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In this paper, we introduce a new type of statistical convergence method for double sequences by using the (M, λm,n)-method of
summability which was defined by Natarajan. We also obtain some inclusion relations between statistical convergence and
Mλm,n-statistical convergence for double sequences.

1. Introduction

/e subject of statistical convergence has been studied by
many researchers since the emergence of the idea of sta-
tistical convergence in 1935. Statistical convergence was
introduced by Fast [2] and Steinhaus [3] independently in
the same year 1951 as a generalization of ordinary con-
vergence and was later reintroduced by Schoenberg [4].
Quite a few researchers have generalized or extended this
concept and applied different fields of mathematics such as
Erdös and Tenenbaum [5], Miller [6], Zygmund [7],
Freedmanet al. [8], Connor [9], Salat [10], Duman and
Orhan [11], Et et al. [12], Çakallı [13, 14], Çakallı and Savaş
[15], Edely et al. [16], Mursaleen et al. [17, 18], Natarajan
[19], Tok and Başarır [20], Aral and Küçükaslan [21–23], and
Taylan [24].

Let x � (xm,n) be a double sequence. /en, x �

(xm,n)∞m,n�0 is said to be convergent to L in the Pringsheim
sense if for every ε> 0, there exists N ∈ N such that
|xm,n − L|< ε, whenever m, n>N. In this case, we write P −

limx � L [25].
Also, a double sequence x � (xm,n)∞m,n�0 is said to be

bounded if there exists a positive number M such that
|xm,n|<M for all (m, n) ∈ N × N. By ℓ2∞, we denote the set of
all bounded double sequences.

Let K⊆N × N and K(m, n) � (m, n): k≤m, j≤ n . /en,
the double natural density of K is given by

δ(K) ≔ P − lim
m,n⟶∞

1
mn



m,n

k,j�1
χK(m,n)(k, j) (1)

if the limit exists. A double sequence x � (xm,n) is said to be
statistically convergent to L provided that, for every ε> 0, the set

(m, n): k≤m and j≤ n: xm,n − L


≥ ε  (2)

has double natural density zero [26]. In this case, we write st2−

limx � L. By st2, we denote the set of all statistically convergent
double sequences. Later, a lot of works have been done on the
statistical convergence of double sequences (see [27–33]).

/e following definition which is required for our study
is given by Natarajan.

Definition 1 (see [1]). Let λ � λm,n  be a double sequence
such that 

∞,∞
m,n�0|λm,n|<∞. /en, the (M, λm,n)-method is

defined by the 4-dimensional infinite matrix (am,n,k,j), where

am,n,k,j ≔
λm−k,n−j, if k≤m, j≤ n,

0, otherwise.
 (3)

It is well known from /eorem 3.4 of [1] that the
(M, λm,n)-method is regular if and only if 

∞,∞
m,n�0λm,n � 1.

/e purpose of this paper is to give a new statistical
convergence definition using the above definition for double
sequences and some relations between statistical conver-
gence andMλm,n

-statistical convergence. In addition, we have
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used it to prove a Korovkin-type approximation theorem as
an application of our method.

We acknowledge that the definition of Mλm,n-statistical
convergence for double sequences was presented at the
International Conference onMultidisciplinary, Engineering,
Science, Education and Technology in 2017 [34].

Let x � (xm,n) be a given real-valued sequence. A se-
quence (tm,n) of Mλm,n

-mean of (xm,n) is defined by

tm,n � 

m,n

k,j�0
λm−k,n−jxk,j, (4)

for all m, n ∈ N.

Definition 2. /e sequence x � (xm,n) is said to be
Mλm,n

-summable to L ∈ R if tm,n⟶ L and is denoted by

xm,n⟶ L Mλm,n
 . (5)

Definition 3. A double sequence x � (xm,n) is said to be
strongly Mλm,n

-summable to L ∈ R if (|xm,n − L|) is
Mλm,n

-summable to zero. In this case, we write
xm,n⟶ L([Mλm,n

]). /e set of all strongly Mλm,n
-summable

sequences is denoted by [Mλm,n
] as

Mλm,n
  � x � xk,j : lim

m,n⟶∞,∞


m,n

k,j�0
λm−k,n−j xm,n − L


 � 0

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(6)

By considering the matrix Mλm,n
in (3) for any λ � (λm,n),

natural density and statistical convergence can be defined as
follows.

Definition 4 (Mλm,n
-density). Let K be a subset of N × N.

/en,Mλm,n
-density ofK is denoted by δλm,n

(K) and defined by

lim
m,n⟶∞



m,n

k,j�0
λm−k,n−jχK(k, j) (7)

if the limit exists.

Definition 5 (Mλm,n
-statistical convergence). A double se-

quence x � (xm,n) is said to be Mλm,n
-statistically convergent

to L if for every ε> 0, Mλm,n
-density of the set K(ε) ≔

(m, n): |xm,n − L|≥ ε  is zero, i.e.,

lim
m,n⟶∞



m,n

k,j�0
λm−k,n−jχK(ε)(k, j) � 0. (8)

It is denoted by xm,n⟶ L(Mλm,n
− st). /e set of all

Mλm,n
-statistically convergent sequences is denoted by Mst

λm,n
,

i.e.,

M
st
λm,n
≔ x � xm,n : ∃L ∈ R such thatxm,n⟶ L Mλm,n

− st  .

(9)

Let p � (pn) and q � (qn) be sequences of positive
natural numbers and Pm ≔ 

m
k�0 pk⟶∞ and Qn ≔ 

n
k�0

qk⟶∞. Take λ � (λm,n), where (λm,n) � (λm,n,k,j) with

λm,n,k,j ≔

pjqk

PmQn

, if 0≤ j≤m, 0≤ k≤ n,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

If we consider λ � (λm,n) as in (10), then it is clear that
Mλm,n

-statistical convergence coincides weighted statistical
convergence (or SN2

) which was defined and studied by
Çınar and Et in [29].

2. Main Results and Proofs

In this section, we will give some properties of Mλm,n
-sta-

tistical convergence and comparison with strong
Mλm,n

-summability. Moreover, inclusion results for Mst
λm,n

are
given.

Theorem 1. Let x � (xm,n) and y � (ym,n) be two double
sequences. 1en,

(i) If xm,n⟶ L1(Mλm,n
− st) and ym,n⟶ L2(Mλm,n

−st), then (xm,n + ym,n)⟶ (L1 + L2)(Mλm,n
− st)

(ii) If xm,n⟶ L1(Mλm,n
− st) and c ∈ C, then

cxm,n⟶ cL1(Mλm,n
− st)

Proof. Omitted.
We define each of the following sets:

Λ ≔ λ � λm,n : 
∞,∞

m,n�0
λm,n


<∞

⎧⎨

⎩

⎫⎬

⎭,

Λ0 ≔ λ ∈ Λ: 
∞,∞

m,n�0
λm,n � 1

⎧⎨

⎩

⎫⎬

⎭.

(11)

Theorem 2. Let λ � (λm,n) ∈ Λ0. If xm,n⟶ L1(Mλm,n
− st)

and xm,n⟶ L2(Mλm,n
− st), then L1 � L2.

Proof. Assume that xm,n⟶ L1(Mλm,n
− st), xm,n⟶ L2

(Mλm,n
− st), and L1 ≠L2. Take any ε< (1/2)|L1 − L2|, and

denote the sets

Aε L1(  � (m, n): xm,n − L1


≥ ε ,

Aε L2(  � (m, n): xm,n − L2


≥ ε .
(12)

Since xm,n⟶ L1(Mλm,n
− st) and xm,n⟶ L2(Mλm,n

−

st), we can write δλm,n
(Aε(L1)) � 0 and δλm,n

(Aε(L2)) � 0. It
is clear that inclusion

(m, n): xm,n − L2


< ε  ⊂ Aε L1(  (13)

holds. /erefore, the inequality

δλm,n
(m, n): xm,n − L2


< ε ≤ δλm,n

Aε L1( (  � 0 (14)

holds. Also, the sets (m, n): |xm,n − L2|< ε  and Aε(L2) are
disjoint and

N × N � (m, n): xm,n − L2


< ε ∪Aε L2( . (15)
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From (15), we obtain

δλm,n
(N × N) � δλm,n

(m, n): xm,n − L2


< ε   + δλm,n
Aε L2( ( .

(16)

/e last equality gives that δλm,n
(N × N) � 0, but this is a

contradiction to δλm,n
(N × N) � 1. So, Mλm,n

-statistical limit
of x � (xm,n) is unique.

Theorem 3. Let λ � (λm,n) be a sequence from Λ0. 1en, the
following statements hold true:

(i) If xm,n⟶ L([Mλm,n
]), then xm,n⟶ L(Mλm,n

− st)
and (Mλm,n

)⊊Mst
λm,n

(ii) If x � (xm,n) ∈ ℓ2∞ and xm,n⟶ L(Mλm,n
− st), then

xm,n⟶ L(Mλm,n
)

Proof

(i) Let ε> 0 and xm,n⟶ L(Mλm,n
). In this case, we obtain



m,n

k,j�0
λm−k,n−j xk,j − L



 � 

m,n

k,j�0,(k,j)∈K(ε)
λm−k,n−j xk,j − L





+ 
m,n

k,j�0,(k,j)∉K(ε)
λm−k,n−j xk,j − L





≥ 
m,n

k,j�0,(k,j)∈K(ε)
λm−k,n−j xk,j − L





≥ ε 
m,n

k,j�0
λm−k,n−jχK(ε)(k, j).

(17)

(ii) After taking the limit whenm, n⟶∞ in the above
inequality, we obtain xm,n⟶ L(Mλm,n

− st).
(iii) Assume that xm,n⟶ L(Mλm,n

− st) and x ∈ ℓ2∞.
/en, there exists a positive constant H> 0 such that

xm,n − L


≤H, (18)

for all m, n ∈ N.
For a given ε> 0, the following inequality holds:



m,n

k,j�0
λm−k,n−j xkj − L



 � 
m,n

k,j�0,(k,j)∈K(ε)
λm−k,n−j xk,j − L





+ 
m,n

k,j�0,(k,j)∉K(ε)
λm−k,n−j xk,j − L





≤H 
m,n

k,j�0
λm−k,n−jχK(ε)(k, j)

+ ε 
m,n

k,j�0,(k,j)∉K(ε)
λm−k,n−j.

(19)

If we take the limit as m, n⟶∞, then we obtain that
xk,j⟶ L([Mλm,n

]).

Remark 1. /e converse of (i) in /eorem 3 does not hold.
Let us consider λ � (λm,n) � (1/(mn + 1)2) and

x � (xm,n) as follows:

xm,n �
s
3
r
3
, m � r

2
, n � s

2
,

0, otherwise.

⎧⎨

⎩ (20)

/erefore, we have

lim
m,n⟶∞



m,n

k,j�0

1
((m − k)(n − j) + 1)

2 · χK(ε)(k, j)

� lim
m,n⟶∞



[|
��
m

√
|],[|

�
n

√
|]

r,s�0

1
((m − r)(n − s) + 1)

2 ≤ 0,

(21)

but the following inequality holds:

limm,n⟶∞ 

m,n

k,j�0

1
((m − k)(n − j) + 1)

2 · xkj

� limm,n⟶∞ 

[|
��
m

√
|],[|

�
n

√
|]

r,s�0

1
((m − r)(n − s) + 1)

2s
3
r
3

≥ lim
m,n⟶∞

1
(mn + 1)

2 · 

[|
��
m

√
|],[|

�
n

√
|]

r,s�0
s
3
r
3

�∞.

(22)

/is gives that Mλm,n
⊂Mst

λm,n is strict.

Corollary 1. If xm,n⟶ L(m, n⟶∞), then xm,n⟶ L

(Mλm,n
− st) for any λ ∈ Λ0.

Proof. Since xm,n⟶ L(m, n⟶∞) and Mλm,n
is regular

for any λ ∈ Λ0, then xm,n⟶ L([Mλm,n
]). /erefore, /e-

orem 3 (i) gives that xm,n⟶ L(Mλm,n
− st).

For λ, μ ∈ Λ0, let us consider the series

λ(x, y) � 
∞,∞

m,n�0
λm,nx

m
y

n
,

μ(x, y) � 
∞,∞

m,n�0
μm,nx

m
y

n
,

(23)

μ(x, y)

λ(x, y)
� k(x, y) � 

∞,∞

m,n�0
km,nx

m
y

n
,

λ(x, y)

μ(x, y)
� l(x, y) � 

∞,∞

m,n�0
lm,nx

m
y

n
.

(24)

/e series λ(x, y) and μ(x, y) are convergent for all
|x|< 1, |y|< 1.

Theorem 4. For any λ, μ ∈ Λ, there exists a double sequence
c � (cm,n) ∈ Λ such that Mst

λm,n
⊂Mst

cm,n
and Mst

μm,n
⊂Mst

cm,n
.
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Proof. For λ � (λm,n) ∈ Λ0 and μ � (μm,n) ∈ Λ0, let us
consider the sequence c � (cm,n) as

cm,n ≔ λm,nμ0,0 + λm−1,n−1μ1,1 + · · · + λ0,0μm,n, (25)

for m, n ∈ N. Let us show that c ∈ Λ. Since λ, μ ∈ Λ, we have



∞,∞

m,n�0
cm,n


 � 
∞,∞

m,n�0
λm,nμ00 + λm−1,n−1μ11 + · · · + λ00μm,n 





≤ 
∞,∞

m,n�0
λm,n


 μ0,0


 + λm−1,n−1


 μ1,1


 + · · ·

+ λ0,0


 μm,n


 � 
∞,∞

m,n�0
λm,n


⎛⎝ ⎞⎠ 
∞,∞

m,n�0
μm,n


⎛⎝ ⎞⎠<∞.

(26)

Let (tλm,n) and (t
μ
m,n) be the Mλm,n

− st and Mμm,n
− st

transformations of x � (xm,n), respectively.
(t

c
m,n) is also the Mcm,n

-st transformation of (xm,n), where

t
c
m,n ≔ 

m,n

k,j�0
cm−k,n−jχK(ε)(k, j) � cm,nχK(ε)(0, 0) + · · ·

+ c0,0χK(ε)(m, n).

(27)

From (25), we have the following equality:

t
c
m,n � λm,nμ0,0 + λm−1,n−1μ1,1 + · · · + λ0,0μm,n χK(ε)(0, 0)

+ · · · + λ0,0μ0,0χK(ε)(m, n)

� λ0,0μ0,0χK(ε)(m, n)

+ · · · + λm,nμ0,0 + · · · + λ0,0μm,n χK(ε)(0, 0)

� λ1,1 μ0,0χK(ε)(m, n) + · · · + μm,nχK(ε)(0, 0) 

+ · · · + λm,n μm,nχK(ε)(0, 0) 

� λ1,1t
μ
m,n + λ2,2t

μ
m−1,n−1 + · · · + λm,nt

μ
1,1.

(28)

Since t
μ
m,n⟶ 0, as m, n⟶∞, we obtain

limm,n⟶∞t
c
m,n � 0. /is implies that xm,n⟶ L(Mcm,n

− st).
By using the same argument, we can get

Mst
λm,n
⊂Mst

cm,n
.

Remark 2. /eorem 4 is valid for any λ, μ ∈ Λ0.

Theorem 5. For any two λ, μ ∈ Λ, the methods Mst
λm,n

and
Mst

μm,n
are consistent.

Proof. Let (xm,n) be a sequence such that xm,n⟶ s(Mλm,n
−

st) and xm,n⟶ t(Mμm,n
− st). If we consider the sequence

c � (cm,n) ∈ Λ as (25) in /eorem 4, we obtain xm,n⟶ s

(Mcm,n
− st) and xm,n⟶ t(Mcm,n

− st). From the unique-
ness of the limit, we obtain that s � t.

Theorem 6. Let λ, μ ∈ Λ0. 1en, Mst
λm,n
⊂Mst

μm,n
if and only if


∞
m,n�0 |km,n|<∞ and 

∞,∞
m,n�0km,n � 1.

Proof. Let (tλm,n) and (t
μ
m,n) be the Mst

λm,n
- and

Mst
μm,n

-transforms of the sequence x � (xm,n) and y � (ym,n),
respectively.

If |x|< 1 and |y|< 1, we obtain



∞,∞

m,n�0
t
μ
m,nx

m,n
y

m,n
� 
∞

m,n�0
μm,nχK(ε)(0, 0) + · · · + μ0,0χK(ε)(m, n) x

mn
y

mn

� 
∞,∞

m,n�0
μm,nx

mn
y

mn⎛⎝ ⎞⎠ 

∞,∞

m,n�0
χK(ε)(m, n)x

mn
y

mn⎛⎝ ⎞⎠.

(29)

Similarly, if |x|< 1 and |y|< 1,



∞,∞

m,n�0
t
λ
m,nx

mn
y

mn

� 
∞,∞

m,n�0
λm,nx

mn
y

mn⎛⎝ ⎞⎠ 

∞,∞

m,n�0
χK(ε)(m, n)x

mn
y

mn⎛⎝ ⎞⎠.

(30)

/en, it is clear from (24) that

μ(x, y) � λ(x, y)k(x, y), (31)

for all |x|< 1 and |y|< 1.
It follows from the above equality and (23) and (24) that

k(x, y)λ(x, y) 
∞,∞

m,n�0
χK(ε)(m, n)x

mn
y

mn

� μ(x, y) 
∞,∞

m,n�0
χK(ε)(m, n)x

mn
y

mn
.

(32)

So, we obtain

k(x, y) 
∞,∞

m,n�0
t
λ
m,nx

m,n
y

m,n
� 
∞,∞

m,n�0
t
μ
m,nx

m,n
y

m,n
. (33)

/en,

t
μ
m,n ≔ k0,0t

λ
m,n + k1,1t

λ
m−1,n−1 + · · · + km,nt

λ
0,0 � 
∞,∞

i,j�0
am,n,i,jt

λ
i,j,

(34)
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where

am,n,i,j �
km−i,n−j, if i≤m, j≤ n,

0, otherwise.
 (35)

/en, for the last discussion, we have Mst
λ ⊂Mst

μ if and
only if the matrix (am,n,i,j) is regular. So, we obtain

sup
m,n≥0



∞,∞

i,j�0
am,n,i,j



 � sup
m,n≥0



∞,∞

i,j�0
km−i,n−j



<∞. (36)

/at is, 
∞,∞
m,n�0|km,n|<∞. Also, we have

lim
m,n⟶∞



∞,∞

i,j�0
am,n,i,j � lim

m,n⟶∞


m,n

i,j�0
km−i,n−j � 1, (37)

i.e., 
∞,∞
m,n�0km,n � 1.

/e proof is completed.

Corollary 2. Let λ, μ ∈ Λ0. 1en, Mst
λm,n

� Mst
μm,n

if and only if

∞,∞
m,n�0|km,n|<∞, 

∞,∞
m,n�0|hm,n|<∞, and 

∞,∞
m,n�0km,n �


∞,∞
m,n�0hm,n � 1.

Definition 6 (see [25]). Two sequences λ � (λm,n) and μ �

(μm,n) in Λ are said to be equivalent if

lim
m,n⟶∞

λm,n

μm,n

� 1, (38)

and it is denoted by λ ∼ μ.

Theorem 7. Let λ and μ be sequences in Λ such that λ ∼ μ.
1en, Mst

λ � Mst
μ .

Proof. Let x � (xm,n) ∈Mst
λm,n

be an arbitrary sequence such
that

lim
m,n⟶∞



m,n

k,j�0
λm−k,n−jχK(ε)(k, j) � 0, (39)

for any ε> 0. /erefore,

lim
m,n⟶∞



m,n

k,j�0
μm−k,n−jχK(ε)(k, j)

� lim
m,n⟶∞



m,n

k,j�0

μm−k,n−j

λm−k,n−j

λm−k,n−jχK(ε)(k, j).

(40)

Since λ ∼ μ, for any fixed ε0 > 0, there exists
n0 ≡ n0(ε0) ∈ N and m0 ≡ m0(ε0) ∈ N such that

1 − ε0 <
μm−k,n−j

λm−k,n−j

< 1 + ε0 (41)

holds for all n≥ n0 and n≥m0. Hence, the following in-
equality holds:



m,n

k,j�0
μm−k,n−jχK(ε)(k, j)

� 

m0 ε0( ),n0 ε0( )

k,j�0

μm−k,n−j

λm−k,n−j

λm−k,n−jχK(ε)(k, j)

+ 
m,n

m0 ε0( ),n0 ε0( )

μm−k,n−j

λm−k,n−j

λm−k,n−jχK(ε)(k, j)

≤ 

m0 ε0( ),n0 ε0( )

k,j�0

μm−k,n−j

λm−k,n−j

λm−k,n−jχK(ε)(k, j)

+ 1 + ε0(  

m,n

m0 ε0( ),n0 ε0( )

λm−k,n−jχK(ε)(k, j)

≤ c 
m,n

k,j�0
λm−k,n−jχK(ε)(k, j)

(42)

when

c � max 1 + ε,
μmn

λmn

,
μm−1,n−1

λm−1,n−1
, . . . ,

μm−m0 ,n−n0

λm−m0 ,n−n0

 . (43)

Now, by taking the limit as m, n⟶∞, we obtain that
xm,n⟶ L(Mμm,n

− st). We conclude that Mst
λm,n
⊂Mst

μm,n
.

Converse of this inclusion result can be obtained by the same
way. Hence, the proof is completed.

Corollary 3. Let E � λm,n: m, n ∈ N  and F � μm,n: m,

n ∈ N} be associated sets of λ � (λm,n), μ � (μm,n) ∈ Λ. If
E\F(or F\E) is finite, then Mst

λm,n
� Mst

μm,n
.

Theorem 8. Let x � (xm,n) be a sequence and λ ∈ Λ. 1en,
xm,n⟶ L(st) implies xm,n⟶ L(Mλm,n

− st) if and only if
mnλm−k,n−j � O(1) for 0≤ k≤ n and 0≤ j≤m.

Proof. Let K(ε) � (m, n): |xm,n − L|≥ ε  for any ε> 0. Since
mnλm−k,n−j � O(1), we have



m,n

k,j�0
λm−k,n−jχK(ε)(k, j) �

1
mn



m,n

k,j�0
mnλm−k,n−jχK(ε)(k, j)

≤O(1)
1

mn


m,n

k,j�0
χK(ε)(k, j).

(44)

If we take the limit as m, n⟶∞, the desired result is
obtained if and only if mnλm−k,n−j � O(1).

Theorem 9. Let x � (xm,n) be a sequence and λ ∈ Λ. 1en,
xm,n⟶ L(Mλ − st) implies xm,n⟶ L(st) if and only if the
sequence (1/mnλm−k,n−j) � O(1) for k≤m and j≤ n.

Proof. For any ε> 0, let K(ε) � (m, n): |xm,n − L|≥ ε .
/en, the inequality
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lim
m,n⟶∞

1
mn



m,n

k,j�0
χK(ε)(k, j)

� lim
m,n⟶∞

1
mn



m,n

k,j�0

λm−k,n−j

λm−k,n−j

χK(ε)(k, j)

� lim
m,n⟶∞



m,n

k,j�0

1
mnλm−k,n−j

λm−k,n−jχK(ε)(k, j)

≤O(1) lim
m,n⟶∞



m,n

k,j�0
λm−k,n−jχK(ε)(k, j)

(45)

holds. /is gives the proof.
On the contrary, let us recall that C(D) is the space of all

continuous real-valued functions on any compact subset of
the real two-dimensional space. We know that C(D) is a
Banach space with norm

‖f‖∞ ≔ sup(x,y)∈D|f(x, y)|, (f ∈ C(D)). (46)

Suppose that L is a linear operator fromC(D) intoC(D).
It is clear that if f≥ 0 implies Lf ≥ 0, then the linear operator
L is positive on C(D). Also, we denote the value of Lf at a
point (x, y) by L(f(u, v); x, y) or only L(f; x, y). /e
classical Korovkin approximation theorem (see [35]) was
extended from single sequences to double sequences [36].

Now, we give the following theorem to prove the ap-
proximation theorem.

Theorem 10. Let Lm,n  be a double sequence of positive
linear operators from C(D) into C(D). 1en,

lim
m,n

Lm,n(f) − f
����

����∞⟶ 0 Mλm,n
− st  (47)

for all f ∈ C(D) if and only if

lim
m,n

Lm,n fi(  − fi

����
����∞⟶ 0, Mλm,n

− st , (48)

where f0(x, y) � 1, f1(x, y) � x, f2(x, y) � y, f3(x, y) �

x2+ y2, and i � 0, 1, 2, 3.

Proof. Since each fi ∈ C(D)(i � 0, 1, 2, 3), assertion (48)
follows immediately from assertion (47). Assume that (48)
holds. Since f ∈ C(D), we have |f(x, y)|≤M, where
M � ‖f‖∞. Using the continuity of f on D for every ε> 0,
there is δ > 0 such that |f(v, z) − f(x, y)|< ε for all
(v, z) ∈ D satisfying |v − x|< δ and |z − y|< δ. /en, we get

|f(v, z) − f(x, y)|< ε +
2M

δ2
(v − x)

2
+(z − y)

2
 . (49)

Also, by the linearity and positivity of the operators Lm,n

and from (49), we obtain

Lm,n(f; x, y) − f(x, y)


 � Lm,n(f(v, z) − f(x, y); x, y) − f(x, y) Lm,n f0; x, y(  − f0(x, y) 




≤Lm,n(|f(v, z) − f(x, y)|; x, y) + M Lm,n f0; x, y(  − f0(x, y)




≤ Lm,n ε +
2M

δ2
(v − x)

2
+(z − y)

2
; x, y  




+ M Lm,n f0; x, y(  − f0(x, y)




≤ ε + M +
2M

δ2
A
2

+ B
2

  Lm,n f0; x, y(  − f0(x, y)


 +
4M

δ2
A Lm,n f1; x, y(  − f1(x, y)




+
4M

δ2
B Lm,n f2; x, y(  − f2(x, y)


 +

2M

δ2
Lm,n f3; x, y(  − f3(x, y)


 + ε,

(50)

where A ≔ max|x| and B ≔ max|y|. /en, taking
sup(x,y)∈D, we obtain

Lm,nf − f
����

����∞≤R Lm,nf0 − f0
����

����∞ + Lm,nf1 − f1
����

����∞

+ Lm,nf2 − f2
����

����∞ + Lm,nf3 − f3
����

����∞ + ε,
(51)

where

R � max ε + M +
2M

δ2
E
2

+ F
2

 ,
4M

δ2
E,

4M

δ2
F,

2M

δ2
 .

(52)

Similarly, we obtain

Lm,n(f; x, y)λm−k,n−j − f(x, y)
�����

�����∞

≤ ε + R 
3

i�0
Lm,n fi; x, y( λm−k,n−j − fi(x, y)

�����

�����∞
.

(53)

We now replace Lm,n(.; x, y)λm−k,n−j by

Tm,n(.; x, y) � 
(k,l)

Lm,n(.; x, y)λm−k,n−j. (54)

We choose ε′ > 0 such that ε′ < r for a given r> 0. /en,
define the sets

S ≔ (m, n) ∈ N × N: Tm,nf − f
����

����C(K)
≥ r ,

Si � (m, n) ∈ N × N: Tm,nfi − fi

����
����C(K)
≥

r − ε′
4R

 ,

(55)
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i � 0, 1, 2, 3. It is clear that S ⊂ ∪3i�0Si, and so,
δ(S)≤ δ(S0) + δ(S1) + δ(S2) + δ(S3). /erefore, using con-
dition (53), we obtain

lim
m,n

Lm,nf − f
����

����∞⟶ 0 Mλm,n − st . (56)

/is completes the proof.

Corollary 4. Let Lm,n  be a double sequence of positive
linear operators from C(D) into C(D). 1en,

P − lim
m,n

Lm,n(f) − f
����

����∞ � 0 (57)

for all f ∈ C(D) if and only if

P − lim
m,n

Lm,n fi(  − fi

����
����∞ � 0, (58)

where f0(x, y) � 1, f1(x, y) � x, f2(x, y) � y, f3(x, y) �

x2+ y2, and i � 0, 1, 2, 3.

Remark 3. We now show in the following an example of a
sequence of positive linear operators of two variables sat-
isfying the conditions of /eorem 10 but does not satisfy the
conditions of the Korovkin theorem. Consider the following
Bernstein operators:

Bm,n(f; x, y) � 
m

k�0

n

j�0
f

k

m
,
j

n
 C

k
mx

k
C

j
ny

j
(1 − y)

n− j
,

(59)

where (x, y) ∈ [0, 1] × [0, 1].
Let Lm,n(f0; x, y) � 1, Lm,n(f1; x, y) � x, Lm,n(f2; x,

y) � y, and Lm,n(f3; x, y) � x2 + y2 + (x − x2/m) + (y−

y2/n). /en, by Corollary 4, we obtain

P − lim
m,n

Lm,nf − f
����

����∞ � 0, (60)

for allf ∈ C(D). Lm,n: C(D)⟶ C(D) with Lm,n(f; x, y) �

(1 + sm,n)Bm,n(f; x, y), where

sm,n �
1, if m and n are even,

0, otherwise.
 (61)

Let λm,n � 1. /e double sequence (sm,n) is neither
P-convergent nor statistically convergent, but (sm,n) is
statistically summable Mλm,n

to zero. Bm,n(1; x, y) � 1,
Bm,n(x; x, y) � x, Bm,n(y; y, x) � y, and Bm,n(x2 + y2; x,

y) � x2 + y2 + (x − x2/m) + (y − y2/n), and the double se-
quence Lm,n satisfies condition (48) for i � 0, 1, 2, 3. Hence,
we get

Mλm,n
st − lim

m,n
Lm,nf − f

����
����∞ � 0. (62)

We have Lm,n(f, 0, 0) � (1 + sm,n)Bm,n(f; 0, 0) since
Bm,n(f; 0, 0) � f(0, 0), and hence,

Lm,n(f; x, y) − f(x, y)
����

����∞≥ Lm,n(f; x, y) − f(x, y)




≥ sm,n|f(0, 0)|.

(63)

It is easy to see that (Lm,n) does not satisfy the conditions
of the classical Korovkin-type theorem since limsm,n and
st2 − limsm,n do not exist; this proves the claim.

3. Conclusion

In this paper, we introduce Mλm,n-statistical convergence for
double sequences and give the inclusion results for different
λm,n’s. /ese new results can be viewed as a generalization of
previously known results./e new concept can be applied to
the approximation theory, Fourier analysis, topology, and so
on. /e Mλm,n-statistically Cauchy sequence can be de-
scribed, and its properties can be studied. Also, ideal con-
vergent sequence spaces can be given.
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