Hindawi

Journal of Mathematics

Volume 2020, Article ID 9568254, 10 pages
https://doi.org/10.1155/2020/9568254

Research Article

Hindawi

Icosahedral Group and Classification of PSL(2, Z)-Orbits of Real

Quadratic Fields

Tianlan Chen,! Muhammad Nadeem Bari,> Muhammad Aslam Malik,>
Hafiz Muhammad Afzal Siddiqui ,3 and Jia-Bao Liu

!Practice Training Center for Engineering Technology Talents of Guizhou Minzu University, Guiyang, Guizhou 550025, China
’Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan

3Department of Mathematics, COMSATS University Islamabad, Lahore-Campus 54000, Pakistan

*School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

Correspondence should be addressed to Hafiz Muhammad Afzal Siddiqui; hmasiddiqui@gmail.com

Received 24 February 2020; Accepted 14 July 2020; Published 28 August 2020

Academic Editor: Shaofang Hong

Copyright © 2020 Tianlan Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reduced numbers play an important role in the study of modular group action on the PSL (2, Z)-subset of Q (~/m)/Q. For this
purpose, we define new notions of equivalent, cyclically equivalent, and similar G-circuits in PSL(2, Z)-orbits of real quadratic
fields. In particular, we classify PSL(2, Z)-orbits of Q(1/m)/Q = U nyQ* (ViZm) containing G-circuits of length 6 and de-
termine that the number of equivalence classes of G-circuits of length 6 is ten. We also employ the icosahedral group to explore
cyclically equivalence classes of circuits and similar G-circuits of length 6 corresponding to each of these ten circuits. This study

also helps us in classifying reduced numbers lying in the PSL(2, Z)-orbits.

1. Introduction

Let n = k*m, where k € N and m is a square-free positive
integer. Now, we define the following set Q*(+/n) =
{(a+n)lc: a,b= (a* -n)lc,c € Z,c#+0and (a,b,c) =1}
and  its  subset as  Qr (v/n)={yeQ*(yn):
p>land — 1<y <0} Then, Q(1/m)/Q = U nyQ* (VK2m).

For y = (a+ +m)lc € Q" («/n), its algebraic conjugate
Y = (a - +/mn)/c has different signs; then, y is said to be an
ambiguous number, that is, y is an ambiguous number if and
only if a® < n[1]. A quadratic irrational number y is said to be
reduced if y > 1 and -1 <y <0. It is obvious from the definition
that every reduced number is ambiguous. Note that if y is a
reduced number, then y, —%, and —y are the ambiguous
numbers but not reduced [1]. The modular group PSL(2, Z) is
the group of all linear fractional transformations z — (sz +
)/ (uz + v) with sv — ru = 1, where s, r, u, and v are integers.

This group can be presented as G = (x, y: x> = y* = 1),
where x: z — -1/z,y: z — (2 - 1)/z.

Throughout this paper, p(q) denotes the number of
partitions of g, whereas D,, stands for the dihedral group of

order 2n and S, stands for the symmetric group of order n!. It
is easy to see that |S,| = ((n—1)!/2) x2n = |A,_,| x |D,,|.

Coset diagrams for the G-orbit acting on the real qua-
dratic field give some interesting information. A coset di-
agram is a graph consisting of vertices and edges. It depicts a
permutation representation of the modular group G, the 3-
cycles of y are denoted by three vertices of a triangle per-
muted anticlockwise by y, and the two vertices which are
interchanged by x are joined by an edge.

In [2], it was proved that the ambiguous numbers in the
orbit y°,y € Q*(y/n), form a single closed path (called
G-circuit or simply circuit), and it is the only circuit contained
in the coset diagram for the orbit y©. The number of disjoint
orbits is y©, where y € Q* (1/n) is equal to the number of
circuits in the coset diagram under the action of G on Q* (+/n).
Thus, it becomes interesting to classify the circuit.

Ifl, 05,1, ..., b, yand L, I, I, . . ., I5, are two sequences
of positive integers, then by a circuit (1}, 15,13, Iy, . . ., Iy, Lpt],
we shall mean the circuit in which I, ; triangles have one
vertex outside the circuit and I}; triangles have one vertex
inside the circuit, where 1 <i<t.
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Thls c1rcu1t 1nduce;s an element g= (xyz) (xy)l2
(xy 29h 0 (x y )2‘ U (x y) 2 and fixes a particular vertex of a
trlangle lying on the circuit. Throughout this paper,
G-circuit (resp. G-orbit) will be simply denoted by circuit
(resp. orbit). The concept of the circuit grew out of the study
of group action on Q (+/m ) U {oo} and the study of G-subsets
Q* («/n) ={(a+ vn)lc: a,b= (a* —n)lc,c € Z,c+0and(a,
b,c) =1}.

In this paper, we define what a circuit of specific length is
and we classify nonequivalent circuits of length 6 so as to
classify orbits containing these circuits. We also consider
some of the elementary concepts associated with equivalent
circuits, cyclically equivalent circuits, and similar circuits
which are introduced to explore transitive G-subsets (called

orbits) of Q* (+/n).

2. Preliminaries

In this section, necessary definition of an equivalent circuits
will be given. The definition of an equivalent circuit, that is
now standard and was in formulation since long ago. It was
required of course, a definition that is as broad as possible, so
that it would include all special cases of the various examples
that are useful in group action, G-subset and orbit. However,
the definition was also required to be narrow enough that the
standard theorems corresponding to these concepts like
partition of positive integer g would help in general. The
definition finally settled on may seem a bit abstract, but as we
work through various ways of determining orbits, we will get
a better feeling for what the concept means.

o 15) and [l
s Ly 1>15] are said to be equivalent iff [I{,

Definition 1. Two circuits [ll,lz, l3, l4,..
lz, I, l4, l5,l6, .
layer (3)9’1(4)9""’1(2t 10’1(21? ] = [ll’l2>13’l4715>16""’ZZt g
l,;], where 6 € S,,. That is, the circuits are equivalent to
(1,0, 15,1,, ..., 1y, 15,] if and only if they are obtained just
by permuting the entries I}, 1, L, ..., L. Notation for
equivalent is “ ~.” It is easy to see that being equivalent of
circuits is an equivalence relation. Thus, a property is
possessed by one circuit that is also possessed by all
equivalent circuits. Such properties which are preserved
under equivalent are called equivalent properties or circuit
invariant.

Two circuits (11,0, 13,1y, ..., Ly, 13 and [1},1,,15,1,, 1,
les .. »1y_1>15] are said to be cyclically equivalent if and only
if the circuit [ )9, 'y Liayr Layor - - - Larvyos Langl = 1o s
NN ] where 0 € D,. Notation for cycli-
cally equivalent is “ ~_.” It is easy to see that being cyclically
equivalent of circuits is an equivalence relation.

Two circuits are said to be similar if they represent the
same orbit. That is, two circuits [I},1,,13,14, . .., 151, 15] and
Ul 05,1006, - - o5 115 1y, ] are said to be similar if and
only if [[{y)p, '2)9, 0 Ly - > L1y lanel = [ll,lz,l3,l4,
I,lgs o sl 150:),  where  8eC,=({(135.. t— 1),
(246...2t)). Notation for similarly equlvalent is “ ~.7 It is
easy to see that being similar circuits is an equivalence
relation.

It is interesting to note that the orbit containing circuit
U005 . . s 1y b 1y] has exactly 2(1) + 1 + 13 +--- + 1,

Il ls, I, o ..
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+15,) ambiguous numbers, while this circuit consists of only
t number of reduced numbers. Thus, studying orbits with the
help of reduced numbers is fruitful and economical.
Throughout this paper, 11, I, I3, 1, I, and I; denote distinct
positive integers, and the expression (d + +/d? + 4ef )/2f is
replaced by ((d/h) ++/(d* + 4ef)/h?)/2f/h when (d, (2e,
2f)) = h>1. Classification of nonequivalent circuits and
cyclically equivalent circuits plays a significant role in de-
termining the orbits of Q (1/m )/Q because with this, the task
of finding orbits is simplified.

In [3], Aslam and Asim found G-subsets of Q*
(VE2m)CQ(4/m)/Q = U nyQ* (VK?m). Since G-subsets
may or may not be transitive, it becomes interesting to explore
transitive G-subsets called orbits. Reduced quadratic irra-
tional numbers and types of G-circuits with length four by
modular group and the orbits of Q" (1/p), p=3 (mod 4)
under the action of modular group have been studied in [4, 5].

3. Materials and Methods

The following results of [6-8] are used in the sequel.

Lemma 1 (see [7]). Ify© has a circuit [I1,1,,13,1,, 15, 1], then
(13, 13, 1y 13, 1, 1], [lf,lé, 15,1, lé, L1, and [lg15,1,,15,15,1]]
are the circuits of (—y)°, (-7)%, and (¥)°, respectively.

Lemma 2 (see [7]). If [I},1,,15,14,12,1;] is the circuit con-
tained in the orbit y°, then y©, (—y)G, (—V)G, and (7)G are all
distinct.

Lemma 3 (see [8]). For a given sequence of positive integers
I, L, 1, ..., L5, there does not exist a circuit which has a period
of length 2t', where t' divides t.

Lemma 4 (see [6]). The number of different arrangements of
q objects of which q, is alike, q, is alike, q; is alike, ..., q, is
alike is q'/9,'q,'q5! . . . q,\, where g, + ¢, + g5 +---+q, = q.

3.1. Classification of Circuits of Length Six. Circuits play an
important role in the study of modular group acting on the
quadratic field.

We start this section with a consideration of finding the
nonequivalent relation of circuits in a specific length q.
Given the positive integer g, we say that the sequence of
positive integers q,,4,, 93> qu> - - -»Gy_1- 4, With g, > g, 2 g5 >
qs= - 29,29, constitutes a partition of g if

htdhtgs+---+q, =9

Theorem 1. The number of equivalence classes of length q > 2
is exactly p(q) — 1, where p(q) denotes the partition of q.

Proof. Let p(q) denote the partition of g, and we are looking
in determining all equivalence classes of equivalent circuits
of length g. For a given circuit of length g, to find all
equivalence classes of equivalent circuits of length g, we
adopt partitions of g, + g, +q; +---+¢q, = q in the sense
that g, entries are alike, g, entries are alike, g; entries are



Journal of Mathematics

alike, ..., g, entries are alike, where r>2. We get non-
equivalent circuits [1),1},1},...,0, b,y by L0
1] of length q corresponding to each partition of g, where ;
repeats g; times, 1 <i<r.

Here, r#1 because if g =g, then the circuit corre-
sponding to this partition is [I},1],1], .. .,1{], where l| repeats
q times. This circuit of length g > 2 is not possible by Lemma
3. So, distinct classes of the equivalent circuit of length g > 2

are exactly p(q) - 1. O

Remark 1. For q =2, there are precisely two partitions,
namely, 2 and 1+ 1. Circuits of length 2 corresponding to
these partitions are [I},1;] and [I],1,].

Note 1. We can get all other circuits which are equivalent to
(11,0, ...,1]] by just permuting I{,1,1;,...,1,.

In the following theorems, we discuss equivalence classes
of circuits, cyclically equivalence classes of circuits, equiv-
alent circuits, cyclically equivalent circuits, and similar
circuits of length 6.

Corollary 1. There are precisely ten nonequivalent circuits of
length six.

Proof. Let 1{,1,,15,1,,1:,1; be different positive integers.
Then, by Theorem 1, we have ten nonequivalent circuits,
namely, (13,1, 13,15, 15, Lg), (1, 13, 1, 13,1y, ], (13,13, 13,1, 1, L),
(1,10, 5, 1, 1, L], [, 1 1, b, L, B (L 1 L B, b, )L [, 1
bl 1), [0 1 01, 1, L) (11, 1,15, 1, B, and [0 1,15, 1,
1,,1,], corresponding to the number p(6) — 1, namely, 1+
1+1+1+1+1, 2+1+1+1+1, 34+1+1+1, 2+2+1+1,
242+2,3+2+1,4+1+1,4+2, 5+1, and 3+ 3, respec-
tively. The circuit corresponding to summand 6 is
(11,1,,1},1},1,1;]. This circuit is not possible by Lemma 3. So,
these are the only ten nonequivalent circuits of length 6.
The notation used in this paper for equivalence classes of
circuits of length 6 is E;, and the number of circuits
equivalent to T, is denoted by |E7|. Similarly, the notation
for cyclically equlvalent classes is E5., and |ES | denotes the
number of circuits cyclically equivalent to T';. The number of
distinct orbits corresponding to Er, is denoted by |Or|.
Furthermore, each cyclically equlvalent class Ef is discussed
in each corresponding relevant corollary. " O

Corollary 2. There are 720 equivalent circuits of length 6 in
which all numbers are different.

Proof. 1t is well known that S, = {(D,)¢: ¢ € A,_,}. In our
case, S = {(Dg)¢: ¢ € As}l. We know that there are 6! = 720
arrangements of six different numbers 1}, L, I3, I, I, I¢
taken all at a time, and so circuits corresponding to these
arrangements are [}y, [(26 L3)0> L(wye» L(5y0> ()] for each
0 € S¢. Hence the proof.

Corollary 3. Ifl}, L, I, I, 12, I¢ are distinct positive integers,
then there exist 60 cyclically equivalent classes Ef. .

Proof. Letl],15,13,1,,12,1¢ be different positive integers. It is
well known that the icosahedral group is isomorphic to

alternating group A,. Now, the cyclically equivalent classes

Ef. are obtained b E , foreach ¢ € A..
T ! Y g Lo ap Lag Lo Lierg) 4 >

There are exactly 60 cychcally equivalent classes, namely,

C C C C C
E[z NN E[zz,z IR E[z LI I50 E[l NN E[z NAARAAY
C C
Ey AR AL E[zs,z@zpzz,zl,zﬁ] Ey, IAARNRAK Ey, IARARAAK E[l NN
C C C
E[z N E[z’ IS Ll E[z’ L5500 E[l',l' IL1 150 E[z Ll 50500
LS PEHED! HLEPIPED! DEPPSERE3
C C C C C
Ey (AANAAAL E[I;,I;z;z;l;,l;,]’ E INANAARK E (AAAARAK E[z NN
C C C C C
By [1213,1 WA E[l;,l’ TN A K E [ANNNAAY E[I;l’l,l;lj,,l’z,l;] E[z RN RAY
C C
[1 Ll E[z oI55l E [(NAARAAK E[li,zg,zg,z;,l;,zg] Ey, IR RAAK
C C C C
By Euasn vy s Eun
C C C C
Ey [12,13,14,1 I’ E[lzl4,l_:,l3,l AN E IRARANAK E[l_i,l;lf,,l’z,l’l,lg] Ey [ARRANAK
C C
[1 NN Ak Ey L5l E IARANARY E Ll luls 1l E[l L0510
C C C C
By (AAANAAY E[z NN E (AARANAK E (sl 050 E[l NN
C C
Ey, NANRAAK Ey, INAAARAY E IARRAAAK E [IAARARAY E| [NARANAK
C C C C
Ey (ARNANAY E[z NANA A By (ARRNAAY E AN and
ES, O

IAAAAAIR

Corollary 4. If 1},1,,15,1,, 12, 1¢ are distinct positive integers,
then each cyclically equivalent class contains 12 cyclically
equivalent circuits.

Proof. Circuits cyclically equivalent to circuit [I},15,1;,
l;i, lé, 16,] are [l,(l)g, l,(2)9’ l,(3)9, l,(4)9, l,(5)9’ l’(6)9] for each 0 ¢ D6
which is shown in Table 1. Similarly, we can find cyclically
equivalent classes corresponding to the remaining circuits.

Circuits of length 6 which are given in Table 1 are cy-
clically equivalent. Moreover, by Lemma 1, [I},15,13,1,
1,15) ~ (I3, 1, 12,16, 10, 1) ~ (12,16, 11, 1, 15, 13] is the  circuit
contained in y©, (I, 13,1y 12,16, 1] ~ (Lo 12,16, 11, 15, 13] ~¢ (g,
1,0,15,15,12] is the circuit contained in (-y)%, [},
loplss Lo L3, ) ~ (1, Ly, 13, 1, 1, 6] ~ [, 1, 1, I 15, ] s the
circuit contained in (—y)° and [1,1.,15,15,15,1]] ~ [L,
23',)1&',11',16', 12] ~ [, 11,16, 12,15, 15] is the circuit contained in
P).

From Table 1, it is easy to see that the effect of per-
mutation on the circuit is the same as to change the places
of the circuit accordingly. So, if the circuit in which at least
two entries are the same, we change places of circuits
according to permutation. As each circuit of length 6
contains 3 reduced numbers, each cyclically equivalent
class contains 12 reduced numbers. Since there are 60
cyclically equivalent classes, each class contains 12 re-
duced numbers, so reduced numbers used in E; are 12 x
60 = 720 which equals to |Ey |.

Table 2 is of considerable utility because it provides us
with the exact number of circuits of length 6 and hence the
number of G-orbits of Q* (\/n).

The following corollaries are an immediate consequence
of Theorem 1. O

Corollary 5. There are 6 equivalent circuits of length 6 in
which 5 numbers are alike and one number is different.

Proof. By Lemma 4, the number of equivalent circuits of
length 6 in which 5 numbers are alike is 6!/5!1! = 6. These 6
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TaBLE 1: Cyclically equivalent circuits of length 6.
0 e Low law law Lee Leel
e=(1)(2)(3)(4)(5)(6) (1,15, 13, Ly Ls, L)
a = (123456) (L, 15, 14,10, 16, 1]
o? = (135) (246) 5,15 18,16, 11, 1]
o’ = (14)(25)(36) [14: 15, 16, 11, 15, 3]
at = (153)(264) L0510, 0, 1, 1,]
o® = (165432) e 1, 10, 15,04, 12]
B = (16)(25)(34) (g 13 Ly 13, 1, 4]
off = (15)(24) (15, 1o 13, 1, 11, )
a’f = (14)(23)(56) (14> 13, 1, 1y, Lg, 5]
@p = (13) (46) (3,15, 11, Igs s 1]
a'f = (12)(45)(36) (5,11, g, s, Ly, 5]
a’B = (35)(26) [0l 15, 1s» 13, 15

circuits are [1], I}, I}, I, I}, L), (115,100,010, 1,110, (1, 15, 04,14,
ol (0,11 11 0, [0, 1,1, 1, 1), and (L1 1,0,
1],1;]. Clearly, all these types are cyclically equivalent as well.
Moreover, by Lemma 1, [I},1},1},1],1},1,] ~S[ll',lz',l1',ll',ld’,
1] ~ (11,1}, 11, 15,17,1]] is the circuit contained in y° = (-y)%,
and [l Iy, I I T )~ [ s L 0 B ]~ U D D L L, 1
is the circuit contained in (y)” = (—y)G. In this situation,
there is only one cyclically equivalent class, namely,
E?l VARAAAY =
Corollary 6. There are 15 equivalent circuits of length 6 in
which 4 numbers are alike and 2 numbers are alike.

Proof. By Lemma 4, the number of equivalent circuits of
length 6 in which 4 numbers are alike and 2 numbers are
alike is 6!/412! = 15. These possible 15 circuits are [I},11,1],
by Ll (G 1 1 by I B, T I s g, B, 1 [0, 0, B, 1 1 ),
3L 1 1 1) UL B B 1 1), U T L B, (L T
1L 1,1 B (0 B I T, T L L )
Uy, L, 1L L0, O 01,0000, 0,000, s, 00,1, 10, 14,14, and (1,
I},1{,1,,1;,1{], which are equivalent circuits.

In the aforementioned circuits, [I},1},1{,1],0,1,], [1},1},
11,1, 1), (1,1, B, 1 1 1 [0, 1, 1, 1 1 10, 10, 14, 1, 1, 1 1),
and [lz',ll',ll,ll,ll,l ] are cychcally equivalent. Moreover, by
Lemma 1, [I},0},1,1],1,1] ~ [ll,ll,lz,lz,ll,l] AL DL,
I;,1]] is the circuit contalned in o= (@), and (.14,
1,015 1] ~ [ll,lz,l& JLILL] ~ 00,0, 1,1, 1] s the circuit
contained in (-a)” = (—oc)G.

Also, [1, 13,11, 1,1, 11, (1,13, 1, 13,11, 1,1, and [1}, 15,1, 1],
1,,1;] are cyclically equivalent Moreover, by Lemma 1, [I,,
1,00, 0,101 ~S[ll',l1/,lz',ld 1,0] ~ [ll,lz,lé NN ] is the
circuit contained in (f)” = (/3) = (- /3) (- /3)

These circuits [I},11,1], 1,11, L], [}, 11, 15, 15, 1, 11, (11, 1,
I L 1 ) [, 1, 1, 110G 1 (11, 13,13, 13, 15, and [lzl’l{’l{,
11,1, 1]] are cyclically equivalent. Moreover, by Lemma 1,
b L I B ~ [l Il Ly T ) ~ [0 L I L I ) s the
circuit contained in (y)” = (-y)”, and [I},1],1,1],1,,
L] ~ [ 1, L, 1L L ] ~ [, 10,1, 1, 1] is the circuit con-
tained in (—y)G = (7)G

Table 3 summarizes all the information. O

Corollary 7. There are 18 equivalent circuits of length 6 in
which 3 numbers are alike and 3 numbers are alike.
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Proof. By Lemma 4, the number of possible equivalent cir-
cuits of length 6 in which 3 numbers are alike and 3 numbers
are alike is 6!/3!3! = 20. These possible 20 circuits are given by
(0,1 1 b 1, 1), [, 1, L B, B, [0 1 b, b, 1, B, [0,
Ly L 1, )y [, 1, 1 1 D, B [, B, 0 B L L] (D, 1 o, s
B, UL B I 1L B B T L T B B I T 1, T
B, LT, 0 L L 1, 1), U L 1 T T T
L0 L I I I 0, (T LI T L), (0, D 1 5, T ),
(L1 1L 1L 1, 1), [, 1 1, B, 1 L] and [, 1,15, 1, 1, 1)
which are equivalent circuits. In the aforementioned circuits,
(1,1, 1, b, 1, B, 1, 1,1, 1, 1, 1), 0, 1, 1,1, 1 1), (1,
L L1, [, 1, 1,00, 00, 1], and (1, 19,14, 11,1, 1,] are cycli-
cally equivalent. Moreover, by Lemma 1, [I},1},1],15,1,,1,]
~ L L by L L] ~ [, 1, 1,1, 1), 1] s the circuit of a© =
(=) and [, 11 1,1, 1, B) ~ (05,5, By 1, L, 1)~ 05 1, L 1,
I},1]] is the circuit of (@)° = (-a)®. Also, circuits (1,1,
A e A N R
B, (0 B Wb B WL U L L L L 0, B 1L ), L,
18, B 0 1 U L 1 U, T 0 B, LB, 1T
L, 1], and [I}, 15,11, 1,,15,1]] are cyclically equivalent. More-
over, by Lemma 1, [I{,11,1,, 15,1, 1] ~ (11,15, 11,11, 15, 5] ~[1,,
LU, 0,11 is the circuit of B, [I},1,05,1],0), 1]] ~,
(L, 1, L, 1 1, b)) ~ [0, 11,11, 1, 1, 1] is the circuit contained in
(—ﬁ)G, [0, 1 1, ) ~ [0 1 1, 1 1 B ~ [0, 1 1L B

L] is the circuit of (-B)°, and [L,1},15, 15,1}, 1] ~[L,,
lz,ll,ll,lz,l 1~ 5,1, 1,11, 1, 1,] is the circuit contained in
(B)°. Moreover, [1},1,,1},1,,1,,1;] and [I,1},15,1],1;,1;] are
not possible by Lemma 3. Table 4 summarizes all the
information. O

Corollary 8. There are 30 equivalent circuits of length 6 in
which 4 numbers are alike and 2 numbers are different.

Proof. By Lemma 4, the number of equivalent circuits of
length 6 in which 4 numbers are alike and 2 numbers are
different is 6!/4!1'1! = 30. These 30 circuits are [l},1],
A U R R R U
R L e N N L Ry
(161 1606 5) U 00 1, B L [ 1 B, B 1 L [
b, 10 [ 1, by 1, 1, ), [l1’12>ll’lll’l{)l3,]’ [, 15,15, 13, s,
O A e R N N RIS

ésll:allialpl ] [11313)11712311’l ] [11313312>l1311l;llll]) , [{2’){{7{1’3
ll>l3] [lzall)lp 1)13)1] [l2>llal1: 3> l)l] [12)11)l3>l1)11>ll]:

[’12,),1:;),11”11>lp,l ]I ,[l3; l],)ll’) ll)ll)l ], |;l3>,lla,l])lllla,12,) l]’]) [l;) ll,a
v L0 s 1L 0, 101 1, and (1, 1, 1, 1L 1L 1

In the aforementioned circuits, [I},11,1},11,1,,13], [11,1],
BT DAL, O I, T 1
llall]) [13,11,11,11,11,12], [l3s12)llallall)ll]a [llallal3)lzall)ll]a
L0 L L), G L, UL L, (0001, 1), and
(,1,1],15,1,,1]] are cyclically equivalent. By Lemma I,
U000, 0, 1] ~ 0 1 L, L, 1, 1] ~ [, 15, 10,1, 1, 1] s the
circuit of aC, (LI INIL I ~ (111 1010 1] ~ [IL 1,
I},1,1,1;] is the circuit contained in (-a)%, [I3,151],
101 ~ 0,00, L b, 1 ] ~ [0, 00,010,115, 1] s the circuit
of (@, and [}, 13,1, 11,1}, 1] ~[15, 1}, 1], l{lé Ll ~ L0
I3,1,,1]] is the circuit contained in (-&)”. Also, [l},1],
DL UL, LI DI, 0111
12’,11],’ ,[13,’11;l2;ll,ll,,l1]’, ,[lz;l1;l1;lpls,,l1],a ’[11;12;11;13)11711],’
[11)13)11)11)11)12]) [llal])llaIZ;ll)l:’,]) [12)11)13)11)11)11]’ [l3)lla

I
I
I
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TaBLE 2: Enumeration of orbits.

Classes of equivalent circuits of length 6 |Er| Number of classes of cyclically equivalent circuits |Oy |

Regarding distinct orbits

Ep. 720 60 240 9, )% (=9)° (-p°
Er, 360 30 120 % 5 (% (P)°
168 14 56 Y9 @M% (9° (-P°
E - _
T, 12 2 4 = HET=®°
Ep, 120 10 40 5 ®° S (p)°
48 4 16 Y @°, (—Y)G,G(—V)G
5 18 3 6 =P (=@
Ts 18 3 6 Y= (P (y )G = (y)G
6 1 2 ==L =@
E 48 4 16 4@ T ()
T 12 2 4 = (%= @°
24 2 8 @, (% (9)°
E T Y Y
T, 6 1 2 =P =)°
E 12 1 4 Y @°, (—Y)GG(—?)G o
T, 6 1 2 =P =
0 ! 2 0= = f
Er, 3 1 Ly =97 = (9)7 = ()
6 1 2 =BT = D)
Er,, 6 1 2 ==
TaBLE 3: Cyclically equivalent classes of To.
Ef, Number of classes of cyclically equivalent circuits Oy, | Structure of orbits
Bl 1 2 o=@ p)° = (p°
i : 2 Yo = (D% (9 = (°
(USRI
ES 1 1 G = (- )G (- )G = (_)G
bl ] ==y Y=
TaBLE 4: Cyclically equivalent classes of Ts.
E‘T8 Number of classes of cyclically equivalent circuits |OT8| Structure of orbits
By ! 2 Yo = (D% (0= °
Ec, 1l 4l 1 1 4 YG: (?)G) (_Y)G) (_?)G

Ululplplyhl

1,050, 1], and [13, 11, 15,11, 13, 1]] are cyclically equivalent. By
Lemma 1, (1,1, 1,15, 1, b1 ~ [l by by L, 1] ~ [l L I
I;,13] is the circuit of B%, (11,1}, 15,11, 5, 1] ~ 15,11, 15, 11,1},
L] ~ [, 1,,11,11,13,1]] is the circuit of (—/j’)é, 00,1, 1,
1,1] ~ [ll,l3,ll,ll,l(E ]~ [ll,ll,ll,lz,ll,l] is the circuit
contalned in ( [3) , and L, 1L L, 1L 0 1) ~ (s 1, 1, 0,
L1~ (1,11, 15,1, 13, 1,] is the circuit contalnedm (ﬁ)G Also,
U0 0L, UL LI, LI I L L,
UL 00,000, (1,1, 05, 00,04, and (1,14, 14, 1, 17, 1)) are
clica]ly equivalent Moreover, by Lemma 1, [I},]],
L, ll,ll,l 1~ [lz, ll,ll,l3,ll,l 1~ [ll,l3,ll,ll,lz,l ] is the circuit
of ()%= (- y) , and [ll,lz,ll,ll,l3,l] [ll,lé I 1,0, L) ~
[15,1,,1],15,1],1]] is the circuit of (—y)® = ()°.
Table 5 summarizes all the information. O

Corollary 9. There are 60 equivalent circuits of length 6 in
which 3 numbers are alike, 2 numbers are alike, and 1 number
is different.

Proof. By Lemma 4, the number of equivalent length 6 in
which 3 numbers are alike, 2 numbers are alike, and 1
number is different is 6!/312!1! = 60. These circuits are [I,
LI, UL B (BB 1 1L, UL
B0, U D L0, I 1 I L), (I D0 D ),
(1,13 1, 1, 15, 1, [, b, 11 1, 1), [ 015 15, 1, 1), s,
L1000, [0, 1,1, 1, 1], and so on.

In the aforementioned circuits, [I},1},1},1,0,5], [},
by B, 1L 1, (0, 1 1, 1 1 B, (10 D, 1, 1, 1, (1,100, 1,
Lo, (1,05, 1,1, 1, [, 1, 101 1, 1 (1015, 1, 1, 1, ],
[l LLu 1L 1G4 (1601, 1, 1,11 (1,151,113, 1), and
(15,15, 13,11,17,1;] are cyclically equivalent. By Lemma 1, [I,,
Lol 1 1, ] ~ 00 1 1 B, B ]~ [0 B s 1, 1L 1] s the
circuit of aC, [I}, 11,15, Ly, I, [}] ~ [, by L3, 11, 13, 1] ~ (15,14, 14,
I},1,,1,] is the circuit contained in (-a)°, [I},15,05,15,
10 ~ L, 1 L 1, 1) ~ (1,1, 1, 1, 1] s the circuit of
(@)% [13,05,0,1,1,1]] ~, [lz',l{,lc}',ll',l;, L] ~ 0,1, 1, L,
I]] is the circuit contained in (®)”, and so on.



Table 6 summarizes all the information. O

Corollary 10. There are 90 equivalent circuits of length 6 in
which 2 numbers are alike, 2 numbers are alike, and 2
numbers are alike.

Proof. By Lemma 4, the number of equivalent circuits of
length 6 in which 2 numbers are alike, 2 numbers are alike,
and 2 numbers are alike is 6!/2!12!2! = 90. Some of these
circuits are [1},1},15,1,,15,15], [lz',lz',lé,lé,ll',ll'], [l;,l;,ll',ll’,
e I A N R A l3,ll,ll,l ],
Y A L N e o A N A
N A T T N (NN NN I T
L UL I L, (L D L], (L L
L1 s by b 131,100, (13,1, 0, 15, 15, 1], and so on.

In th aforementioned circuits, [I},1},0,,05,1, 1], (L1,
Lo 10, [ 1,1, 1, 1, B), [, 0,1, 05, 1, 1), [, 1, 1, 13 0,
(31, 1y, b, 1, L), [ L, I, b, 1, L (1, 1, L, 1 1, 5], [,
Lo lub), 155 0,5 L0, (5,111, 1), and 1),
;] are cychcally equlvalent By Lemma 1, (,
s

)lé)lzlx
15 5) ~ [ B 1, 15, 1 1 ~ (B, 1 1 1 15] s the

>

b, 1,
it of a® [I},05 0050511 ~ (15 s Ly 11, 11, L] ~ (13,11,
ll,lz',lz', I3] is the circuit contained in (), (I}, 1,15,
Loy L] ~ s by Ly 13, 1L 1) ~ [0, 10,11, 1, 15, 1] s the circuit
of (<@, (L0011~ 1, Lo L ] ~ [ L,
13,15, 1] is the circuit contained in (&), and so on.
Table 7 summarizes all the information. O

Corollary 11. There are 120 equivalent circuits of length 6 in
which 3 numbers are alike and 3 numbers are different.

Proof. By Lemma 4, the number of equivalent circuits of
length 6 in which 3 numbers are alike and 3 numbers are
different is 6!/3!1!1!1! = 120. Some of these circuits are
UL LI B ), [ L ), (L I 3L, (01,
Lol L] L L LI (b L LG (11, L 0,
W0 (LIl 1 BBl (1L L, 1, 1 1, (1,1, 1, 0 1 L,
(1, 115 1 Ly 1, 1), s I, b, 1, 1 ), [, Ly, 1 1, 1, ), [, 0
UL L], (10, 1,1, L, 1, 1, 0, 1, 1 B, 1, L, (11 1, 1, L 1,
(1,1 Ly Lo I 1 [ 1 101 1, 1), (1,0 1, 15, 1, 11), and so
on.

In the aforementioned circuits, [I},1},11,1,15, 1], (I},
B UL, U5 I (I I 1, T 1
0,0, ), (g 1135 1, 1, I, [, L, 1, 5, 1, 1), (03,15, 13, 1, 15, L),
(0 I 1L B, U 1 1T, (4,011 15 ), and (1
1,1,,15,1,1;] are cyclically equivalent. By Lemma 1, [I},
ll',ll',lz,l3,l] [ll,lz,l3,l4, b ] [l3,l4,ll,ll,ll,l] is the
circuit of % [1,1}, 1, 15,1 1] ~ (L Ly L, 11, 1, 1] ~ (L, 1),
1,0, 1] s the circuit contalned in (-a)% [I,1
Ly b1, 1] ~ [13,12,11,11,11,14] L1005, 1] s the cir-
cuit of (<, ([l L] ~ [ L ) ~ L1
11,13, 15,15, 1]] is the circuit contained in (@)”, and so on.
Table 8 summarizes all the information. O
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Corollary 12. There are 180 equivalent circuits of length 6 in
which 2 numbers are alike, 2 numbers are alike, and 2
numbers are different.

Proof. By Lemma 4, the number of equivalent circuits of
length 6 in which 2 numbers are alike, 2 numbers are alike,
and 2 numbers are different is 6!/212!1!1! = 180. Some

these circuits are [I,1},0,1, 05 L]), (b1, 1, 110,14,
O N N T N A N ) R [ Y PN AR
LY P Py Y R N N E E Y R [ I AR M B
N N R P R A Y R N C N N A
(0l b b, bl T L D, I bl (111, 1, 1, L),
N e R L 0 E oy P Y B L S P AN R A B
UL 0, L), 41,1, 1,1, 13], and so on.

In the aforementioned circuits, [ll,ll,lz, L, l3, L, L0,

A e A L R S = R
T I U O A o O B4 O O A S 0 K0 S I 1 0 K4 4 0 KO F R 128
11,11,14,1’ 2 055 1,5, 1L, [0, 1, 1,13, 1, 3], and (17,13,
1,13, 15,1,] are cyclically equivalent. Moreover, by Lemma 1,
(1,15 1, 1, 1, i ~, [, 1, Ly Ly 1, 1]~ [l Ly, 1, 1y, L, L] s thee
circuit of % (1,1, 0,1, 1 1] ~ (b sy L, 1L 1, b)) ~ (L 1,
1,1, 1,13] is the circuit of (-a)°, [1],14, 13,13, 1, 1]] ~ (13,15,
Lo 1L 1) ~ [, 1,10, 1, 15, 15] is the circuit contained in
(0, 15, 1, L I, ] ~ [, 5, 1, 1 L B ~ L 1L 1, 1, 1,
1;] is the circuit contained in (&), and so on.

Table 9 summarizes all the information. O

Corollary 13. There are 360 equivalent circuits of length 6 in
which 2 numbers are alike and 4 numbers are different.

Proof. By Lemma 4, the number of equivalent circuits of
length 6 in which 2 numbers are alike and 4 numbers are
different is 6!/2!1!1!1! = 360. Some of these circuits are
A Y A L P S s
LG UL UL UL, D5 TLILTY
NN TR TN A TR N N IR R I N I
0,5, 0,1, (11,1, 15, 14,15, 5], and so on.

In the aforementioned circuits, [I},11, 1,13, 14,121, [1}, 1),
Lolplo i), (D lpls 10, (11 1L L), (L 13,11
Lol [l 11y I Ll (s L Ly 1, I (1,1 1, 1, 1, 4,
(L 13, I, 1, 1, Bs)s - [ 1, 1 1, s, Ll [, 1,1 s, Ly ] and [,
11,15, 14,15, 5] are cyclically equivalent.

Table 10 summarizes all the information.

It was proved in [8] that any circuit [I},1,,13,14,12,1¢] of
length 6 corresponds to the orbit contained in Q*

UL I 1L 1)), =

Theorem 2. All the circuits in E[l L) correspond to the
orbits contained in Q" (\/n} ).

Proof. To prove this result, it is enough to show that f (1],
L, 13,1, 15,1¢) is unchanged for 6 € Dy, where f(I1,1,1;,
L1 = (] (B 4 1)+ L4 1) + L+ 10 (40 + e +
LI (1 + 1)+ LA (1 + L) ~ L (L + By — L1 (U4 BEDY +



Journal of Mathematics 7

TaBLE 5: Cyclically equivalent classes of T-.

2y Number of classes of cyclically equivalent circuits IOT7| Structure of orbits
G_ (G ( G _ (G

By 1 2 YO=(7)7 ()" = @)
G (=G G ; =G

P B 2 8 v mn Gnn ()

TaBLE 6: Cyclically equivalent classes of T.

T, Number of classes of cyclically equivalent circuits  |Or | Structure of orbits

c c c c 4 G (oG (_\C (_\G
By By Eusninne Fusnin 16 e ()

C c G _ —\G G _ =\G
Bunnenn Busnnnn 2 4 =P EpT=0)

TaBLE 7: Cyclically equivalent classes of Ts.

Ef, Number of classes of cyclically equivalent circuits  |Or| Structure of orbits

c c c c 4 G ()G (_. NG (_5\G
By By B B X 16 GY » () g (-y) >G( ) .
c c c = (—y — = (y
iy Enisnee Fu . 2oy = = @)
c c c — (v _ — (—v
By Bunnner Bunnian 2= (=)
c 1 G _ (_.N\G (:C _ (_5\C
i 2 ==

TaBLE 8: Cyclically equivalent classes of T,.

Number of classes of cyclically

. . |Of |  Structure of orbits
equivalent circuits 1

C
T4

E
E

EC

C
AN N N AN AWAL
'C

[RARAAARS]!

E
E

E
E

c (3 EC EC ,
L g L R g UV 10 40 % @ (9% p°
e R e g G

TaBLE 9: Cyclically equivalent classes of Tj.

Number of classes of

T, cyclically equivalent [ Structure of orbits
circuits
C C C (o C C
B Enain Ewninsne Euininn Euninsie Eunig u e e
C C (o) 'C C C Yl —_ —1)
By By Euasnrey B B B S N e G O )
C (o

[l E AN AAH

G _ (_75\G (_.\G _ ()G
By B 2 4y =T =)

TaBLE 10: Cyclically equivalent classes of T,.

Number of classes of the

. . - Structure of orbits
cyclically equivalent circuits 10z

C
T

E
E
E
E
E

EC

'C
i Ennnnn B E

E
E

[INAANA AL TN AN A ALl | NN AN A LS NN WNA

AN R (N AN A L [N NN A AL [N NN A ALl WA LR (A A 20 . o o o
c c c c c c I _ 5
sty B By Eunnne B Eui 120095 % (s (59)
(AN AR Al /NS AN

ES E E E E

C
[l 5] US55 0

(4 'C C C
USEVIRCN A I (NI CY N N VYA g LYY RN K

c (4 C C
(U L TN RSN Ll VNN Ll VAN
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(236 + V/66736)/115 >

<' (208 + V66736)/163

(206 + V66736)/75

FIGURE 1: Shows the location of reduced numbers and describes that [1,2,3,4,5,6] ~ ([3,4,5,6,1,2] ~ ([5,6,1,2,3,4].

(224 + V66736)/144

(224 + V66736)/96 l>

7

<. (118 + \/66736)/324

FIGURE 2: Shows the location of reduced numbers and describes that [2,3,4,5,6,1] ~ ([4,5,6,1,2,3] ~ ([6,1,2,3,4,5].

4(Ie(L+ L+ Ll + L+ LLLL) + L+ 1+ 151D ((1+ 1)
(Iy+ 1+ L) + 1 (1 + L13)).

It is easy to see that after applying 6 € D¢ and simpli-
fying, the expression for f(I},1,,15,1,1s,1;) is unaltered.
Since there are 60 cyclically equivalent classes, we have sixty
n's, namely, n,, 1y, 1z, -+, g O

Example 4. We verify the above results by considering the
circuits [1,2,3,4,5,6], [2,3,4,5,6,1], [1,6,5,4,3,2], and
[6,5,4,3,2,1]. These four circuits correspond to the orbits

Y, (—y)G, (—?)G,and (?)G, and these four circuits are
shown in Figures 1-4, respectively.

Now, in all figures containing 3 reduced numbers,
E{) 53456 contains 12 reduced numbers.

4. Conclusion

The idea of G-circuits of G-orbits on the real quadratic field by
the modular group, which is given in this paper, is new and
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(244 + V66736)/75

&

<' (118 + V66736)/163

/\

(244 + V/66736)/115

FIGURE 3: Shows the location of reduced numbers and describes that [1,6,5,4,3,2] ~ ([5,4,3,2,1,6] ~ ;[3,2,1,6,5,4].

(236 + ~/66736)/96 .>
<' (206 + ~/66736)/324

/\

(208 + V/66736)/144

FIGURE 4: Shows the location of reduced numbers and describes that [6,5,4,3,2,1] ~ ([4,3,2,1,6,5] ~ ;[2,1,6,5,4, 3].

origina. We have classified G-circuits into the distinct  have p(6) — 1 = 10 equivalence classes of equivalent circuits,
equivalence classes of equivalent circuits, and they are precisely ~ ie., Eg = U Er. We further classify equivalence classes of
p(g) — 1 in number; particularly, for circuits of length 6, we  equivalent circuits into cyclically equivalence classes and
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determine G-orbits corresponding to each cyclically equiva-
lence class. All results are verified by suitable examples.
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