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This article introduces a two-parameter flexible extension of the Burr-Hatke distribution using the inverse-power transformation.
The failure rate of the new distribution can be an increasing shape, a decreasing shape, or an upside-down bathtub shape. Some of
its mathematical properties are calculated. Ten estimation methods, including classical and Bayesian techniques, are discussed to
estimate the model parameters. The Bayes estimators for the unknown parameters, based on the squared error, general entropy,
and linear exponential loss functions, are provided. The ranking and behavior of these methods are assessed by simulation results
with their partial and overall ranks. Finally, the flexibility of the proposed distribution is illustrated empirically using two real-life
datasets. The analyzed data shows that the introduced distribution provides a superior fit than some important competing
distributions such as the Weibull, Fréchet, gamma, exponential, inverse log-logistic, inverse weighted Lindley, inverse Pareto,

inverse Nakagami-M, and Burr-Hatke distributions.

1. Introduction

Survival and reliability analysis is an important area of
statistics and it has various applications in several applied
sciences such as engineering, economics, demography,
medicine, actuarial science, and life testing. Different life-
time distributions have been introduced in the statistical
literature to provide greater flexibility in modeling data in
these applied sciences.

One of the important features of generalized distribu-
tions is their capability for providing superior fit for various
life-time data encountered in the applied fields. Hence, the
statisticians have been interested in constructing new
families of distributions to model such data. Some recent
notable families are the following: the exponential T-X [1],
transmuted Burr-X [2], Marshall-Olkin Burr-III [3], Mar-
shall-Olkin Burr [4], and log-logistic tan [5] families.

On the other hand, there are some useful techniques
to add an additional parameter to extend and enhance the
flexibility of the classical distributions such as the in-
verse-power (IP) transformation. Let X and Y be two
random variables. The inverse transformation, say
X =Y"!, or the IP transformation, say X = Y~ /", has
been adopted by many authors to construct generalized
inverted distributions. For example, the generalized in-
verse gamma [6], the inverse Lindley with two parameters
[7], the inverse Lindley [8], the inverse-power Maxwell
[9], the inverse-power Lindley [10], and inverse-power
Lomax [11].

In this paper, we are motivated to propose a more
flexible version of the Burr-Hatke (BH) distribution to in-
crease its flexibility in modeling real-life data. The BH model
provides only a decreasing hazard rate (HR) shape; hence, its
use will be limited to modeling the data that exhibits only
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increasing failure rate. The proposed distribution is called
the inverse-power Burr-Hatke (IPBH) distribution. The
IPBH model can accommodate right-skewed shape, sym-
metrical shape, reversed ] shape, and left-skewed shape
densities. Its HR can be an increasing shape, a unimodal
shape, or a decreasing shape. The IPBH provides more
accuracy and flexibility in fitting engineering and medicine
data. The IPBH distribution was constructed using the in-
verse-power (IP) transformation.

Isaic-Maniu and Voda [12] proposed the BH distribution
with shape parameter a. Its cumulative distribution function
(CDF) has the following form:

F(x;a) =1 _Lp(—ax)

a>0, x>0. (1)
x+1

Its probability density function (PDF) takes the fol-
lowing form:

_exp(—ax) (a+ax + 1)
- (x+1)*

f(x;a) ,  a>0, x>0. (2)

We also considered ten various classical and Bayesian
methods for estimating the IPBH parameters and provided
detailed numerical simulations to explore their perfor-
mances based on the mean square errors (MSE), mean
relative estimates (MRE), and absolute biases (BIAS). The
classical estimators proposed included the maximum
product of spacing estimators (MPSE), Anderson-Darling
estimators (ADE), Cramér-von Mises estimators (CVME),
least-squares estimators (LSE), maximum likelihood esti-
mators (MLE), right-tail Anderson-Darling estimators
(RTADE), and weighted least-squares estimators (WLSEs).
The Bayesian estimators of the IPBH parameters have been
obtained under symmetric and asymmetric loss functions,
namely, the square errors (SE), general entropy (GE), and
linear exponential (LN) loss functions. We have compared
the estimation methods by conducting extensive simulations
study to explore their performances and to determine the
best method of estimation, based on partial and overall
ranks, which gives accurate estimates for the IPBH
parameters.

It is shown empirically that the IPBH distribution can
provide a more adequate fit than ten competing distribu-
tions, namely, the BH [12], Weibull (W), Fréchet (F), gamma
(G), exponential (E), inverse log-logistic (ILL) [13], inverse
weighted Lindley (IWL) [14], inverse Lindley (IL) [14],
inverse Pareto (IP) [15], and inverse Nakagami-M (INM)
[16] distributions.

This article is outlined in the following eight sections.
The IPBH distribution is defined in Section 2. Some of its
properties are discussed in Section 3. In Section 4, seven
classical approaches of estimation are explored. The
Bayesian estimators of the IPBH parameters under three loss
functions are discussed in Section 5. In Section 6, the
performances of classical and Bayesian approaches of esti-
mation are explored via simulations. The applicability and
flexibility of the IPBH distribution are illustrated in Section 7
using two real-life datasets. Some useful conclusions are
presented in Section 8.
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2. The IPBH Distribution

By applying the IP transformation to the BH CDF (1), the
CDF of the IPBH distribution follows (for x >0) as
exp(—ax ")

L . a,n>0. (3)
xT+1 1

F(x;a,n) =

The corresponding PDF of the IPBH distribution re-
duces to

_nexp(—ax ") [a+ (a+ 1)x"]

x(x" + 1)2

fx;0,n) , a,n>0,

(4)

where 7 and « are shape parameters. The inverse BH (IBH)
distribution follows simply as a special case by replacing # =
1 in equation (4).

The survival function (SF) and HR function of the IPBH
distribution take the following forms, respectively:

x"exp (—ax ")

S(x;a,n)=1-
(x5 o, 1) a1

(5)
o+ (a+ 1)x"]

hix;an) = x(x"+1)[(x" + 1)exp (—ax) = x"]

Possible shapes of the density and HR functions of the
IPBH distribution are displayed in Figures 1 and 2,
respectively.

3. Mathematical Properties

In this section, some distributional properties are addressed.

3.1. Quantile Function. The quantile function (QF) of the
IPBH distribution is derived from the CDF (3) as

-1/n
Q(p):[éw(%})(“»—l] , 0<p<l, (6

where W -] is Lambert function.

The three quartiles of the IPBH distribution follow di-
rectly from (6) with p = 0.25, 0.5, and 0.75.

Assuming that p~uniform (0, 1), the QF (6) can be
applied to generate random datasets of size n from the IPBH
distribution by the following formula:

-1/n
xi:[lw<&?(“))_1] ci=12.n (D)
« p

Moreover, the QF (6) is used to determine the Bowley
skewness, say SK, and Moors kurtosis, say KU, measured by
the two following equations:

B Q(1/4) + Q(3/4) — 2Q(1/2)
- Q(3/4) - Q(1/4)

_Q(7/8) - Q(5/8) + Q(3/8) - Q(1/8)
- Q(6/8) - Q(2/8) ’

SK

>

(8)

KU
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FIGURE 1: Possible density shapes of the IPBH distribution for several values of « and 7.
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FIGURE 2: Possible failure rate shapes of the IPBH distribution for several values of « and #.

3.2. Moments. The rth moments of the IPBH distribution
have the following forms:

The shapes of SK and KU of the IPBH model for several
values of « and # are displayed in Figure 3.

1 —ax™ [

e a+ (a+1)x"]

(x"+1)?

u=E(X')= [zo X f (x)dx = j:o L

_ OZO: (—1)k11(xk J‘X’x’”kl [a+ (o + 1)x"] dx

P 0 (=" +1)*
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Skewness Kurtosis

FiGure 3: Plots of SK and KU of the IPBH distribution for several values of « and 7.

_ i (—1)kock7r[—11(¢x —k) —rlesc[n(k - (r/n)]

. ©)
prd k'n
The first four moments of the IPBH distribution follow The moment generating function of the IPBH distri-
from the above formula with = 1,2, 3, and 4. bution takes the following form:
0 S (—l)ktmmxk 00xm_’7k_1[oc+(oc+ Dx"]
M) =| e f(x)dx= J
0 jo ¢ f (x)dx m,éo | )
(10)
~ i (-1t o* [~ (o — k) — m]esc [ (k — (m/n))]
o klm!y
3.3. Incomplete Moments. The rth incomplete moment
(ICM) of IPBH distribution follows as (for kx <r)
t S (—I)knock t kol [a+ (o + 1)x"]
Y, (t) = J x" f(x)dx = j dx
o7 k;, ko (x" +1)°
(11)

S (-1)fat r—nk < 1 ) n\k=(r/n) r r
= t —t DB_,,| ——k,0 1 -yk)B_,[ ——k+1,0 N
];) k'l’] 7’] “+t_—7]+1 +( ) o4 —t 11 +(“+ )(r ’1 ) £ l’] +

where D = (n+nk—r) and B, (a,b) = Ig t1(1 - )P lde. can be determined numerically using equation (7) for a

The first ICM can be used to calculate the Bonferroniand  certain probability p. The two curves have their importance
Lorenz curves that are, respectively, defined by  in insurance, economics, medicine, demography, and en-
L(p) = (¥, (t)/u;) and B(p) = (¥, () ( py1)), where Xy gineering. The first ICM is also adopted to calculate the mean
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residual life (MRL) and mean waiting time that are derived ~ 3.4. Order Statistics. The density function of the ith order
as my(t) = ([1-Y,(0)]/(S(t) —1)) and M, (t) = ((t -, statistic (OS) of the IPBH distribution takes the following
(t))/F (1)), respectively. form:

f(x) kR W
fin) = g +1)§j<1>< , )F (x)

(12)
_ palx” T o+ (a+ l)x”](x”ef‘xxw/x” + 1)i(1 —(x”eilxxin/x” + 1))n_i
B T@)(x"+ 1)l (-i+n+1)
The associated CDF reduces to
n n
nAm=Z< >wuwu—Fuw*
r=i \ t
(13)

n K= ax" i K= ax T\ i —x"
- ( )(1_—) o IR
; xT+1 xT+1 ae” (xT+1)-x"

where ,F,[l,i-nji+1;— (x"/ (e " (xT+1) —x"))] is a two formulae with i = 1 and i = n, respectively. The limiting

hypergeometric function. distributions of (Y,) and (T,) are expressed by Theorem
The PDFs and CDFs of the minimum OS, (Y,), and 2.1.1 in [17].

maximum OS, (T,), can be obtained simply from the last

1, O<x<1
1
lim P(Y,<K,x)=41-¢', x=1, anF*l(—),
n—+00 n
0, x>1, (14)
. x7N -1 1
lim P(T,<S,x)=¢", S,=F (1—7>.
n—+00 n
. - _ N n
4. Classical Inference L(¢)=-a IZI Xt lillog(“ + (a+ 1)
) } 15
In this section, different classical estimation methods of the n . n (15)
IPBH parameters are discussed. -2 Z log(xl + 1) - Z log (x;) +n log ().
I=1 I=1
4.1. Maximum Likelihood. Consider the random sample of By differentiating equation (15) with respect to « and 7,
size n, say x,x,,...,X,, from the PDF (4); then the log- ~ We get
likelihood function for ¢ = (a, ;7) L(¢), reduces to
aL((p) z x? +1 S
lz;oc+(0c+ 1)x7 ;xl ’
(16)

oL (¢p) - - (a + 1)x]log (x;) 2 x'log(x;) n
on _‘xle log (1) + Z a+(a+1)x] ZZ x| +1 +11'

I=1 I=1



Solving the three previous equations using the statistical
software such as Maple, R, SAS, or Mathematica gives the
MLE of the IPBH parameters.

4.2. Least Squares and Weighted Least Squares. Consider the
order statistics of a random sample, say X,.,, X5, - - - > X0
from the IPBH distribution. Then, the LSE of the IPBH
parameters follow by minimizing:
BRE
n+ 1]

LS(p) = ) [F(sz) -
n 1 e~ Xin 2
=y [1 - - ] .
n+l x.,+1
We also can obtain the LSE by solving the formula

5[]

I=1

(17)

:z”: l_e‘zxxz;n ! () =0, pe12
= X+ 1 na 1| PV
(18)
where
F) e—axIZ
41 (xl:n) = ap(xl:n) = X?m + 1: (19)
log (x;,,)e” oo+ (a + Dx]
Vi) = () - ( )

(x?m + 1)2
(20)

The WLSE of the IPBH parameters are calculated by
minimizing:

n

2 2
RN O T (O

= In-1+1) n+l1

(21)
X (n+1)*(n+2) e “in 17
‘; I(n—1+1) [_xl:n+1_n+1]

The WLSE are also calculated by solving the following
formula:

i(n+1)2(n+2)[1_ e

In-1+1) X+ 1 n+1]‘VP(x’Z")=°’

(22)

where v, (x;,,), p = 1,2, are specified by (19) and (20).

4.3. Anderson-Darling and Right Tail Anderson-Darling.
The ADE of the IPBH parameters are obtained by
minimizing:

Journal of Mathematics

AD(¢) =-n —% Z (21 - 1)[log F(x;,) + log S(x;.,)]-

=1
(23)

These estimators can be determined by the derivation of
the following equation:

< n) V/ (xn+1—l:n)
20-1 Tin) Yo
g ( ) ( ln) S(anrl—l:n)

where v, (x1.,), p = 1,2, are specified by (19) and (20).
The RADE of the IPBH parameters can be determined by
minimizing:

=0, (24)

n L 1& —
RAD (g) = -2 IZ F(x,) = IZ (21 = DIogF (x,1y1.)»

(25)
and they also can be determined by solving
-Zpr(xzn) + = Z (2l - 1)%’( wivin) _ 0, p=12
(xn I+1: n)
(26)

where v, (x1,), p = 1,2, are specified by (19) and (20).

4.4. Cramér-von Mises. The CVME of the IPBH parameters
are derived by minimizing:
n

1 2-11°
CV(‘P)=E+ ]

[F(xlzn) i

I=1

1 & e 21-1]
=—+ Y |1- - .
2n = X, + 1 2n

(27)

The CVME can also be derived by solving the following

formula:
i e M 201
= 2n

where v, (x,,), p = 1,2, are specified by (19) and (20).

:|l//p (xl:n) =0, (28)

4.5. Maximum Product of Spacings. The maximum product
of spacings (MPS) approach is a useful alternative to the ML
approach. The uniform spacings, say D;, of a random sample
from the IPBH distribution are defined by

Dy = F(x;) — F(x11), (29)

where Y/ D, = 1, F(x,) = 0,and F (x,,,,) = 1. The MPSE of
the IPBH parameters are obtained by maximizing:

n+1

MP (¢) = ﬁ > log(Dy). (30)
=1

Moreover, the MPSE can be determined using
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1 n+l

Z Bl [Wp (xl:n) —Y ('xl—lzn)] =0, (31)

=1

n+1

where v, (x;,,), p = 1,2,3, are specified by (19) and (20).

5. Bayesian Estimation

In this section, we estimate the parameters of the IPBH
distribution from complete sample by the Bayes estimators
(BE) using symmetric and asymmetric loss functions. Now,
we adopted the SE, GE, and LN loss functions to obtain the
parameters estimates. We also consider that « and 7 are
independent. We adopted two independent gamma priors
for the two parameters « and 7.
The two independent gamma priors have the forms

my () oc ati e

- (32)
71'2(?7)061’]“42 e n 2
respectively, where y;,4,,4;,1,>0.
Then, the joint PDF prior of « and 5 takes the form

n(a, 17)oca’“_ln"z_le_(%“ﬂz). (33)

Hence, the posterior function reduces to

n oo+ (a+ 1)x!

-1 —1 _—(ak,+yd,) ¢ - —

7" () oc ot et (e Z)eizlz"xi",-:l X (1)
1 1

(34)

According to the SE loss function, the BE for B = B(®),
®=(a,n),is

B = j@Bn* (©)do, (35)

where 7% (®) is as in equation (34). The BE under the LN loss
function has the form

By = —% log (Eg [exp (—c@®)]), (36)

such that Eg [exp (—c®)] exists. The BE C:)GE under GE loss
function is

Bgg = (Eo[©77])2, (37)

such that Eg [@79] exists. In fact, the integrals in equations
(35)-(37) cannot be found analytically. Hence, the Markov
chain Monte Carlo (MCMC) technique is adopted to ap-
proximate these integrals. Moreover, we use the Metropolis-
Hastings algorithm as an example of the MCMC technique
to obtain the estimates.

6. Simulation Results

This section is devoted to determining the performance and
behavior of several estimation approaches in estimating the
IPBH parameters based on detailed simulation results. For
this purpose, several sample sizes, n = {20, 50, 100, 200, 500},
and several values of the parameters « and 7,
a=0.50.7515 and 5 =0.515 are considered. We

generated N = 5000 random samples from the IPBH dis-
tribution using its QF (6). The compared estimators are
checked in terms of their average absolute biases (BIAS),
average mean square errors (MSE), and average mean rel-
ative errors of the estimates (MRE) which are obtained, for
all parameter values and sample sizes, using the R program.

The BIAS, MSE, and MRE can be determined by the
three following equations:

1N
BIAS=— Y [6-6],
N;I |

MSE = & i (0 - 0)> (38)
N5 ,

66|

e >

_1
"N ¢
1

M=z

MRE

1

where 0 = (&, 7)1.

Tables 1-4 report the simulation results including BIAS,
MSE, and MRE of the IPBH parameters using the ten es-
timation approaches. Moreover, Tables 1-4 report the rank
of each one of the ten estimators among all the estimators in
each row by the superscript indicators, and the partial sum of
the ranks for each column, say ) Ranks, in a certain sample
size. From the tabulated results, it is observed that the ten
estimation methods show the property of consistency for all
studied cases.

Table 5 displays the partial and overall rank of these
estimators. Form the results in Table 5, we can conclude that
the Bayesian method outperforms all other classical methods
under the three loss functions, with respective overall scores
of 29, 46, and 50 for the SE, GE, and LN loss functions,
respectively. Therefore, we confirm the superiority of the
Bayesian approach for the IPBH distribution.

7. Two Real-Life Applications

This section is devoted to analyzing two real-life datasets to
explore the importance and flexibility of the IPBH distri-
bution as compared with some of its other competing
distributions.

7.1. Dataset I. This dataset consists of 63 observations which
are generated to simulate the strengths of glass fibers [18].
The 63 observations of the dataset are as follows: 1.014, 1.081,
1.082, 1.185, 1.223, 1.248, 1.267, 1.271, 1.272, 1.275, 1.276,
1.278, 1.286, 1.288, 1.292, 1.304, 1.306, 1.355, 1.361, 1.364,
1.379, 1.409, 1.426, 1.459, 1.460, 1.476, 1.481, 1.484, 1.501,
1.506, 1.524, 1.526, 1.535, 1.541, 1.568, 1.579, 1.581, 1.591,
1.593, 1.602, 1.666, 1.670, 1.684, 1.691, 1.704, 1.731, 1.735,
1.747, 1.748, 1.757, 1.800, 1.806, 1.867, 1.876, 1.878, 1.910,
1.916, 1.972, 2.012, 2.456, 2.592, 3.197, and 4.121.

7.2. Dataset II. 'This dataset represents the relief times of 20
patients who are receiving an analgesic [19]. The 20 relief
times are as follows: 1.1,1.4,1.3,1.7,1.9,1.8,1.6,2.2,1.7, 2.7,
41,1.8,1.5,1.2,14, 3, 1.7, 2.3, 1.6, and 2.
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TaBLE 5: Partial and overall ranks of the ten estimation methods for the IPBH distribution.
Classical Bayesian
Parameter n

MLE ADE CVME MPSE LSE RTADE WLSE SE LN GE

20 7 5 9.5 4 8 9.5 6 2 1 3

50 6 5 9 4 8 10 7 1 3 2

a=0.7251n=0.5 100 4.5 7 10 4.5 8 9 6 2 1 3
200 5 7 9 4 8 10 6 1 2.5 2.5

350 4 5 9 6 8 10 7 3 1.5 1.5

20 7 5 9.5 4 8 9.5 6 2 1 3

50 6 5 9 4 8 10 7 1 3 2

a=057n=15 100 4.5 7 10 4.5 8 9 6 2 1 3
200 5 7 9 4 8 10 6 1 2.5 2.5

350 4 5 9 6 8 10 7 3 1.5 1.5

20 6 5 10 4 8 9 7 2 3 1

50 5 6 8 4 9 10 7 1 3 2

a=1517n=05 100 5 6 8.5 4 8.5 10 7 1 3 2

200 5 6.5 9.5 4 8 9.5 6.5 1 3 2

350 3 5.5 9 5.5 8 10 7 1 3 3

20 6 5 9 4 7 10 8 1 3 2

50 5.5 5.5 10 4 8 9 7 1 3 2

a=151n=15 100 4 6.5 9.5 5 8 9.5 6.5 1 3 2

200 2.5 6 8 2.5 9 10 7 1 5 4

350 4.5 6 9 4.5 8 10 7 1 3 2

> Ranks 99.5 116 183.5 86.5 161.5 194 134 29 50 46

Overall rank 5 6 9 4 8 10 7 1 3 2

TaBLE 6: The estimates of the parameters of the IPBH distribution and other competing models with several discrimination statistics for

dataset 1.

Distribution  Estimates SEs -? AIC CAIC BIC HQIC w A K-S (stat) K-S p value

IPBH ? =5.7160 1.2042 20.0086 44.0172 44.2172 48.3035 45.7030 0.5175 0.0681 0.0762 0.8573
n = 5.4950 0.5120

BH a=0.2325 0.0776 113.364 228.729 228.794 230.872 229.571 30.1567 6.7363 0.6103 <0.001

w é = 3.0620 0.2403 46.3669 96.7338 96.9338 101.02 98.4196 5.2608 0.8853 0.2051 0.0099
b=1.7875 0.0784

E a=0.6189 0.0779 93.2229 188.446 188.511 190.589 189.289 18.003 3.8455 0.4721 <0.001

ILL a = 3.2980 0.3330 76.8 155.6 155.666 157.743 156.443 35.3833 7.6890 0.5966 <0.001

F @ = 5.4378 0.5192 20.0639 44.1277 44.3277 48.414 45.8135 0.5290 0.0698 0.0772 0.8466
A =1.4108 0.0344

G @: 15.8624 2.7970 31.2066 66.4132 66.6132 70.6995 68.099 2.0668 0.3014 0.1301 0.2362
A=0.1018 0.0182

WL Q = 19.8452 3.5326 23.7532 51.5064 51.7064 55.7927 53.1922 0.9444 0.1201 0.0880 0.7130
/XA— 30.8811 5.4602

IL A =2.0297 0.2053 89.3345 180.669 180.735 182.812 181.512 17.3589 3.6202 0.4504 <0.001

P §c =120388 1.651 x10° 92.805 189.61 189.81 193.896 191.296 18.5169 3.9072 0.4681 <0.001
6 = 0.00001 0.0017

INM Q =5.5617 0.9627 21.7736 47.5472 47.7472 51.8335 49.233 0.6841 0.0834 0.0793 0.8222
A =0.4479 0.0239

Here, we show empirically that the IPBH distribution
can provide a more adequate fit than ten competing dis-
tributions, namely, the BH, W, E, ILL, F, G, IWL, IL, IP, and
INM distributions. We adopted some discrimination or
information criterions (IC) such as minus maximized log-
likelihood (~£), Akaike IC (AIC), the corrected AIC (CAIC),
Hannan-Quinn IC (HQIC), Bayesian IC (BIC), Anderson-
Darling (A), Cramér-von Mises (W), and Kolmogorov-
Smirnov (K-S) statistics and p value (K-S p value) to check
the studied competing distributions.

Tables 6 and 7 report estimates of the parameters, by the
maximum likelihood approach, standard errors (SEs), and
the nine discrimination measures for the two datasets, re-
spectively. The figures in these tables show that the new
IPBH model provides a close fit to both modeled datasets
among other competing distributions. The fitted curves for
the PDF, CDF, SF, and P-P plots of the IPBH distribution are
depicted in Figures 4 and 5 for the two datasets, respectively.
The values of discrimination measures in Tables 6 and 7
show great improvement in fitting using the IPBH model
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TaBLE 7: The estimates of the parameters of the IPBH distribution and other competing models with several discrimination statistics for

dataset II.
Distribution  Estimates SEs -? AIC CAIC BIC HQIC w A K-S (stat) K-S p value
IPBH o =5.2423 1.9529 15.4046 34.8092 35.5151 36.8007 35.198 0.1528 0.0261  0.1005 0.9875
7 = 4.0622 0.6871
BH a=0.1756 0.1165 40.1492 82.2985 82.5207 83.2942 82.4929 9.2419 2.0722  0.6074 <0.001
W a=2.7870 0.4273 20.5864 45.1728 45.8787 47.1643 45.5616 1.0835 0.1834  0.1849 0.5005
b =2.1299 0.1820
E a = 0.5263 0.1176 32.8371 67.6742 67.8964 68.6699 67.8685 4.6035 0.9629  0.4395 0.0008
ILL a=2.4916 0.4479 32.8025 67.605 67.8272 68.6007 67.7993 10.8651 2.3617  0.5616 <0.001
F a=4.0174 0.6972 15.4087 34.8174 35.5233 36.8089 35.2062 0.1545 0.0265 0.1019 0.9854
A =1.5634 0.0917
G a = 9.6694 3.0064 17.8186 39.6372 40.3431 41.6287 40.0259 0.5990 0.1025 0.1734 0.5844
A =0.1964 0.0627
WL @ =11.3572 3.5778 16.0382 36.0764 36.7823 38.0679 36.4652 0.2694 0.0460  0.1318 0.8776
A =20.2088 6.3114
IL A =2.2546 0.4089 31.7572 65.5144 65.7366 66.5101 65.7088 4.4688 0.9054  0.3694 0.0085
P o = 139428 4.18528 x 10° 32.6687 69.3375 70.0434 71.3289 69.7262 4.8020 0.9872  0.3872 0.0049
6 =0.00001 0.0003
INM o =3.2242 0.9714 15.6214 352428 35.9486 37.2342 35.6315 0.1919 0.0329  0.1138 0.9579
A =0.3622 0.0451
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over the BH model. For dataset I, the K-S p value of the
IPBH distribution is 0.8573, whereas it is less than 0.00001

for the BH model. Further, for dataset II, the K-S p value of

the BH distribution is also less than 0.00001 for the BH
model, while it grows to be 0.9875 for the IPBH distribution.

I T T T T I
0.0 0.2 0.4 0.6 0.8 1.0

Observed
FIGURE 4: Histogram of dataset I with the fitted IPBH PDF, CDF, SF, and P-P plot.

The ten estimation approaches are also adopted to es-
timate the IPBH parameters from the two datasets. Tables 8
and 9 report the estimates of « and 7 along with the values of
¢, A, W, K-S, and K-S p value for both datasets, respec-
tively. The proposed estimation approaches show a similar
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FiGure 5: Histogram of dataset II with the fitted IPBH PDF, CDF, SF, and P-P plot.

TaBLE 8: The estimates of «, 7, -2, A, W, K-S (stat), and K-S p value of the IPBH distribution for dataset L.

o 7 7 A w K-S (stat) K-S p value
MLE 5.7160 5.4950 20.0086 0.5175 0.0680 0.0762 0.8573
ADE 6.4795 5.7664 20.1976 0.4776 0.0568 0.0662 0.9452
CVME 7.1013 5.9308 20.5657 0.5025 0.0539 0.0767 0.8520
MPSE 4.9180 5.1487 20.5657 0.5025 0.0539 0.0767 0.8520
LSE 6.7066 5.8074 20.3068 0.4845 0.0548 0.0710 0.9084
RTADE 7.5598 6.0797 20.9502 0.5391 0.0552 0.0818 0.7922
WLSE 6.9539 5.9190 20.4733 0.4903 0.0548 0.0718 0.9013
BSE 5.8139 5.4722 20.0231 0.5246 0.0674 0.0808 0.8043
BLN 5.8148 5.4729 20.0230 0.5243 0.0673 0.0808 0.8050
BGE 5.8136 5.4719 20.0232 0.5247 0.0674 0.0808 0.8041

TaBLE 9: The estimates of a, #, -2, A, W, K-S (stat), and K-S p value of the IPBH distribution for dataset II.

o 7 -7 A w K-S (stat) K-S p value
MLE 5.2423 4.0622 15.4046 0.1528 0.0261 0.1005 0.9875
ADE 5.1651 4.0264 15.406 0.1522 0.0265 0.0990 0.9895
CVME 6.0804 4.2881 15.4871 0.1770 0.0244 0.0924 0.9955
MPSE 6.3782 4.8187 15.4871 0.1770 0.0244 0.0924 0.9955
LSE 4.9267 3.9463 15.4211 0.1544 0.0279 0.0999 0.9882
RTADE 5.4326 4.1085 15.4092 0.1546 0.0254 0.0972 0.9915
WLSE 4.3142 3.7311 15.5535 0.1830 0.0342 0.1038 0.9822
BSE 5.4296 4.0412 15.4190 0.1627 0.0273 0.0977 0.9910
BLN 5.4366 4.0416 15.4198 0.1632 0.0273 0.0980 0.9906

BGE 5.4267 4.0410 15.4188 0.1625 0.0272 0.0976 0.9911
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FIGURE 6: P-P plots of the IPBH distribution using several estimation approaches for dataset I (a) and dataset II (b).

very well performance in estimating « and # of the IPBH
distribution. A visual comparison shows the close perfor-
mance of these estimators as shown in Figure 6 which
represents the P-P plots of the IPBH distribution for the ten
methods.

8. Conclusions

In this article, we introduce a more flexible extension of the
Burr-Hatke distribution called inverse-power Burr-Hatke
(IPBH) distribution that provides more accuracy and flex-
ibility in fitting engineering and medicine data. The new
model was generated based on the inverse-power trans-
formation technique. The hazard rate function of the IPBH
distribution exhibits an increasing shape, a decreasing shape,
or an upside-down bathtub shape. The IPBH model can
accommodate right-skewed shape, symmetrical shape, re-
versed ] shape, and left-skewed shape densities. Some of its
basic mathematical properties are derived. The two pa-
rameters of the IPBH distribution are estimated using ten
classical and Bayesian estimation approaches. The behavior
and performance of these estimators are explored using
simulation results. We also determined the best estimation
approach using partial and overall ranks for all estimators.
As expected, the Bayesian method outperforms other clas-
sical methods under the different loss functions. The flexi-
bility and practical importance of the IPBH distribution are
explored empirically using two real-life datasets. It is shown
that the IPBH distribution has a superior fit compared to the
Burr-Hatke distribution and other competing models.

For some possible directions for future studies, the IPBH
model can be modified with “polynomial variable transfer”
to introduce new model with several free parameters which
makes it attractive for analysis and approximation of specific

data from different areas such as growth theory, test theory,
biostatistics, and computer viruses propagation. Further-
more, different approximation problems related to the
“saturation” in Hausdorff sense can be explored for the new
model along with some numerical examples using CAS
Mathematica to validate the results. More details about these
directions can be explored in [20, 21].

Moreover, the T-X family may be applied to define the
new inverse-power Burr-Hatke-G family of distributions.
Several properties of this new family may be established, its
special sub-models may be explored, and their applications
in different applied fields may also be addressed.
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