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In this paper, we introduce a new type of statistical convergence method for double sequences by using the (M, 1,,,,)-method of
summability which was defined by Natarajan. We also obtain some inclusion relations between statistical convergence and

M,,, ,-statistical convergence for double sequences.

1. Introduction

The subject of statistical convergence has been studied by
many researchers since the emergence of the idea of sta-
tistical convergence in 1935. Statistical convergence was
introduced by Fast [2] and Steinhaus [3] independently in
the same year 1951 as a generalization of ordinary con-
vergence and was later reintroduced by Schoenberg [4].
Quite a few researchers have generalized or extended this
concept and applied different fields of mathematics such as
Erdés and Tenenbaum [5], Miller [6], Zygmund [7],
Freedmanet al. [8], Connor [9], Salat [10], Duman and
Orhan [11], Et et al. [12], Cakall: [13, 14], Cakalli and Savas
[15], Edely et al. [16], Mursaleen et al. [17, 18], Natarajan
[19], Tok and Basarir [20], Aral and Kiigiikaslan [21-23], and
Taylan [24].

Let x=(x,,) be a double sequence. Then, x =
(Xpp)yum—o is said to be convergent to L in the Pringsheim
sense if for every £>0, there exists N € N such that
|%,,., — LI <&, whenever m,n > N. In this case, we write P —
limx = L [25].

Also, a double sequence x = (x,,,)," _, is said to be
bounded if there exists a positive number M such that
|2, < M for all (m,n) € NxN.By Eio, we denote the set of
all bounded double sequences.

Let KEN x N and K (m,n) = {(m,n): k<m, j<n}. Then,
the double natural density of K is given by

. 1 & ;

8(K)=P- lim — kZI Xicoma (R ) (D)
>]=

if the limit exists. A double sequence x = (x,,,,) is said to be

statistically convergent to L provided that, for every € > 0, the set

{(m, n): k<mand j<mn: |xm’n —L|2£} (2)

has double natural density zero [26]. In this case, we write st,—
limx = L. By st,, we denote the set of all statistically convergent
double sequences. Later, a lot of works have been done on the
statistical convergence of double sequences (see [27-33]).

The following definition which is required for our study
is given by Natarajan.

Definition 1 (see [1]). Let A = {)tm)n} be a double sequence
such that ) > [, | <co. Then, the (M,A,,,)-method is

m,n=0

defined by the 4-dimensional infinite matrix (a,, , ;), where
[ Amknyp ifksm, j<n,
am,n,k,j T . (3)
0, otherwise.

It is well known from Theorem 3.4 of [1] that the
(M, A,,,,,)-method is regular if and only if "4, = 1.

The purpose of this paper is to give a new statistical
convergence definition using the above definition for double
sequences and some relations between statistical conver-

genceand M, -statistical convergence. In addition, we have
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used it to prove a Korovkin-type approximation theorem as
an application of our method.

We acknowledge that the definition of M),  -statistical
convergence for double sequences was presented at the
International Conference on Multidisciplinary, Engineering,
Science, Education and Technology in 2017 [34].

Let x = (x,,,) be a given real-valued sequence. A se-
quence (t,,,) of M) -mean of (x,,,) is defined by

mn
t n = Z Am—k,n—jxk,j’ (4)
k,j=0

for all m,n e N.

Definition 2. The sequence x = (x,,) is said to be
M, -summable to L € R ift,, — L and is denoted by

mn

X — L(M,, ). (5)

Definition 3. A double sequence x = (x,,,) is said to be
strongly M, -summable to LeR 1f (I — LI) s
M, —summable to zero. In this case, we write
Xppp — L( [M), 1. The set of all strongly M, -summable
sequences is denoted by [M, 1as

[MM] = {x =(x,)): o dim kzo Mrcton—ilXmp = L] = 0 }
,Jj=

(6)

By considering the matrix M A, 0 (3) forany A = (A,,,),
natural density and statistical convergence can be defined as
follows.

Definition 4 (M, -density). Let K be a subset of N X N.
Then, M, | —densrfy of K'is denoted by 6, ~(K) and defined by

lim Z Am k- ]XK(k ]) (7)

m,n—00
if the limit exists.

Definition 5 (M, -statistical convergence). A double se-
quence x = (x,, ) s said to be M 2, ~Statistically convergent
to L if for every €>0, M, —den51ty of the set K(e) =
{(m n): |x,,, — Ll >£} is zero, i.e.,

lim Z A k,n— ]XK(S)(k D= (8)

m,n—-00
k,j=0
It is denoted by x,,, — L(M, - st). The set of all
M, -statistically convergent sequences is denoted by My N >

ie.,
M;,, = fx=( o =St}
9)

Let p=(p,) and q= (gq,) be sequences of positive
natural numbersand P, == Y., pp — coand Q, = Y}_,
q — 00. Take A = (), where (4,,,) = (A ) with

xmyn): 3L € Rsuchthatx,, , — L(M

m,nk, j
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Ifjg‘ , if0<j<m,0<k<n,
Am,n,k,j = e (10)
0, otherwise.

If we consider A = (A,,,) as in (10), then it is clear that
M,  -statistical convergence coincides weighted statistical
convergence (or Sx;) which was defined and studied by

Cinar and Et in [29]

2. Main Results and Proofs

In this section, we will give some properties of M, -sta-
tistical convergence and comparison with strong
M, -summability. Moreover, inclusion results for M Stm,, are
given.

Theorem 1. Let x = (x,,,) and y = (y,,,) be two double
sequences. Then,
D) If xpp — L (M —st) and y,, — L, (M,
—st), then (x,,, + ymn) — (L + L) (M, - st)
(i) If X, — L (M, —st) and ce€ C, then
X, — €Ly (MA —st)

m,n

Proof. Omitted.
We define each of the following sets:

s {1l 3 <o |

myn=0

(11)

Theorem 2. Let A = (A,,,) € A If x,,,, — L (M) —st)

and X,,, — L, (M, = —st), then L, = L,.
Proof. Assume that x,,, — L, (M, —st), x,,, — L,
(M, —st), and L, #L,. Take any £< (1/2)|L, - L,|, and
denote the sets
A (L) = {(m, n): |, = Ly 28}, (12)
A (L) = {(m, n): |x,,, — Ly| > e}.

Since x,,, — L; (M, -st) and x,,, — L, (M, -
st), we can write (SA (A (L )) =0 and 5,\ (A (Ly) = 0. Tt
is clear that inclusion

{(m, n): |, — Ly| < s} c A (L) (13)

holds. Therefore, the inequality
‘Sim,n({(m’ M)z [, = Ly < 8} <0, (A(L)=0 (14

holds. Also, the sets {(m, n): %,
disjoint and

NxN = {(m, n): |,

-L,|< e} and A, (L,) are

- L,| <} UA,(L,). (15)
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From (15), we obtain

6Am,n (N X N) = (Sflm.n({(m’ n): |xm>” - L2| < 8}) + 6/1%” (Ae (LZ))
(16)

The last equality gives that §, (N xN) =0, but thisisa
contradiction to §; (N xN) = 1. So, M ), -Statistical limit
of x = (x,,,) is unique. ’

Theorem 3. Let A = (A,,,) be a sequence from A,. Then, the
following statements hold true:

(i) If X, — L(IM), 1), then x,,, — L(M, - st)
and (Mlmn)gMj‘

(ii) If x = (x,,,) € €2, and x,,, — L(M, —st), then
X i L(M/\mn) '

mn

Proof

(i) Let €>0 and x,,,,, — L(M /\mn)‘ In this case, we obtain
m,n
> Ao g~ 1| = s

k, j=0 k,j=0, (k,j) € K (e)
m,n
+ Z Amfk’n7j|xk)j - L'
k,j=0, (k,j) ¢ K (¢)
m,n
> Z )mek,nfj'xk)j — L|
k, j=0, (k,j) €K (&)

2¢ Z Am—k,n—jXK(s) (k’ ])
k,j=0

(17)

(ii) After taking the limit when m, n — oo in the above
inequality, we obtain x,,, — L(M, - st).

(ili) Assume that x,, , — L(M, —st) and x € Eéo.
Then, there exists a positive constant H > 0 such that

|%nn — L| <H, (18)

for all m,n e N.
For a given ¢ > 0, the following inequality holds:

m,n m,n
Z /\m—k,n—j|xkj - L| = Z

k,j=0 k,j=0, (k,j) €K (¢)

)‘m—k,n—j‘xk,j - L|

mn
+ Z Am_k’n_j'xkyj — L|
k,j=0, (k,j) ¢ K (&)

<H Z Amten-iXx () (s )
k,j=0

m,n
+e Z A
k,j=0, (k,j) ¢ K (¢)

m—k,n—j*

(19)

If we take the limit as m,n — 00, then we obtain that
xk,j — L( [M/\m,n])'

Remark 1. The converse of (i) in Theorem 3 does not hold.

Let wus consider A= (A,,) = (1/(mn+ 1)) and
x = (x,,,) as follows:

3.3
sr,
xm,n=
03

Therefore, we have

2 2
m=rn=s",
(20)

otherwise.

m,n 1

)
mnﬂmk,jz:o ((m—K) (- )+ 1)

7 XK (e) (k, j)

(21)
(v LIV 1] 1

= lim

S<0,
mp—co = (m—-r)(n—-s)+1)

but the following inequality holds:

mn 1

limm,n—>oo . 2 © X
Ko (m—k)(n—j)+1)

kj

INZ N 1
= limmn_wo 29373
’ 1520 (m-r)(n-s)+1)

1 [Ivm ], [V ]
> lim $r = 00.

Mn—>00 (mn + 1)2 gt

(22)

This gives that M, < My is strict.

Corollary 1. If x,,, — L(m,n — o), then x,,, — L
(M, ~—st) for any L € A,.

Proof. Since x,,, — L(m,n — oo) and M, is regular
for any A € A, then x,,, — L([M, ]). Therefore, The-

orem 3 (i) gives that x,,,, — L(M, - st).
For A, u € A, let us consider the series

AMx,y) = Z XXy,

mn=0

(23)
PO = Y X"y
mn=0
."L(x’ y) = k(x, y) = Oio kmn'xmyn’
A(X,y) m,n=0 ’
Axy) OO’OO (24)
XY \ m_n
=1l(x,y) = L,x"y".
ey =100 2

The series A(x, y) and u(x, y) are convergent for all
x| <1, |yl < 1.

Theorem 4. For any A,y € A, there exists a double sequence
Y= (Vmn) € A such that My < M; and My <My .



Proof. For A= (A,,) €Ay and pu= (4,,) €Ay let us
consider the sequence y = (y,,,,) as
Ymn = /\m,m“o,o + Am—l,n—l/’ll,l toee A0,0."41«}1,n’ (25)

for m,n € N. Let us show that y € A. Since A, y € A, we have

z |Ym,n| = Z (/\m,n.“oo + Aot + "+Aool/‘m,n)
mn=0 mn=0

00,00
< Z |/1m,n||."10,0| +|Am—1,n—1||#1,1| te--

m,n=0

+|AO,O||A"‘m,n| = < Z_O |Am,n|> < Z_O Inum,n|> <00.

(26)

Let (t‘}t ,) and (thn) be the M,
transformations of x = (Xp)s respectlvely
(th.) is also the M oSt transformation of (x,,

—st and M, —st

»)» where
mn

tz/n,n = Z Ym-kn—jXK (e) (k, ]) = YmnXK (e) (0,0) +---
k,j=0

+ Yo,0Xk () (M5 1).
(27)

From (25), we have the following equality:

tym,n = (/\m,m“0,0 + /\m—l,n—l.“l,l L AO,OI’IWL”)XK(E) (0) 0)
+ o+ Ao otho,oXk (o) (M 1)
= AootooXx (o) (M 7)

R +(/\m,muo,0 +---+ Ao,oﬂm,n)XK(s) (0, 0)

Z tm nxm”ym" = Z ([’lm,nXK(s) (0’ 0) +-

m,n=0 m,n=0

m,n=0

Similarly, if |x| <1 and |y| <1,

Z tin’nxmnymn
m,n=0
( Z /\mnxmn mn>< Z XK(;,)(m n)xmn mn>.
m,n=0 m,n=0
(30)
Then, it is clear from (24) that
u(x, y) = A(x, y)k(x, y), (31)

for all [x[ <1 and |y|< 1.
It follows from the above equality and (23) and (24) that
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= Al,l([’lO,OXK(s) (m’ 7’[) Tt HmnXK (e) (0’ 0))

ot )lm,n(!’lm,nXK(S) o, 0))

_ I
= Al,lt +A, Ztm ettt At
(28)
Since t’fn,n — 0, as m,n—> 00, we obtain
lim,,, ,othn = 0. This implies that x,,, — L(M,, ~st).

By wusing the
M§ <My .

same argument, we can get

Remark 2. Theorem 4 is valid for any A,y € A,.

Theorem 5. For any two A,y € A, the methods M“ and
M, are consistent.

Proof. Let (x,,,) be a sequence such that x,,,, — s(M,

st) and x,,, — t(M — st). If we consider the sequence
= (Y. n) e A as (25) 'in Theorem 4, we obtain X,,

(M —st) and x,,, — t(M —st). From the umque—

ness of the limit, we obtain that s=t.

Z—— S

Theorem 6. Let A,y € A,. Then, M3

mn

Yoo (Kl <00 and Y vk, =1

m,n=0 m,n=0

s )
<M, if and only if

Proof. Let (tfnn) and (t,.,) be the MSt - and
M -transforms of the sequence x = (x,,,,) and y'= (ymn)
respectively.

If |[x| <1 and |y| < 1, we obtain

U Xk (o) (M5 ”) x "y

(29)
< Z #mn mn mn>< Z XK(S)(m n)xmn mn)

m,n=0

k(x, y)A(x, y) Z Xk (e) (15 n)x™ "

N (32)
=u(%Y) Y X (mmx™y™
m,n=0
So, we obtain
k(x,y) Z tﬁ%n m,n mn_ Z t X mn' (33)

mn=0 m,n=0

Then,

00,00
PR A P A
tm,n = k0,0tm,n + kl,ltm—l,n—l +eet km ntOO - am,n,i,jti,j’

(34)
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where

kpin-jp ifism,j<n,
am,n,i,j = . (35)
0, otherwise.

Then, for the last discussion, we have M3 ¢ M“ if and

only if the matrix (a,,,; ;) is regular. So, we obtam

sup Z| mnz]| sup Z 'km in— ]|<OO (36)

m,n=0 ; m,n=0 ;

That is, Zmn oKl < 00. Also, we have

00,00 mn
mrlllr—nwo Z amnz] _milql£l>oo Z km in=j 1’ (37)
i,j=0 i,j=0

ie, Y0k, = 1.

The proof is completed.

Corollary 2. LetA,p € Ay. Then, M' = M;, ifand only if
Zmn Olk |<OO’ Zmn Olh |<OO’ and z;)norfook =
anonoooh =1

Definition 6 (see [25]). Two sequences A = (A,,,,) and u =
(fhn,) in A are said to be equivalent if

. A'f’l’li’l
lim 2 =1, (38)

m,n—00 ‘um’n

and it is denoted by A ~ u.

Theorem 7. Let A and y be sequences in A such that A ~ p.
Then, M3 = Mj/.

Proof. Letx = (x,,,) € MSt be an arbitrary sequence such
that

lim Z /\m k- ]XK(S) (k J) (39)

m,n—00

for any € > 0. Therefore,

lim Z Hm—kn— ]XK s)(k J)

mn*>00
(40)
. & Aum—kn—]
= m,lqan>m 2 Am k,n— ]XK(S (k ])
’ k,j=0 "'m—k.n—j
Since A ~p, for any fixed & >0, there exists
ny = n,(gy) € N and m, = m (gy) € N such that
1-¢< ki o 4 & (41)
/\m—k,n—j

holds for all n>n, and n>m,. Hence, the following in-
equality holds:

5
m,n
Z Aum—k,n—jXK(s) (k’ ])
k,j=0
My (80)’”0 (80)
[’lm—k,n—j .
= Am—k,n— iXK (e) (k’ J)
k,j=0 Amfk,n*j !
= I —kn—j .
+ Am ]/\m—k,n- Xk (e (ks 1)
el @)
o (EO))HO (£0) U k.n—j
= 2 Am k,n—jXK(s) (k’ ])
k,j=0 m—k,n—j
+(1+¢g) Z Anton-iXk (&) (K> 1)
my (&)1 (£)
nm,n
sc Z Mncten—iXx () (K> J)
k,j=0
when
B (R v v (R

Now, by taking the limit as m,n — co, we obtain that
Xy — L(M,, —st). We conclude that My M;‘ .
Converse of thlS inclusion result can be obtained by the same
way. Hence, the proof is completed.

Corollary 3. Let E = {/\m
n € N} be associated sets of A= (A,,,), 4=

E\F (or F\E) is finite, then Mjf M;f

i ML E N} and F = {ym)n: m,
(Upmn) € A If

Theorem 8. Let x = (x,,,) be a sequence and A € A. Then,
X — L(st) implies xmn — L(M, - st) if and only if
MmNy, ;= O(1) for 0<k<n and 0<]<m

Proof. LetK(¢) = {(m, n): |x,,, — LI 2 s} for any £ > 0. Since
mnA,, y ., j= O(1), we have

m,n 1 m,n
Z Am—k,n—jXK(s) (k. j) = mn Z mnAmfk,nijK(s) (k, j)
k,j=0 k,j=0

<O(1)— Z X o (ks ).
k]O

(44)

If we take the limit as m,n — 00, the desired result is
obtained if and only if mnA,, ;,_; = O(1).

Theorem 9. Let x = (x,,,,) be a sequence and A € A. Then,
X — L(M), — st) implies x,,, , — L(st) if and only if the

sequence (1/mnh,, i, ;) = O(1) for k<m and j<n.

Proof. For any e>0, let K(e¢) = {(m, n): |x,,, — Ll 25}.
Then, the inequality



lim — Z XK (o) (k, §)

mn—oo Mn

m k.n—j

lim

mn—s00 mnk] O)Lm ke

XK (e) (k. j)
(45)

m,n 1
= lim

m,n—00

/‘m kn— ]XK(&) (k J)

M e

k,j=0

<0(1) lim Z )Lm fn-iXK (e) (k, ])

m,n—00

holds. This gives the proof.

On the contrary, let us recall that C (D) is the space of all
continuous real-valued functions on any compact subset of
the real two-dimensional space. We know that C(D) is a
Banach space with norm

[flleo = sup (xyyenlf (5 ), (f € C(D)). (46)

Suppose that L is a linear operator from C (D) into C (D).
It is clear that if f >0 implies Lf >0, then the linear operator
L is positive on C (D). Also, we denote the value of Lf at a
point (x,y) by L(f(u,v);x,y) or only L(f;x,y). The
classical Korovkin approximation theorem (see [35]) was
extended from single sequences to double sequences [36].

Journal of Mathematics

Now, we give the following theorem to prove the ap-
proximation theorem.

Theorem 10. Let {Lm’n} be a double sequence of positive
linear operators from C (D) into C(D). Then,

lim|L,,, ()~ fl, — 0(M,, —st)  (47)
for all f € C(D) if and only if

i L, (£) = filo — 0.(M,, =50, (a8)

where fo(x,y) =1, f,(x,)
xX*+ y?, and i=0,1,2,3.

=x () =y f3(x69) =

Proof. Since each f; € C(D)(i=0,1,2,3), assertion (48)
follows immediately from assertion (47). Assume that (48)
holds. Since f € C(D), we have |f(x,y)|<M, where
M = || fllo- Using the continuity of f on D for every £>0,
there is 0>0 such that |f(v,z)—- f(x,y)l<e for all
(v,2) € D satisfying |v — x| < § and |z — y| < 8. Then, we get

If(v,z)—f(x,y)|<£+%{(v—x)2+(z—y)2}. (49)

Also, by the linearity and positivity of the operators L, ,
and from (49), we obtain

Ly (2 9) = £ (5 )] = L (F 5 2) = £ (35, 9):%,9) = £ 5 ) (L (o3 % ¥) = fo (%, 7))

<L, (f(nz)-f(xy

<

Lm)n<e + 28—]\2/1{(1/ - x) +(z - y)z;x,y}>

|vx’y)+Mlen fO’xy) fO(x’y)|

+Mle,n(f0;x>y)_fo(xa)’)|

(50)
<€+M+ (A +B)len(f0’xy) f()(x’y)| A|Lmn(f17x’ )_fl(x’y)|
M 2M
+_2B|Lm,n(f2;x’y) - fZ(x’y)I +?|Lm,n(f3;x’y) _f3 (x’y)| +é
where A= max|x| and B:= max|y|. Then, taking “Lm’" (f;x’sy)/lm_k’"_j A y)||°° (53)
> b i
SUP (x,y)ep> WE ODtain <e+ RZ ||Lm,n (fii %, }’))‘m—k,n—j i y)"oo.
i=0
”Lm,nf - f"oo = R"mefo - fO”oo +”Lm>nf1 - fl"oo We now replace L, (.; x,y)/\m_k,n_j by

SR AT R

(51)

where

XM, , o\ 4M _4M _ 2M
R=max{e+ M+ (E’+F),—-E,— F,~5t.
B & 78
(52)

Similarly, we obtain

(k1)
We choose ¢' >0 such that ¢’ <r for a given r > 0. Then,
define the sets

S = {(m, n) € N x N: ||Tm,nf - f”c(K) = r}’

r_a} (55)

= {(m,n) eNxN:|T,,,.f; —fi||C(K)2F
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i=0,1,2,3. It is clear that Sc UL;S;, and so,
0(8)<8(Sy) +6(S;) +(S,) + 8(S;5). Therefore, using con-
dition (53), we obtain

lim Ly, f = fleo — O(Mama = 1) (56)

This completes the proof.

Corollary 4. Let {Lm)n} be a double sequence of positive
linear operators from C(D) into C(D). Then,

P-lim|L,,,(f) = fl,, =0 (57)
for all f e C(D) if and only if
p- lylnr}} “Lm,n (fl) - fl"oo =0, (58)

where fo(x,y) =1, f1(x,9)=x, fo(x,y) =y, f3(x,9) =
x*+ y*, and i=0,1,2,3.

Remark 3. We now show in the following an example of a
sequence of positive linear operators of two variables sat-
isfying the conditions of Theorem 10 but does not satisfy the
conditions of the Korovkin theorem. Consider the following
Bernstein operators:

“ o (kj - »

Buatsin =3 £ s )ebdcly -
k=0 j=0 \"mn

(59)

where (x, y) € [0,1] x [0, 1].

Let Lm,n (fO;x’y) = 1’Lm,n(fl;x’y) =X Lm,n (fz;x’
Y=y and L,,(f5xy) =x"+y*+ (x—x*/m)+ (y-
y?/n). Then, by Corollary 4, we obtain

P-lim|L,,.f - fl, =0 (60)

forall f € C(D).L,,,: C(D) — C(D)with L, ,(f;x,y) =
(1 +8,,,) B (f5 %, ), where
if mand nare even,

1,
o ={ (61)

0, otherwise.

Let A,, =1. The double sequence (s,,,) is neither
P-convergent nor statistically convergent, but (s,,,) is
statistically summable M, = to zero. B, ,(1;x,y) =1,
B, (x;x,y)=x, B, ,(y;y,x) =y, and B, (x*+y*x,
y) =x*+y* + (x — x*/m) + (y — y*/n), and the double se-
quence L, , satisfies condition (48) for i = 0, 1,2, 3. Hence,
we get

Mlm,nSt - 1,1,,12 ”Lm,nf - f"oo =0. (62)

We have L, ,(f,0,0)=(1+s,,)B, , (f;0,0) since
B,,.(f;0,0) = £(0,0), and hence,

NLo (526 3) = f (6 9o = L (526 3) = f (6, )]

> 5,1 (0,0)].
(63)

It is easy to see that (L,,,,) does not satisfy the conditions
of the classical Korovkin-type theorem since lims,,, and
st* —lims,,, do not exist; this proves the claim.

n

3. Conclusion

In this paper, we introduce M,,, ,-statistical convergence for
double sequences and give the inclusion results for different
An's- These new results can be viewed as a generalization of
previously known results. The new concept can be applied to
the approximation theory, Fourier analysis, topology, and so
on. The M,,, -statistically Cauchy sequence can be de-
scribed, and its properties can be studied. Also, ideal con-
vergent sequence spaces can be given.
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