
Research Article
Determinantal Representations of the Weighted Core-EP, DMP,
MPD, and CMP Inverses

Ivan I. Kyrchei

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, NAS of Ukraine, Lviv, Ukraine

Correspondence should be addressed to Ivan I. Kyrchei; st260664@gmail.com

Received 31 March 2020; Accepted 2 May 2020; Published 31 May 2020

Academic Editor: George Psihoyios

Copyright © 2020 Ivan I. Kyrchei. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, new notions of the weighted core-EP left inverse and the weightedMPD inverse which are dual to the weighted core-
EP (right) inverse and the weighted DMP inverse, respectively, are introduced and represented. (e direct methods of computing
the weighted right and left core-EP, DMP, MPD, and CMP inverses by obtaining their determinantal representations are given. A
numerical example to illustrate the main result is given.

1. Introduction

In the whole article, R and C stand for fields of the real and
complex numbers, respectively. Cm×n and Cm×n

r are reserved
for the set of all m × n matrices over C and its subset of
matrices with a rank r. For A ∈ Cm×n, the symbols AT, A∗,
and rk(A) specify the transpose, the conjugate transpose,
and the rank of A, respectively. |A| or detA denotes its
determinant. A matrix A ∈ Cn×n is Hermitian if A∗ � A. (e
index ofA ∈ Cn×n, denoted IndA � k, is the smallest positive
number such that rk(Ak+1) � rk(Ak).

Definition 1 (see [1]). For A ∈ Cm×n and W ∈ Cn×m, the
W-weighted Drazin inverse of A with respect toW, denoted
by Ad,W, is the unique solution to equations:

(AW)
k+1XW � (AW)

k
,

XWAWX � X,

AWX � XWA,

(1)

where k � Ind(AW).

(e properties of the W-weighted Drazin inverse and
some of its applications can be found in [2–8]. Among them,
if A ∈ Cm×n with respect to W ∈ Cn×m, then

Ad,W � A (WA)
d

 
2

� (AW)
d

 
2
A. (2)

Let A ∈ Cn×n andW � In be the identity matrix of order
n. (en, X � Ad is the Drazin inverse of A. In particular, if
IndA � 1, then the matrix X is called the group inverse and
it is denoted by X � A#.

Definition 2 (see [9]). (e Moore–Penrose inverse of
A ∈ Cn×m is called the exclusive matrix X, denoted by A†,
satisfying the following four equations:

AXA � A,

XAX � X,

(AX)
∗

� AX,

(XA)
∗

� XA.

(3)

For an arbitrary matrix A ∈ Cm×n, it is denoted by

(i) N(A) � x ∈ Cn×1: Ax � 0 , the kernel (or the null
space) of A

(ii) C(A) � y ∈ Cm×1: y � Ax, x ∈ Cn×1 , the column
space (or the range space) of A

(iii) R(A) � y ∈ C1×n: y � xA, x ∈ H1×m , the row
space of A
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PA: � AA† and QA: � A†A are the orthogonal pro-
jectors onto the range of A and the range of A∗, respectively.

For the recent important results regarding generalized
inverses see [10, 11].

(e core inverse was introduced by Baksalary and
Trenkler in [12]. Later, it was investigated by Malik and
(ome in [13] and Xu et al. in [14], among others.

Definition 3 (see [12]). A matrix X ∈ Cn×n is called the core
inverse of A ∈ Cn×n if it satisfies the conditions:

AX � PA,

C(X) � C(A).
(4)

When such matrix X exists, it is denoted by A#.

(e core inverse was extended to the core-EP inverse
defined by Prasad and Mohana [15]. Based on the deter-
minantal representation of an reflexive inverse [16, 17],
determinantal formulas for the core-EP inverse have been
derived in [15].

Other generalizations of the core inverse were intro-
duced, namely, BT inverses [18], DMP inverses [13], and
CMP inverses [19]. (e characterizations, computing
methods, some applications of the core inverse, and its
generalizations were investigated (see, e.g., [20–30]). Re-
cently, determinantal representations of the core inverse and
its generalizations have been obtained in both cases for
matrices over the field of complex numbers [31] by using
usual determinants and over the quaternion skew field [32]
by using noncommutative row-column determinants in-
troduced in [33, 34].

Only recent generalizations of the core inverse were
extended to rectangular matrices by using the W-weighted
Drazin inverse. Among them, the weighted core-EP inverse
was introduced in [35], its representations and properties
were studied in [36, 37], and generalizations of the weighted
core-EP inverse were expanded over a ring with involution
[38] and Hilbert space [39], respectively. (e concepts of the
complex weighted DMP and CMP inverses were introduced
and explored in [40, 41], respectively.

(e main goals of this paper are to introduce and
represent new notions of the weighted core-EP left inverse
and the weighted MPD inverse which are dual to the
weighted core-EP (right) inverse and the weighted DMP
inverse, respectively. Also, the direct methods of computing
the weighted right and left core-EP, DMP, MPD, and CMP
inverses by obtaining their determinantal representations
are given.

(e determinantal representation of the usual inverse is
the matrix with cofactors in entries that suggests a direct
method of finding the inverse of a matrix. (e same is
desirable for the generalized inverses. But, there are various
expressions of determinantal representations of generalized
inverses which are in regard to the search of their more
applicable explicit expressions (see, e.g., [16, 17, 42–44]).

In this paper, determinantal representations of a gen-
eralized inverse obtained based on their limit representa-
tions are used, namely, for the Moore–Penrose inverse in

[44, 45], for the Drazin inverse in [46, 47], and for the
W-weighted Drazin inverse in [48–50].

(e paper is organized as follows. Section 2 starts with a
preliminary introduction of the determinantal representa-
tions of the Moore–Penrose inverse, of the Drazin and
weighted Drazin inverses, and of the core inverse and its
generalizations. Section 3 introduces the concepts of the left
weighted core-EP inverse and gives determinantal repre-
sentations of both left and right weighted core-EP inverse. In
Section 4, the weighted DMP and MPD inverses are
established and determinantal representations of the
weighted DMP and MPD inverses are obtained. Determi-
nantal representations of the CMP inverse are obtained in
Section 5. A numerical example to illustrate the main results
is considered in Section 6. Finally, in Section 7, the con-
clusions are drawn.

2. Preliminaries

(e following notations for determinantal representations of
generalized inverses are used.

Let α: � α1, . . . , αk ⊆ 1, . . . , m{ } and β ≔ β1, . . . ,

βk}⊆ 1, . . . , n{ } be subsets with 1≤ k≤min m, n{ }. By Aα
β,

denote a submatrix of A ∈ Cm×n with rows and columns
indexed by α and β, respectively. (en, Aα

α is a principal
submatrix of A with rows and columns indexed by α and
|A|αα is the corresponding principal minor of the determinant
|A|. Suppose that

Lk,n :� α: α � α1, . . . , αk( , 1≤ α1 < · · · < αk ≤ n , (5)

stands for the collection of strictly increasing sequences of
1≤ k≤ n integers chosen from 1, . . . , n{ }. For fixed i ∈ α and
j ∈ β, put

Ir,m i{ } :� α: α ∈ Lr,m, i ∈ α ,

Jr,n j  :� β: β ∈ Lr,n, j ∈ β .
(6)

a.j and a∗.j , ai. and a∗i. denote the j-th columns and the
i-th rows of A andA∗, respectively. ByAi.(b) andA.j(c), the
matrices obtained from A by replacing its i-th row with row
b and its j-th column with column c are denoted.

Lemma 1 (see [44]). If A ∈ Cm×n
r , then the Moore–Penrose

inverse A† � (a†ij) ∈ C
n×m possesses the determinantal

representations:

a
†
ij �

β∈Jr,n i{ } A∗A( ).i a∗.j 



β

β

β∈Jr,n
A∗A| |

β
β

�
α∈Ir,m j{ } AA∗( )j. a∗i.( 




α

α

α∈Ir,m
AA∗| |

α
α

.

(7)

Remark 1. For an arbitrary full-rank matrix A ∈ Cm×n
r , a

row-vector b ∈ C1×m, and a column-vector c ∈ Cn×1, it is
given as, respectively,
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AA∗( i.(b)


 � 
α∈Im,m i{ }

AA∗( i.(b)



α
α, i � 1, . . . , m,

AA∗


 � 
α∈Im,m

AA∗



α
α, when r � m;

A∗A( .j(c)


 � 

β∈Jn,n j{ }

A∗A( .j(c)



β

β
, j � 1, . . . , n,

A∗A


 � 
β∈Jn,n

A∗A



β
β, when r � n.

(8)

Corollary 1 (see [45]). Let A ∈ Cm×n
r . *en, the following

determinantal representations can be obtained:

(i) For the projector QA � (qij)n×n,

qij �
β∈Jr,n i{ } A∗A( ).i _a.j 




β

β

β∈Jr,n
A∗A| |

β
β

�
α∈Ir,n j{ } A∗A( )j. _ai.( 




α

α

α∈Ir,n
A∗A| |

α
α

,

(9)

where _a.j is the j-th column and _ai. is the i-th row of
A∗A;

(ii) For the projector PA � (pij)m×m,

pij �
α∈Ir,m j{ } AA∗( )j. €ai.( 




α

α

α∈Ir,m
AA∗| |

α
α

�
β∈Jr,m i{ } AA∗( ).i €a.j 




β

β

β∈Jr,m
AA∗| |

β
β

,

(10)

where €ai. is the i-th row and €a.j is the j-th column of
AA∗.

Lemma 2 (see [48]). Let A ∈ Cm×n, W ∈ Cn×m, and
k � max Ind(AW), Ind(WA){ }. *en, Ad,W � (ad,W

ij ) ∈ Cm×n

can be expressed as

a
d,W
ij �

β∈Jr,m i{ }( |AW)k+2
.i v.j 


β

β

β∈Jr,m
(AW)k+2




β

β

(11)

�
α∈Ir,n j{ } (WA)k+2

j. ui.( 



α

α

α∈Ir,n
(WA)k+2




α

α

, (12)

where ui. is the i-th row of U � A(WA)k and v.j is the j-th
column of V � (AW)kA.

(e two core inverses are introduced.

Definition 4 (see [12]). A matrix X ∈ Cn×n is said to be the
(right) core inverse of A ∈ Cn×n if it satisfies the conditions:

AX � PA,

C(X) � C(A).
(13)

When such matrix X exists, it is denoted by A.

Definition 5 (see [31]). A matrix X ∈ Cn×n is said to be the
left core inverse of A ∈ Cn×n if it satisfies the conditions:

XA � QA,

R(X) � R(A).
(14)

When such matrix X exists, it is denoted by A.

Similar as in [15], two core-EP inverses are introduced.

Definition 6 (see [15]). A matrix X ∈ Cn×n is said to be the
right core-EP inverse of A ∈ Cn×n if it satisfies the
conditions:

XAX � A,

C(X) � C X∗(  � C Ad
 .

(15)

It is denoted by A†.

(e following lemma gives characterization of the right
core-EP inverse.

Lemma 3 (see [15]). Let A,X ∈ Cn×n be such that
Ind(A) � k. *en, X is the right core-EP inverse of A if and
only if X satisfies the conditions:

XAk+1
� Ak

,

AX2
� X,

(AX)
∗

� AX,

C(X)⊆C Ak
 .

(16)

Lemma 4 (see [22], (eorem 2.3). Let A ∈ Cn×n and let l

be a nonnegative integer such that l≥ k � Ind(A). *en,
A � AdAl(Al)†.

Definition 7. Amatrix X ∈ Cn×n is said to be the left core-EP
inverse of A ∈ Cn×n if it satisfies the conditions:

XAX � A,

R(X) � R X∗(  � R Ad
 .

(17)

It is denoted by A†.

Remark 2. Since C((A∗)d) � R(Ad), then the left core
inverse A of A ∈ Cn×n is similar to the ∗core inverse in-
troduced in [15] and the dual core-EP inverse introduced in
[30].

Similarly, the following characterization of the left core-
EP inverse is obtained.

Lemma 5 (see [30]). Let X,A ∈ Cn×n and let l be a non-
negative integer such that l≥ k � Ind(A). *e following
statements are equivalent:

(i) X is the left core-EP inverse of A
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(ii) Ak+1X � Ak,X2A � X, (XA)∗ � XA, andR(X) ⊆
R(Ak)

(iii) X � A � (Al)†AlAd

(anks to [22], there exists the simple relation between
the left and right core-EP inverses, (A)∗ � (A∗)○†. So, it is
enough to investigate the left core-EP inverse, so the right
core-EP inverse case can be investigated analogously. But in
[31], separate determinantal representations of both core-EP
inverses and the both core inverses are given.

Lemma 6 (see [31]). Suppose A ∈ Cn×n, IndA � k,
rk(Ak) � s, and there existA○† � (a○

†,r
ij ) andA○† � (a○

†,l
ij ).*en,

they have the following determinantal representations,
respectively,

a
○†,r
ij �

α∈Is,n j{ } Ak+1 Ak+1 
∗

 
j.

ai.( 





α

α

α∈Is,n
Ak+1 Ak+1 

∗


α

α

, (18)

a
†,l
ij �

β∈Js,n i{ } Ak+1 
∗
Ak+1 

.i
�a.j 




β

β

β∈Js,n
Ak+1 

∗
Ak+1




β

β

, (19)

where ai. is the i-th row of A � Ak(Ak+1)∗ and �a.j is the j-th
column of �A � (Ak+1)∗Ak.

If IndA � 1, then A○# � (a○#,r
ij ) and A○# � (a○#,l

ij ) have the
following determinantal representations, respectively,

a
○#,r
ij �

α∈Is,n j{ } A2 A2( 
∗

 
j.

ai.( 





α

α

α∈Is,n
A2 A2( 

∗

α
α

,

a
○#,l
ij �

β∈Js,n i{ } A2( 
∗A2 

.i
�a.j 




β

β

β∈Js,n
A2( 
∗A2


β
β

,

(20)

where ai. is the i-th row of A � A(A2)∗ and �a.j is the j-th
column of �A � (A2)∗A.

3. Concepts of the W-Weighted Core-EP
Inverses and Their
Determinantal Representations

(e concept of the W-weighted core-EP inverse was in-
troduced by Ferreyra et al. in [35].

Definition 8. Suppose A ∈ Cm×n, W ∈ Cn×m, and
k � max Ind(WA), Ind(AW){ }, then the (right) W-weighted
core-EP inverse of A is the unique solution to the system:

WAWX � (WA)
k

(WA)
k

 
†
,

C(X) ⊆C (AW)
k

 .
(21)

It is denoted by A○†,W,r.

From [35], the right weighted core-EP inverse can be
determined as follows.

Lemma 7 (see [35]). Let A,X ∈ Cm×n, W ∈ Cn×m, and
k � max Ind(WA), Ind(AW){ }. *e following statements are
equivalent:

(i) X is the right weighted core-EP inverse of A.
(ii) XW (AW)k+1 � (AW)k,AWXWX � X, and (WA

WX)∗ � WAWX.

X � A (WA)
○†

 
2
. (22)

Introduction of a left weighted core-EP inverse is pro-
posed as well.

Definition 9. Suppose A ∈ Cm×n, W ∈ Cn×m, and
k � max Ind(WA), Ind(AW){ }. (e left W-weighted core-
EP inverse of A is the unique solution to the system:

XWAW � (AW)
k

 
†
(AW)

k
,

R(X) ⊆R (WA)
k

 .
(23)

It is denoted by A○†,W,l.

Theorem 1. Let A,X ∈ Cm×n, W ∈ Cn×m, and k �

max Ind(WA), Ind(AW){ }. *e following statements are
equivalent:

(i) X � [(AW)○†]2A.
(ii) X is the left weighted core-EP inverse of A.
(iii) X is the unique solution to the three equations:

(WA)
k+1WX � (WA)

k
,

XWXWA � X,

(XWAW)
∗

� XWAW.

(24)

Proof. (i)⟼ (ii). It is shown that X � [(AW)○†]2A satisfies
condition (23). Indeed,
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XWAW � (AW)○† 
2AWAW � (AW)○†AW

� (AW)
k

 
†
(AW)

k
(AW)

dAW � (AW)
k

 
†
(AW)

k
,

(AW)○† 
2A � (AW)○† 

3AWA � · · · � (AW)○† 
k+2

(AW)
kA

� (AW)○† 
k+2A(WA)

k
, i.e.,

R (AW)○† 
2A ⊆R (WA)

k
 .

(25)

(ii)⟼ (iii). Now, it is needed to prove that
X � [(AW)○†]2A satisfies the equations in (24).

Since (WA)k+1W � W(AW)k+1 and from Lemma 5,

(AW)○† � (AW)
k

 
†
(AW)

k
(AW)

d
, (26)

then

(WA)
k+1W (AW)○† 

2A � W (AW)
k+1

(AW)○† (WA)○†A

� W(AW)
k

(AW)
k

 
†
(AW)

k
(AW)

dA

� W(AW)
k
(AW)

dA

� (WA)
k+1

(WA)
d

� (WA)
k
.

(27)

By Lemma 5, taking into account [(AW)○†]2

AW � (AW)○†, it is obtained that

(AW)○† 
2AW (AW)○† 

2AW A � (AW)○† 
2AW(AW)○†A

� (AW)○† 
2A.

(28)

Finally,

(AW)○† 
2AWAW 

∗
� (AW)○†AW( 

∗
� (AW)○†AW.

(29)

Now, the uniqueness of X is proven. Let

(WA)
k+1WX � (WA)

k
,

XWXWA � X,

(XWAW)
∗

� XWAW,

X � (AW)○† 
2A.

(30)

Suppose there also exists the left weighted core-EP in-
verse Y such that

(WA)
k+1WY � (WA)

k
,

YWYWA � Y,

(YWAW)
∗

� YWAW.

(31)

It is shown that Y � X � [(AW)○†]2A. So,

Y � YWYWA � Y(WY)
2
(WA)

2
� Y(WY)

k
(WA)

k

� Y(WY)
k
(WA)

k+1WX � (YW)
k+1

(AW)
k+1X � (YWAW)

k+1X

� (AW)
k

 
†
(AW)

k
 

k+1
X � (AW)

2k+1
 

†
(AW)

2k+1
(AW)○† 

2A.

(32)

By Lemma 5, (AW)○† � [(AW)2k+1]†(AW)2k+1(AW)d.
So,

Y � (AW)
2k+1

 
†
(AW)

2k+1
(AW)

2k+1
 

†
(AW)

2k+1
(AW)

d
(AW)○†A

� (AW)
2k+1

 
†
(AW)

2k+1
(AW)

d
(AW)○†A � (AW)○† 

2A.

(33)

Finally, from the uniqueness of X follows (iii)↦(i). □

Now, determinantal representations of the W-weighted
core-EP inverses are given.

Theorem 2. Suppose A ∈ Cm×n, W ∈ Cn×m, and
k � max Ind(WA), Ind(AW){ }, rk(WA)k � s. Denoting
WA ≔ U � (uij) ∈ Cn×n. *en, the right weighted core-EP
inverse A○†,W,r � (a○†,W,r

ij ) ∈ Cm×n possesses the determinantal
representations:

a
○†,W,r
ij �

α∈Is,n j{ } Uk+1 Uk+1 
∗

 
j.

ϕi. 





α

α

α∈Is,n
Uk+1 Uk+1 

∗


α

α
 

2 , (34)

where ϕi. is the i-th row of Φ � ΦUk(Uk+1)∗. *e matrix Φ �

(ϕif) is determined as follows:

ϕif � 

α∈Is,n f{ }

Uk+1 Uk+1
 

∗
 

f.
ui.( 





α

α
, (35)

where ui. is the i-th row of U � AUk(Uk+1)∗.

Proof. Taking into account (22) forA○†,W,r, it is obtained that

a
○†,W,r
ij � 

n

l�1


n

f�1
ailu
○†,r
lf u○†,r

fj . (36)

Using the determinantal representation (18) of U○† gives
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ϕif � 
n

l�1
ailu
○†,r
lf �


n
l�1ailα∈Is,n f{ } Uk+1 Uk+1 

∗
 

f.
ul.( 





α

α

α∈Is,n
Uk+1 Uk+1 

∗


α

α

�
α∈Is,n f{ } Uk+1 Uk+1 

∗
 

f.
ui.( 





α

α

α∈Is,n
Uk+1 Uk+1 

∗


α

α

,

(37)

where ul. is the l-th row of U � Uk(Uk+1)∗ and ui. is the i-th
row of U � AUk(Uk+1)∗. Denoting

ϕif � 

α∈Is,n f{ }

Uk+1 Uk+1
 

∗
 

f.
ui.( 





α

α
. (38)

Substituting ϕif into (36) gives

a
○†,W,r
ij � 

n

l�1
ϕifu
○†,r
fj �


n
f�1ϕifα∈Is,n f{ } Uk+1 Uk+1 

∗
 

j.
uf. 





α

α

α∈Is,n
Uk+1 Uk+1 

∗


α

α
 

2 .

(39)

Putting 
n
f�1 ϕifuf. � ϕi. as the i-th row of

Φ � ΦUk(Uk+1)∗ yields (34). □

Similarly, theorem on the determinantal representation
of the left W-weighted core-EP inverse can be proved.

Theorem 3. Suppose A ∈ Cm×n, W ∈ Cn×m, and
k � max Ind(WA)Ind(AW){ }, rk(AW)k � s. Denoting
AW: � V � (vij) ∈ Cm×m. *en, the left W-weighted core-
EP inverse A†,W,l � (a†,W,l

ij ) ∈ Cn×m possesses the determi-
nantal representations

a
†,W,l
ij �

β∈Js,m i{ } Vk+1 
∗
Vk+1 

.i
ψ.j 




β

β

β∈Js,m
Vk+1 

∗
Vk+1




β

β
 

2 , (40)

where ψ.j is the j-th column of Ψ � (Vk+1)∗VkΨ. *e matrix
is determined, Ψ � (ψlj) ∈ C

m×n, as follows:

ψlj � 
β∈Js,m l{ }

Vk+1
 

∗
Vk+1

 
.l

v.j 



β

β
, (41)

where v.j is the j-th column of V � (Vk+1)∗VkA.

4. TheW-WeightedDMPandMPDInverses and
Their Determinantal Representations

(e concept of the DMP inverse was introduced by Malik
and (ome as follows.

Definition 10 (see [13]). Suppose that A ∈ Cn×n and
IndA � k. A matrix X ∈ Cn×n is said to be the DMP inverse
of A if it satisfies the conditions:

XAX � X,

XA � AdA,

AkX � AkA†
.

(42)

It is denoted by Ad,†.

It is proved in [13] that if a matrix satisfies the system of
equations (42), then it is unique and has the representation
Ad,† � AdAA†.

In [31], the MPD inverse is introduced.

Definition 11. Suppose A ∈ Cn×n and IndA � k. A matrix
X ∈ Cn×n is said to be the MPD inverse of A if it satisfies the
conditions:

XAX � X,

AX � AAd
,

XAk
� A†Ak

.

(43)

It is denoted by A†,d.

It is not difficult to show that A†,d is unique and it can be
represented as A†,d � A†AAd.

In [31], the determinantal representations of the DMP
and MPD inverses are given.

Recently in [40], the definition of the DMP inverse of a
square matrix was extended to rectangular matrices.

Definition 12 (see [40]). Let A ∈ Cm×n and W ∈ Cn×m be a
nonzero matrix. (e W-weighted DMP (WDMP) inverse of
A with respect to W is defined as

Ad,†,W
� WAd,WWAA†

. (44)

Lemma 8 (see [40]). Let A ∈ Cm×n, W ∈ Cn×m be a nonzero
matrix, and k � max Ind(WA)Ind(AW){ }. *e matrix X �

Ad,†,W is the unique matrix that satisfies the following system
of equations:

XAX � X,

XA � WAd,WWA,

(WA)
k+1X � (WA)

k+1A†
.

(45)

Introduction of the weighted MPD inverse is proposed
as well.

Theorem 4. Let A ∈ Cm×n, W ∈ Cn×m be a nonzero matrix,
and k � max Ind(WA), Ind(AW){ }. *en, the matrix X �

A†AWAd,WW is the unique solution to the equations:

XAX � X,

AX � AWAd,WW,

X(AW)
k+1

� A†
(AW)

k+1
.

(46)
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Proof. FromDefinitions 1 and 2 and taking into account (2),
it follows

A†AWAd,WW AA†A WAd,WW � A†AW Ad,WWAWAd,W
 W

� A†AWAd,WW,

AA†AWAd,WW � AWAd,WW,

A†AWAd,WW(AW)
k+1

� A†AW (AW)
d

 
2
AW(AW)

k+1

� A†AW(AW)
dAW(AW)

d
(AW)

k+1

� A†
(AW)

k+1
.

(47)

It means that X � A†AWAd,WW is the solution to
equation (46).

To prove uniqueness, suppose both X1 and X2 are two
solutions to (46). Using repeated applications of the equa-
tions in (46) and in Definition 1, it is obtained that

X1 � X1AX1 � X1AWAd,WW � X1(AW)
2 Ad,WW 

2

� · · · � X1(AW)
k+1 Ad,WW 

k+1
� A†

(AW)
k+1 Ad,WW 

k+1

� X2(AW)
k+1 Ad,WW 

k+1
� X2AWAd,WW � X2AX2 � X2.

(48)

It completes the proof. □

Definition 13. Let A ∈ Cm×n and W ∈ Cn×m be a nonzero
matrix. (e W-weighted MPD (WMPD) inverse of A with
respect to W is defined as

A†,d,W
� A†AWAd,WW. (49)

Now, determinantal representations of the WDMP in-
verse are given.

Theorem 5. Let A ∈ Cm×n
r and W ∈ Cn×m be a nonzero

matrix. Suppose k � max Ind(WA), Ind(AW){ }, and
rk(WA)k � rk Uk � r1. *en, the determinantal represen-
tations of its WDMP inverse Ad,†,W � (ad,†,W

ij ) can be
expressed as

a
d,†,W
ij �

α∈Ir,m j{ } AA∗( )j. ωi.( 



α

α

α∈Ir,m
AA∗| |

α
α (WA)k+2



α

α

, (50)

where ωi. is the i-th row of Ω � ΩWAA∗. *e matrix Ω �

(ωis) is such that

ωis :� 
α∈Ir1 ,n s{ }

(WA)
k+2
s. ui.( 




α

α
,

(51)

where ui. is the i-th row of U � (WA)k+1.

Proof. Taking into account (42), the following is obtained:

a
d,†,W
ij � 

m

t�1


n

s�1


m

f�1
wita

d,W
ts wsfp

A
fj, (52)

where Ad,W � (ad,W
ts ) ∈ Cm×n and PA � (pA

fj) ∈ C
m×m. Ap-

plying the determinantal representations (12) of Ad,W and
(10) of PA in (52) gives

a
d,†,W
ij �


n
s�1 α∈Ir1 ,n s{ } (WA)k+2

s. ui.( 



α

α
α∈Ir,m j{ } AA∗( )j. w(2)

s.( 



α

α

α∈Ir1 ,n
(WA)k+2




α

α
α∈Ir,m

AA∗| |
α
α

,

(53)

where ui. is the i-th row of U: � (WA)k+1 ∈ Hn×n andw(2)
s. is

the s-th row of W2 � WAA∗.
Denote

ωis :� 
α∈Ir1 ,n s{ }

(WA)
k+2
s. ui.)|

α
α,(

 (54)

and construct the matrix Ω � (ωis). Since



n

s�1
ωis 

α∈Ir,m j{ }

AA∗( j. w
(2)
s. 




α

α
� 

α∈Ir,m j{ }

AA∗( j. ωi.)|
α
α,(



(55)

where ωi. is the i-th row of Ω � ΩW2 � Ω(WA)k+1A∗, then,
finally, from (53), it follows (50). □

It is obtained similarly for the weighted MPD inverse.

Theorem 6. Let A ∈ Cm×n
r and W ∈ Cn×m be a nonzero

matrix. Suppose k � max Ind(WA), Ind(AW){ }, and
rk(AW)k � rkVk � r1. *en, the determinantal representa-
tions of its WMPD inverse A†,d,W � (a†,d,W

ij ) can be expressed
as follows:

a
†,d,W
ij �

β∈Jr,n i{ } A∗A( ).i υ.j 



β

β

β∈Jr,n
A∗A| |

β
β β∈Jr1 ,m

(AW)k+2



β

β
 

2, (56)

where υ.j is the j-th column of Υ � A∗AWΥ. *e matrix Υ �

(υsj) is determined by
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υsj � 
β∈Jr1 ,m s{ }

(AW)
k+2
.s v.j)|

β
β,

 (57)

where v.j is the j-th column of V � (AW)k+1.

Proof. Taking into account (45), the following is obtained:

a
†,d,W
ij � 

m

t�1


n

s�1


m

f�1
q

A
ifwfta

d,W
ts wsf, (58)

where Ad,W � (ad,W
ts ) ∈ Cm×n and QA � (qA

if) ∈ Cn×n. Ap-
plying the determinantal representations (11) of Ad,W and
(9) of QA in (58) gives

a
†,d,W
ij � 

m

t�1

β∈Jr,n i{ } A∗A( ).i w
(2)
.t 




β

β

β∈Jr,n
A∗A| |

β
β

β∈Jr1 ,m t{ } (AW)k+2
.t v.j 




β

β

β∈Jr1 ,m
(AW)k+2




β

β

,

(59)

where w
(2)
.t is the t-th column of W2 � A∗AW ∈ Cm×m and

v.j is the j-th column of V � (AW)k+1. Now, construct the
matrix Υ � (υtj), where

υtj :� 
β∈Jr1 ,m t{ }

(AW)
k+2
.t v.j 




β

β
. (60)

(en, from (59) it follows (56). □

(eorems 5 and 6 give the determinantal representations
of the weighted DMP and MPD inverses. For better un-
derstanding, the algorithm of finding one of them, for ex-
ample, the WDMP inverse from (eorem 5, is presented.

Algorithm 1.

(1) Compute the matrix �U � Uk+1 � (WA)k+1.
(2) By (51), find ωis for all i, s � 1, . . . , n and construct

the matrix Ω � (ωis).
(3) Compute the matrix Ω ≔ ΩWAA∗.
(4) Finally, find ad,†,W

ij by (50) for all i � 1, . . . , m and
j � 1, . . . , n.

5. Determinantal Representations of the
Weighted CMP Inverse

In [19], Mehdipour and Salemi investigated the CMP
inverse.

Definition 14 (see [19]). Suppose A ∈ Cn×n has the core-
nilpotent decomposition A � A1 + A2, where
IndA1 � IndA, A2 is nilpotent, and A1A2 � A2A1 � 0. (e
CMP inverse of A is called the matrix Ac,†: � A†A1A†.

Lemma 9 (see [19]). LetA ∈ Cn×n. *ematrixX � Ac,† is the
unique matrix that satisfies the following system of equations:

XAX � X,

AXA � A1,

AX � A1A
†
,

XA � A†A1.

(61)

Moreover, Ac,† � A†AAdAA†.

Determinantal representations of the CMP inverse are
derived in [31].

Recently, Mosić [41] introduced the weighted CMP
inverse of a rectangular matrix.

Lemma 10 (see [41]). Let A ∈ Cm×n and W ∈ Cn×m be a
nonzero matrix. *e system of equations

XAX � X,

AX � AWAd,WWAA†
,

XA � A†AWAd,WWA,

(62)

is consistent, and its unique solution is
X � A†AWAd,WWAA†.

Definition 15. Let A ∈ Cm×n and W ∈ Cn×m be a nonzero
matrix. (e weighted CMP (WCMP) inverse of A with
respect to W is defined as

Ac,†,W
� A†AWAd,WWAA†

. (63)

Theorem 7. Let A ∈ Cm×n
r and W ∈ Cn×m be a nonzero

matrix. Suppose k � max Ind(WA), Ind(AW){ }. *en, the
determinantal representations of its WCMP inverse Ac,†,W �

(ac,†,W
ij ) can be expressed as follows:

(i) If rk(WA)k � r1, then

a
c,†,W
ij �

α∈Ir,m j{ } AA∗( )j. ωi.( 



α

α

β∈Jr,n
A∗A| |

β
β 

2
α∈Ir1 ,n

(WA)k+2



α

α

, (64)

where ωi. is the i-th row of Ω � ΩWAA∗. *e matrix
Ω � (ωis) is such that

ωis � 
α∈Ir1 ,n s{ }

(WA)
k+2
s. ϕ(1)

i. 



α

α
.

(65)

Here, ϕ(1)
i. is the i-th row of Φ1 � ΦA(WA)k and the

matrix Φ � (ϕit) is such that

ϕit :� 
β∈Jr,n i{ }

A∗A( .i w(1)
.t 




β

β
, (66)

where w(1)
.t is the t-th column of W1 � A∗AW.

(ii) If rk(AW)k � r1, then
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a
c,†,W
ij �

β∈Jr,n i{ } A∗A( ).i υ.j 



β

β

α∈Ir,m
AA∗| |

α
α 

2
β∈Jr1 ,m

(AW)k+2



β

β

, (67)

where υ.j is the j-th column of Υ � A∗AWΥ.*ematrix
Υ � (υtj) is determined by

υtj � 
β∈Jr1 ,m t{ }

(AW)
k+2
.t ψ(1)

.j 



β

β
, (68)

where ψ(1)
.j is the j-th column of Ψ(1) � (AW)kAΨ.

Here, Ψ � (ψsj) is such that

ψsj :� 

α∈Ir,m j{ }

AA∗( j. w
(2)
s. 




α

α
,

(69)

where w(2)
s. is the s-th row of W2 � WAA∗.

Proof

(i) Taking into account (63) and applying one of the
cases of (9) and (10) for the determinantal repre-
sentations ofQA and PA, respectively, and (12) for the
determinantal representation of Ad,W give

a
c,†,W
ij � 

m

t�1


n

s�1

β∈Jr,n i{ } A∗A( ).i w(1)
.t 




β

β

β∈Jr,n
A∗A| |

β
β

×
α∈Ir1 ,n s{ } (WA)k+2

s. ut.( 



α

α

α∈Ir1 ,n
(WA)k+2




α

α

α∈Ir,m j{ } AA∗( )j. w(2)
s.( 




α

α

α∈Ir,m
AA∗| |

α
α

,

(70)

where w(1)
.t is the t-th column ofW1 � A∗AW, ut. is the

t-th row of U � A(WA)k, and w(2)
s. is the s-th row of

W2 � WAA∗.
Denote

ϕit :� 
β∈Jr,n i{ }

A∗A( .i w(1)
.t 




β

β
, (71)

and construct the matrix Φ � (ϕit). (en, determine

ωis � 
n

t�1
ϕit 

α∈Ir1 ,n s{ }

(WA)
k+2
s. ut.( 




α

α

� 
α∈Ir1 ,n s{ }

(WA)
k+2
s. ϕ(1)

i. 



α

α
,

(72)

where ϕ(1)
i. is the i-th row of Φ1 � ΦA(WA)k and

construct the matrix Ω � (ωis). Taking into account
that α∈Ir,m

|AA∗|αα � β∈Jr,n
|A∗A|

β
β, and



n

s�1
ωis 

α∈Ir,m j{ }

AA∗( j. w
(2)
s. 




α

α

� 

α∈Ir,m j{ }

AA∗( j. ωi.)|
α
α,(



(73)

where ωi. is the i-th row of Ω � ΩW2 � ΩWAA∗,
finally from (70), it follows (64).

(ii) By applying (11) for the determinantal representa-
tion of Ad,W and the same determinantal repre-
sentations of QA and PA as in the point (i), it is
obtained that

a
c,†,W
ij � 

m

t�1


n

s�1

β∈Jr,n i{ } A∗A( ).i w(1)
.t 




β

β

β∈Jr,n
A∗A| |

β
β

×
β∈Jr1 ,m t{ } (AW)k+2

.t v.s( 



β

β

β∈Jr1 ,m
(AW)k+2




β

β

α∈Ir,m j{ } AA∗( )j. w(2)
s.( 




α

α

α∈Ir,m
AA∗| |

α
α

, (74)

wherew(1)
.t is the t-th column ofW1: � A∗AW, v.s is the s-th

column of V � (AW)kA, and w(2)
s. is the s-th row of

W2 ≔WAA∗. Denote

ψsj :� 

α∈Ir,m j{ }

AA∗( j. w
(2)
s. 




α

α
,

(75)

and construct the matrix Ψ � (ψsj). (en, introduce

υtj � 

n

s�1


β∈Jr1 ,m t{ }

(AW)
k+2
.t v.s( 




β

β
ψsj � 

β∈Jr1 ,m t{ }

(AW)
k+2
.t ψ(1)

.j 



β

β
,

(76)

where ψ(1)
.j is the j-th column of Ψ1 � (AW)kAΨ, and

construct the matrix Υ � (υtj). Taking into account that



n

t�1


β∈Jr,n i{ }

A∗A( .i w(1)
.t 




β

β
υtj � 

β∈Jr,n i{ }

A∗A( .i υ.j)|
β
β,

 (77)

where υ.j is the j-th column of Υ � A∗AWΥ, finally from
(74), it follows (67). □

(eorem 7 gives determinantal representations of the
WCMP inverse. For better understanding, the algorithm of
its finding, for example, in (eorem 7 with the Case (i), is
presented (e algorithm by (eorem 7 with Case (ii) can be
constructed similarly.

Algorithm 2.

(1) Compute the matrix W1 � A∗AW.
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(2) Find ϕit by (66) for all i, t � 1, . . . , n and construct
the matrix Φ � (ϕit).

(3) Compute the matrix Φ1 � ΦA(WA)k.
(4) By (65), find ωis for all i � 1, . . . , m and s � 1, . . . , n,

and construct the matrix Ω � (ωis).
(5) Compute the matrix Ω � ΩWAA∗.
(6) Finally, find ac,†,W

ij by (64) for all i � 1, . . . , m and
j � 1, . . . , n.

6. An Example

In this section, an example is given to illustrate the results.
Given the matrices

A �

0 i i

i 0 i

1 −1 0

1 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W �

i 0 1 0

−1 i 0 1

i − 1 i 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(78)

Since

V � AW �

−1 − 2i −2 i 2i

−2 − i −1 2i i

1 + i −i 1 −1

−3 + 3i 3i 3 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

U � WA �

1 −2 −1

0 1 − i 1 − i

1 −1 − i −i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(79)

rkV � rkV2 � 2, and rkU2 � rkU � 2, then k � max
Ind(AW), Ind(WA){ } � 1.

(e weighted DMP inverse is obtained from
Algorithm 1.

(1) Computing the matrix U � U2 and AA∗,

U2
�

0 −3 + 3i −3 + 3i

1 − i −2 − 2i −1 − 3i

1 − i −5 + i −4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

U3
�

−3 + 3i 6 + 6i 3 + 9i

−4i −8 + 6i −8 + 2i

−3 − i −2 + 12i −5 + 11i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(80)

(2) By (51), ωis for all i, s � 1, . . . , n is found. So,

ωis :� 
α∈I2,3 1{ }

(WA)
3
1. u1.( 



α
α �

0 −3 + 3i

−4i −8 + 6i





+
0 −3 + 3i

−3 − i −5 + 11i




� −24 − 6i.

(81)

Continuing similarly, it is obtained that

Ω �

−24 − 6i 12 − 24i −12 − 30i

12 + 12i −6 − 6i 6 + 6i

−12 + 6i 6 − 30i −6 − 24i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (82)

(3) Compute the matrix

Ω � ΩWAA∗ �

0 −54 + 54i −54 − 54i −54 − 54i

−54 + 54i 0 54 + 54i −54 − 54i

−54 + 54i −54 + 54i 0 −108 − 108i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

AA∗ �

2 1 −i 3i

1 2 i 3i

i −i 2 0

−3i 3i 0 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(83)
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and the values


β∈J2,4

AA∗



β
β � 27, 

α∈I,n

(WA)
3

α
α � −54 − 54i. (84)

(4) Finally, ad,†,W
ij by (50) for all i � 1, . . . , 4 and j �

1, 2, 3 is found. So,

a
d,†,W
11 �

α∈I2,4 1{ }rdet1 AA∗( )1. ω1.( ( 
α
α

β∈I2,4
AA∗| |

α
αα∈I2,3

(WA)3



α
α

�
1

27(−54 − 54i)

0 −54 + 54i

1 2




+

0 −54 + 54i

i 2





⎛⎝

+
0 −54 − 54i

−3i 6





⎞⎠ �
i
9
.

(85)

Continuing similarly, it is obtained that

Ad,†,W
�
1
9

i −2i 3 1

−2i i −3 1

−i −i 0 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (86)

It is easy to verify that X � Ad,†,W from (86) with the
given matrices (86) is the solution to equation (45).

Similarly, the WMPD inverse can be found:

A†,d,W
�
1
6

−3 + i −3 + 3i 4 3 + 3i

−2i 0 −2 0

−3 − i −3 + 3i 2 3 + 3i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (87)

7. Conclusions

In this paper, new notions of the weighted core-EP left
inverse and the weighted MPD inverse that are dual to the
weighted core-EP (right) inverse and the weighted DMP
inverse, respectively, are introduced and explored. Using
their determinantal representations, the direct methods of
computing the weighted right and left core-EP, DMP, MPD,
and CMP inverses are given.

Data Availability

No data were used to support this study.

Conflicts of Interest

(e author declares that there are no conflicts of interest.

References

[1] R. E. Cline and T. N. E. Greville, “A Drazin inverse for
rectangular matrices,” Linear Algebra and Its Applications,
vol. 29, pp. 53–62, 1980.

[2] A. Hernández, M. Lattanzi, and N. (ome, “On some new
pre-orders defined by weighted Drazin inverses,” Applied
Mathematics and Computation, vol. 282, pp. 108–116, 2016.

[3] A. Herrero, F. J. Ramı́rez, and N. (ome, “Relationships
between different sets involving group and Drazin projectors
and nonnegativity,” Linear Algebra and Its Applications,
vol. 438, no. 4, pp. 1688–1699, 2013.
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[38] D. Mosić, C. Deng, and H. Ma, “On a weighted core inverse in
a ring with involution,” Communications in Algebra, vol. 46,
no. 6, pp. 2332–2345, 2018.
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