space is countably compact, B is countably com-
pact, and so there exists a finite subsetA ⊂ B( ⊂ X) such that
B ⊂ St(A,U). SinceY isω-dense inX, for every a ∈ A, pick a
countable Ba ⊂ Y such that a ∈ Ba. Set B′ � ∪ Ba: a ∈ A .
,en, B′ is countable, and for each a ∈ A,
St(a,U) ⊂ ⋃ St(b,U): b ∈ Ba . So, St(b,U): b ∈ B′  is a
countable cover of B. By countable compactness of B, there is
a finite subset F ⊂ B′ ⊂ Y such that B ⊂ B ⊂ St(F,U).

By Lemma 2, we have the following result. □

Theorem 1. If a countably compact space X has a countable
tightness, then X is set-acc.

Recall that a collectionA of infinite subsets of ω is said to
be almost disjoint if the sets A ∩ B are finite for all distinct
elements A, B ∈ A. For an almost disjoint family A, put
ψ(A) � A⋃ω and topologize ψ(A) as follows: for each
element A ∈ A and each finite set F ⊂ ω, A{ }⋃ (AF) is a
basic open neighborhood of A; each n ∈ ω is isolated. ,e
spaces of this type are called Isbell-Mrówka ψ-spaces [19] or
ψ(A) spaces.

,roughout the paper, the cardinality of a set is denoted
by |A|. Let ω denote the first infinite cardinal, ω1 the first
uncountable cardinal, and c the cardinality of the set of all
real numbers. For a cardinal κ, let κ+ be the smallest cardinal
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greater than κ. As usual, a cardinal is an initial ordinal and an
ordinal is the set of smaller ordinals. A cardinal is often
viewed as a space with the usual order topology. Other
notation and terminology follow [20].

A sub set A of X is said to be regular open if
A � Int(Cl(A)). A subset B is said to be regular closed if its
complement is regular open or, equivalently, if
B � Cl(Int(B)).

3. Set Selectively Star-CCC and Related Spaces

In this section, we give some examples showing the rela-
tionships between set selectively star-ccc spaces and other
related spaces.

Definition 8. A space X is said to be set selectively star-ccc if,
for each nonempty subset B of X, for each collection U of
open sets in X such that B ⊂ ∪U, and for each sequence
(An: n ∈ N) of maximal cellular open families in X, there is
a sequence (An: n ∈ N) such that, for each n ∈ N, An ∈ An

and B ⊂ St(⋃n∈NAn,U).
It is clear by the definitions that every set selectively star-

ccc space is selectively star-ccc.

Theorem 2. Every Lindelöf space is set selectively star-ccc.

Proof. Let B be any nonempty subset of a Lindelöf space X,
U be any collection of open sets inX such that B ⊂ ⋃U, and
(An: n ∈ N) be a sequence of maximal cellular open families
in X. Since space X is Lindelöf, closed subset B is also
Lindelöf. ,us, there exists a countable subset
V � U1, U2, . . .  of U such that B ⊂ B ⊂ ⋃V. For each
n ∈ N, An is maximal cellular open family in X, and thus
there exists An ∈ An such that An ∩Un ≠∅. ,us,

B ⊂ B ⊂ ⋃V ⊂ St ⋃
n∈N

An,U . (2)

,erefore, X is a set selectively star-ccc space.
,e following example shows that the converse of

,eorem 2 need not be true. □

Example 1

(1) Let the ordinal space X � [0,ω1) be equipped with
the usual order topology. ,en, X is a countably
compact space of countable tightness, and by ,e-
orem 1, X is set-acc. By ,eorem 5, X is a set se-
lectively star-ccc space. However, X is not Lindelöf.

(2) Let X be any Tychonoff space such that the function
spaceCp(X) is not Lindelöf. For a Tychonoff spaceX

the function space Cp(X) is selectively ccc; thus, by
,eorem 3, Cp(X) is set selectively star-ccc.

Theorem 3. Every selectively ccc space is set selectively star-
ccc.

Proof. Let B be any nonempty subset of a selectively ccc
space X, U be any collection of open sets in X such that

B ⊂ ⋃U, and (An: n ∈ N) be any sequence of maximal
cellular open families in X. Since the space X is selectively
ccc, there exists a sequence (An: n ∈ N) such that, for each
n ∈ N, An ∈ An and A � ⋃n∈NAn is dense in X. ,erefore,
B ⊂ St(⋃n∈NAn,U), which shows that X is a set selectively
star-ccc space.

,e following example shows that converse of,eorem 3
is not true. □

Example 2. Let D(c) be the discrete space of cardinality c

and let L(c) � D(c)∪ ∞{ }, where ∞ ∉ D(c), be the one-
point Lindelöfication of D(c). ,e topology on L(c) is
defined as follows: for each α< c, α{ } is isolated and a set U

containing∞ is open if and only if L(c)U is countable.,en,
L(c) is a Tychonoff Lindelöf space, and thus it is a set se-
lectively star-ccc space. However, the collection α{ }: α< c{ }

is a maximal cellular open family in L(c) which is not
countable. ,us, L(c) is not a ccc space; hence, not selec-
tively ccc (since every selectively ccc space is ccc).

Corollary 2. Every R-separable space is set selectively star-
ccc.

Example 3

(1) In Example 2, the space L(c) is set selectively star-ccc
but not separable, and thus not R-separable, since
every R-separable space is separable.

(2) ,e space 2cov M{ } contains a dense countable sub-
space X which is not R-separable (see,eorem 50 in
[13]]), but being countable X is set selectively star-
ccc.

(3) ,e ordinal space [0,ω1) is set selectively star-ccc but
not separable, and thus not R-separable.

Theorem 4. Let X be a space which has a dense subset Y of
isolated points. If, for any nonempty set B ⊂ X and for each
collection U of open sets in X such that B ⊂ ∪U, there is a
countable set D ⊂ Y such that B ⊂ St(D,U); then, X is a set
selectively star-ccc space.

Proof. Let B be any nonempty subset of X, U be any col-
lection of open sets inX such that B ⊂ ⋃U, and (An: n ∈ N)

be any sequence of maximal cellular open families in X. It
follows from hypothesis that there is a countable set D �

dn: n ∈ N  ⊂ Y such that B ⊂ St(D,U). For each n ∈ N, An

is a maximal cellular open family in X and dn is an isolated
point of X; hence, there exists An ∈ An such that dn ∈ An and
thus St(dn,U) ⊂ St(An,U). ,erefore,

B ⊂ St(D,U) ⊂ St ⋃n∈NAn,U , (3)

which proves that X is a set-selectively star-ccc space. □

Corollary 3. If X is a space with a countable dense subset of
isolated points, then it is set selectively star-ccc.
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,e following theorem follows from the definition of set-
acc spaces and from ,eorem 4.

Theorem 5. Every set-acc space is set selectively star-ccc.

,e converse of ,eorem 5 is not true.

Example 4. Any Lindelöf space which is not countably
compact is such an example. Such spaces are the Sorgenfrey
line and the real line R endowed with the open-minus-
countable topology τ: V ⊂ R belongs to τ if it is of the form
U\C, where U is open in the usual metric topology onR, and
C is a countable subset of R.

Theorem 6. Every continuous open image of a set selectively
star-ccc space is set selectively star-ccc.

Proof. Let X be a set-selectively star-ccc space and
f: X⟶ Y be a continuous open mapping from X onto Y.
Let B be any subset of Y,V be a collection of open sets in Y

such that B ⊂ ⋃V, and (An: n ∈ N) be any sequence of
maximal cellular open families in Y. Let A � f←(B). ,en,
U � f←(V): V ∈ V  is the collection of open sets in X

with

A � f
←

(B) ⊂ f
←

(B) ⊂ f
← ⋃V(  � ⋃U, (4)

and because f is open, for every n ∈ N,
Bn � f←(A): A ∈ An  is a maximal cellular open family in
X. Since X is a set selectively star-ccc space, there is a se-
quence (Bn: n ∈ N) such that for each n ∈ N, Bn ∈Bn and
A ⊂ St(⋃n∈NBn,U).

For each n, let An ∈ An be such that f←(An) � Bn. Now,
we have to show that B ⊂ St(⋃n∈NAn,V).

Let y ∈ B. ,ere exists x ∈ A such that f(x) � y. ,us,
x ∈ St(⋃n∈NBn,U). Choose Ux ∈ U such that x ∈ Ux and
(⋃n∈NBn)∩Ux ≠∅. ,us, Ux ∩Bm ≠∅ for some m ∈ N. Let
x′ ∈ Ux ∩Bm. ,en, x′ ∈ Bm, which implies
f(x′) ∈ f(Bm) � Am ⊂ ⋃n∈NAn. Also, there exists a Vy ∈V
such that f(Ux) � Vy and f(x′) ∈ Vy. ,us,
⋃n∈NAn ∩Vy ≠∅, Vy ⊂ St(⋃n∈NAn,V). Since x ∈ Ux,
y � f(x) ∈ Vy ⊂ St(⋃n∈NAn,V). ,erefore, Y is a set se-
lectively star-ccc space.

Now, we discuss the nature of set selectively star-ccc
property on subspaces. ,e following example shows that
the set selectively star-ccc property is not preserved under
open subspaces. □

Example 5. ,ere exists a Tychonoff set selectively star-ccc
space having open subspace which is not set selectively star-
ccc.

Let L(c) be the one-point Lindelöfication of the discrete
space D(c) (Example 2). ,en, L(c) is set selectively star-ccc
space. However, its open (discrete) uncountable subspace
D(c) is not set selectively star-ccc.

,e following example shows that the set selectively star-
ccc property is not preserved under closed subspaces.

Example 6. ,ere exists a Tychonoff pseudocompact set
selectively star-ccc space having closed subspace which is not
set selectively star-ccc.

Proof. Let X � M∪ω be the Isbell-Mrówka space with
|M| � c, where M is a maximal almost disjoint family of
infinite subsets of ω. ,en, X is a Tychonoff pseudocompact
space. Since ω is a countable dense subset of X containing
isolated points, by Corollary 3, X is set selectively star-ccc
space. On the contrary, M is a closed uncountable discrete
subspace of X; thus, M is not set-selectively star-ccc.

,e following example shows that the set selectively star-
ccc property is not preserved under regular closed
subspaces. □

Example 7. ,ere exists a Tychonoff set selectively star-ccc
space having regular closed subspace which is not set se-
lectively star-ccc.

Proof. Let M be the maximal almost disjoint family of
infinite subsets of ω with |M| � c. Define

Y � M∪ (c × ω) (5)

and topologize Y as follows: c × ω has the usual product
topology and is an open subspace of Y; for m ∈M, a basic
neighbourhood is of the form m{ }∪ ((α, c) × (m\F)), α< c, F
a finite subset of ω. Let Z � M∪ω be the Isbell–Mrówka
space.

Let X be the quotient space of the disjoint sum Y⊕Z by
identifying the subspace M of Y with the subspace M of Z

and let φ: Y⊕Z⟶ X be the quotient map. Notice that
φ(Y) is a regular closed subspace of X. □

Claim 1. X is a set selectively star-ccc space.
Let B be any nonempty subset of X, U be any collection

of open sets in X such that B ⊂ ⋃U, and (An: n ∈ N) be
any sequence of maximal cellular open families in X. ,ere
are three cases:

Case (i): B ⊂ φ(Z).
Note first that the Tychonoff space Z is set selectively
star-ccc by Corollary 3. Since ω is a countable dense
subset of isolated points of Z and ϕ(Z) is homeo-
morphic to Z, φ(Z) is also set selectively star-ccc. ,us,
there are An ∈ An, n ∈ N, such that B ⊂ St(⋃n∈NAn,U).
Case (ii): B ⊂ c × ω.
,e space c � [0, c) is countably compact; hence, set-
acc, and, by,eorem 5, set selectively star-ccc. For each
n ∈ ω, c × n{ } is homeomorphic to c and thus c × n{ } is
set selectively star-ccc. It is easy to conclude that it
follows from here that c × ω is also set selectively star-
ccc. ,erefore, there is a sequence (An: n ∈ N) such
that, for each n ∈ N, An ∈ An and B ⊂ St(⋃n∈NAn,U).
Case (iii): B � B1 ∪B2, where B1 ⊂ φ(Z) and B2 ⊂ c × ω.

Let N � N1 ∪N2 be a partition of N into two disjoint
infinite subsets. By Case (i) and Case (ii), we have
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B1 ⊂ St(⋃n∈N1
An,U) and B2 ⊂ St(⋃n∈N2

An,U).,is implies
that An: n ∈ N1 ∪ An: n ∈ N2  is a sequence witnessing
that B ⊂ St(⋃n∈NAn,U).

,ese three cases show that X is set selectively star-ccc.

Claim 2. φ(Y) is not set selectively star-ccc.
Song and Xuan (Example 1 in [21]) proved that the

Tychonoff space Y is not selectively star-ccc. ,us, Y is not
set selectively star-ccc (since every set selectively star-ccc
space is selectively star-ccc). ,en, φ(Y), which is homeo-
morphic to Y, is not set selectively star-ccc.

However, we have the following result on subspaces of
set selectively star-ccc spaces.

Theorem 7. Every clopen subspace of a set selectively star-ccc
space is also set selectively star-ccc.

Proof. Let X be a set selectively star-ccc space and Y ⊂ X be
an open and closed set. Let B be any subset of Y, U be any
collection of open sets in (Y, τY) such that ClY(B) ⊂ ⋃U,
and (An: n ∈ N) be any sequence of maximal cellular open
families in Y. Since Y is open, thenU is a collection of open
sets in X. For each n ∈ N set Cn � An ∪ X\Y{ }. ,en,
(Cn: n ∈ N) is a sequence of maximal cellular open families
in X. Since Y is closed, ClY(B) � ClX(B). Since X is set-
selectively star-ccc space, there is a sequence (Cn: n ∈ N)

such that, for each n ∈ N, Cn ∈ Cn and B ⊂ St(⋃n∈NCn,U).
Set An � Cn if Cn ∈ An, and An � an arbitrary element from
An if Cn � X\Y. Hence, B ⊂ St(⋃n∈NAn,U), which shows
that Y is a set selectively star-ccc space.

Observe that the set selectively star-ccc property is not
finitely productive. ,e following example shows that the
product of a set selectively star-ccc space and a Lindelöf
(hence, set electively star-ccc) space is not set selectively star-
ccc. □

Example 8. ,e ordinal space X � [0,ω1) (with the usual
order topology) is set selectively star-ccc, and the one-point
Lindelöfication L(ω1) of the discrete space D(ω1) is
Lindelöf. ,en, X × Y is not set selectively star-ccc because
in Example 4 [22] it was shown that this product is not
selectively star-ccc.

We now give a positive result about the set selectively
star-ccc property in the product of topological spaces.

Example 9. ,e space c × ω is set selectively star-ccc.

Proof. Let B be any nonempty subset of c × ω, U be any
collection of open sets in c × ω such that B ⊂ ⋃U, and
(An: n ∈ N) be any sequence of maximal cellular open
families in c × ω. Consider a partition of N into pairwise
disjoint infinite subsets Ni: N � N1 ∪N2 ∪ . . .. For each
n ∈ ω, c × n{ } is set selectively star-ccc because it is ho-
meomorphic to c, and c is countably compact, hence set-acc,
and thus, by ,eorem 5, set selectively star-ccc. For each
n ∈ N and for each i ∈ Nn, let Ci � A∩ (c × n{ }): A ∈ Ai 

and Bn � B∩ (c × n{ }). ,en, (Ci: i ∈ Nn) is a sequence of
maximal cellular families of c × n{ }. ,erefore, there is a

sequence (Ci: i ∈ Nn) such that, for each i ∈ Nn, Ci ∈ Ci

and Bn ⊂ St(⋃i∈Nn
Ci),U),which implies

B ⊂ St ∪ n∈N ∪ i∈Nn
Ai ,U . (6)

So, c × ω is set selectively star-ccc. □

4. Set Selectively k-Star-CCC Spaces

Definition 9. Let k ∈ N. A space X is said to be set selectively
k-star-ccc if, for each nonempty subset B of X, for each
collection U of open sets in X such that B ⊂ ∪U, and for
each sequence (An: n ∈ N) of maximal cellular open fam-
ilies in X, there is a sequence (An: n ∈ N) such that, for each
n ∈ N, An ∈ An and B ⊂ Stk(⋃n∈NAn,U).

,e following lemma follows from the definitions.

Lemma 3. For a space X, the following statements hold:

(1) Every set selectively k-star-ccc space is set selectively
(k + 1)-star-ccc.

(2) Every set selectively k-star-ccc space is selectively
k-star-ccc.

Theorem 8. Every set strongly star-Lindelöf space is set se-
lectively 2-star-ccc.

Proof. Let B be any nonempty subset of a set strongly star-
Lindelöf space X,U be any collection of open sets in X such
that B ⊂ ⋃U, and (An: n ∈ N) be any sequence of maximal
cellular open families in X. Since X is a set strongly star-
Lindelöf space, there is a countable subset F � x1, x2, . . .  of
X such that B ⊂ St(F,U). ,en, St(xn,U): n ∈ N  is an
open cover of B. For each n ∈ N, there exists Un ∈ U such
that xn ∈ Un ⊂ St(xn,U), that is, Un ⊂ St(xn,U) ⊂ St
(Un,U). For each n ∈ N, ⋃An is dense in X. ,us, for each
n ∈ N, Un ∩ (⋃An)≠∅, which implies that, for each n ∈ N,
there exists An ∈ An such that Un ∩An ≠∅. ,erefore, for
each n ∈ N,

St Un,U(  ⊂ St St An,U( ,U(  � St2 An,U( . (7)

Hence, B ⊂ St(F,U) ⊂ St2(∪ n∈NAn,U), which shows
that X is set selectively 2-star-ccc space. □

Corollary 4. For a space X, the following statements hold:

(1) Every set strongly k-star-Lindelöf space X is set se-
lectively (k + 1)-star-ccc

(2) Every set strongly k-starcompact space X is set se-
lectively (k + 1)-star-ccc

Lemma 4. If a space X has a dense set selectively star-ccc
subspace, then X is set selectively 2-star-ccc.

Proof. ,e proof follows from the definitions. □
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Example 10. ,ere exists a Tychonoff set selectively 2-star-
ccc space which is neither set strongly star-Lindelöf nor set
selectively star-ccc.

Proof. Let Y � M∪ (c × ω) be the space from Example 7.
Song and Xuan (Example 1 in [21]) showed that the Y is a
Tychonoff space which is neither strongly star-Lindelöf nor
selectively star-ccc. ,us, Y is neither set strongly star-
Lindelöf nor set selectively star-ccc (since every set selec-
tively star-ccc space is selectively star-ccc and every set
strongly star-Lindelöf space is strongly star-Lindelöf ).

Now, we prove that Y is a set selectively 2-star-ccc space.
By Example 9, the space c × ω is set selectively star-ccc. On
the other side, c × ω is a dense subset of Y. By Lemma 4, Y is
set selectively 2-star-ccc.

Example 2 shows that there exists a Tychonoff set se-
lectively 2-star-ccc space which is not ccc. Now, a natural
question arises: is a ccc space set selectively 2-star-ccc? Song
and Xuan [22] gave some sufficient conditions under which
a ccc space is selectively 2-star-ccc. We use these results and
give some conditions under which a ccc space is set selec-
tively 2-star-ccc. Our results improve the corresponding
results in [22]. □

Theorem 9. If X is a ccc space which has a dense para-
compact subspace Y, then X is set selectively 2-star-ccc.

Proof. Since X is a ccc space, thus Y has to be ccc. If we
prove that Y is Lindelöf, then by,eorem 2 and Lemma 4, X
is set selectively 2-star-ccc. Since every paracompact space
with countable extent is Lindelöf, so if Y is not Lindelöf, then
Y must have an uncountable closed discrete subset D. Using
the collection-wise normality of Y, D has an uncountable
disjoint expansion, which contradicts the fact that Y is ccc.
,us, Y is Lindelöf, and hence X is set selectively 2-star-
ccc. □

Corollary 5. If X is Čech-complete ccc space, then X is set
selectively 2-star-ccc.

Proof. By a well-known result of Šapirovskij [23], X con-
tains a dense paracompact Čech-complete subspace. ,us,
by ,eorem 9, X is set selectively 2-star-ccc. □

Corollary 6. If X is ccc space which has a dense metrizable
subspace, then X is set selectively 2-star-ccc.

Proof. Since metrizable subspace is paracompact, thus by
,eorem 9, X is set selectively 2-star-ccc. □

Theorem 10. If X is a ccc space which has a monotonically
normal dense subspace (hence, a dense GO-space), then X is
selectively 2-star-ccc.

Proof. Since every ccc monotonically normal space is (he-
reditary) Lindelöf, rest of the proof is similar to the proof of
,eorem 9. □

5. Open Problems

We finish the paper by the following questions which we
could not answer while working on this paper.

Problem 2. Does there exist a Tychonoff selectively star-ccc
space which is not set selectively star-ccc? Do there exist
similar examples for k> 1?

Since every set selectively 2-star-ccc spaces is selectively
2-star-ccc, the following problem is an improved version of
the Problem 4.9 in [11].

Problem 3. Are ccc spaces set selectively 2-star-ccc?

Problem 4. Does there exist in ZFC a normal set selectively
2-star-ccc space which is neither set strongly star-Lindelöf
nor set selectively star-ccc?

Let us notice that, under assumption 2ℵ0 � 2ℵ1 , there is
such an example. It is the space S(X,ω) � L∪ (ω1 × ω),
|L| � ℵ1, L∩ω � ∅, in (Example 2.2 in[24]).,is space is set
selectively 2-star-ccc because it contains the set selectively
star-ccc space L∩ω � ∅ as a dense subspace. On the con-
trary, this space is not set strongly star-Lindelöf (because it is
not star-Lindelöf ), and it is not set selectively star-ccc as it
was shown in (Example 3.4 in [21]).

In [25], Scheepers gave a game-theoretic characteriza-
tion of selectively ccc spaces.

Problem 5. Do there exist game-theoretic characterizations
of set selectively star-ccc and set selectively k-star-ccc
spaces?

Song and Xuan (,eorem 3.6 in [21]) showed that an
open Fσ-subset of selectively star-ccc space is selectively star-
ccc.

Problem 6. Is open Fσ-subset of a set selectively star-ccc
space also set selectively star-ccc?

6. Conclusion

Set-selective properties of topological spaces show how the
subsets of a space are located in the space. We used this idea
and the method of stars to study the set version of an
important class of selectively star-ccc spaces. It is proved that
the class of set selectively star-ccc spaces contains Lindelöf
spaces, countably compact spaces of countable tightness, and
Rothberger separable spaces. On the contrary, the class of set
selectively star-ccc spaces is different from the class of
Lindelöf spaces and some other classes of spaces which are
set selectively star-ccc. A few open problems are posed to
suggest a further research in this field. In particular, it would
be interesting to investigate set selectively k-star-ccc spaces,
k≥ 2, defined by the iteration of the star operator.
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