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In the present paper, we establish a Chen–Ricci inequality for a C-totally real warped product submanifold Mn of Sasakian space
formsM2m+1(ε). As Chen–Ricci inequality applications, we found the characterization of the base of the warped product Mn via
the first eigenvalue of Laplace–Beltrami operator defined on the warping function and a second-order ordinary differential
equation. We find the necessary conditions for a base B of a C-totally real-warped product submanifold to be an isometric to the
Euclidean sphere Sp.

1. Introduction and Motivations

For geometric analysis, the work of Obata [1] becomes an
essential tool of investigation. Obata [1] provided a char-
acterization theorem for a standard sphere in terms of a
differential equation, known as the Obata equation. If
(Mn, g) is a complete manifold with n≥ 1, then the function
φ is nonconstant and fulfills the ordinary differential
equation:

Hess(φ) + cφg � 0,

or∇2φ + cφg � 0,
(1)

if and only if there is an isometry between (Mn, g) and the
sphere Sn(c), where c denotes the sectional curvature. If
c � 1, then (Mn, g) and the unit sphere Sn are congruent. A
large number of investigations on this subject are studied.
)erefore, the characterization of these spaces the Euclidean
space Rn, the Euclidean sphere Sn, and the complex pro-
jective space CPn are recognized fields in the study of

differential geometry and are studied in research works such
as [2–18]. In particular, the Euclidean spaceRn is designated
through the differential equation ∇2φ � cg, where c is a
positive constant, which is proven by Tashiro [19]. In [20],
Lichnerowicz has established that if the first nonzero ei-
genvalue λ1 of the Laplace operator of the compact manifold
(Mn, g) with Ric≥ n − 1 is λ1 � n, then (Mn, g) is isometric
to the sphere Sn. )us, Obata’s theorem can be utilized to
address Lichnerowicz’s eigenvalue equality condition de-
rived in [20]. Deshmukh and Al-Solamy [21] proved that an
n-dimensional connected Riemannian manifold (Mn, g)

which is compact and has a Ricci curvature satisfying
0<Ric≤ (n − 1)(2 − (nc/λ1)c) for a constant c, where λ1 is
the first eigenvalue of the Laplacian, is isometric to Sn(c) if
Mn is allowed to be a nonzero conformal gradient vector
field. )e authors also proved that if Mn is an Einstein
manifold, meaning that the Einstein constant is μ � (n − 1)c,
then Mn is isometric to Sn(c) with c> 0 if a conformal
gradient vector field is allowed. Taking account of ODE (1),
Barros et al. [6] showed that the gradient of an almost Ricci
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soliton (Mn, g,∇φ, λ) that is compact is isometric to the
Euclidean sphere when the Ricci tensor is Codazzi, and a
constant sectional curvature is present. For more infor-
mation regarding the Obata equation, see [1]. Motivated by
the previous studies, we establish a number of results in the
present paper which realize as characterizations of spheres.
More precisely, we have the following.

Theorem 1. Assume that Ψ: Mn � B×fF⟶ M2m+1(ε) is a
C-totally real isometric embedding from a warped product
submanifold Mn into a Sasakian space formM2m+1(ε) with a
nonnegative Ricci curvature. 7en, the compact and minimal
base B is isometric to the Euclidean sphere Sp(

����
λ1/p


) if the

following equality holds:

|Hess(φ)|
2

�
λ1
4pq

(ε + 3)(1 − n − pq) − n
2
|H|

2
 , (2)

where λ1 > 0 is the eigenvalue connected to an eigenfunction
φ � ln ; f for the Laplacian operator and Hess(φ) is a Hessian
tensor for the function φ. Moreover, here, the constant cur-
vature c is equal to

����
λ1/p


. In a particular case, if λ1 � p

satisfies the condition

|Hess(φ)|
2

�
1
4q

(ε + 3) 1 − n − λ1q(  − n
2
|H|

2
 , (3)

then, the base B is isometric to the standard sphere Sp.

From the Bochner formula, we are able to prove the
following result:

Theorem 2. LetΨ: Mn � B×fF⟶ M2m+1(ε) be a C-totally
real isometric embedding from a warped product sub-
manifold Mn into a Sasakian space form M2m+1(ε) having
the nonnegative Ricci curvature. 7en, compact and mini-
mal base B is isometric to the sphere Sp(c) with a constant
sectional curvature equal to c �

����
λ1/p


if the following

equality holds:

|H|
2

�
(ε + 3)(1 − pq − n)

n
2 , (4)

where λ1 > 0 is a positive eigenvalue associated with the
eigenfunction φ � ln ; f. Moreover, n � dimM, p � dimB,
and q � dimF .

)e paper is organized as follows. In Section 2, we study
some preliminaries formulas, notations, and definitions
related to our study. In the same section, we prove a lemma,
a key result for our main theorem. In Section 3, we dem-
onstrate our main conclusions and provide several conse-
quences from our main findings. We also give an example
for existence C-totally real warped product submanifold in
Sasakian manifolds. In Section 4, we give concluding
remarks.

2. Preliminaries and Notations

Let ( M, tg) be the odd-dimensional C∞-manifold equipped
with an almost contact structure (ψ, ζ, η) such that

ψ2
� − I + η⊗ ζ, η(ζ) � 1,ψ(ζ) � 0, ηψ � 0,

g ψW1,ψW2(  � g W1, W2(  − η W1( η W2( , η W1( 

� g W1, ζ( ,

(5)

for any W1, W2 ∈ Γ(T M). Of course, the notations are well
known: ζ is a structure vector, the (1, 1)-type tensor field is
denoted by ψ, and η is the dual one-form. Moreover, the
tensorial equation for a Sasakian manifold [22–24] with the
structure (ψ, ζ, η) is given by

∇W1
ψ)W2 � g W1, W2( ζ − η W2( W1,

∇W1
ζ � − ψW1.

(6)

If we choose two vector fields W1 andW2 at M, such that
∇ is the Riemannian connection regarding g, and assume
that M

2m+1
(ε) is a Sasakian space form with a constant

ψ-sectional curvature ε, then its curvature tensor R is

R W1, W2, W3, W4(  �
ε + 3
4

g W2, W3( g W1, W4(  − g W1, W3( g W2, W4(  

+
ε − 1
4

η W1( η W3( g W2, W4(  + η W4( η W2( g W1, W3( 

− η W2( η W3( g W1, W4(  − η W1( g W2, W3( η W4( 

+ g ψW2, W3( g ψW1, W4(  − g ψW1, W3( g ψW2, W4( 

+2g W1,ψW2( g ψW3, W4( ,

(7)

for all W1, W2, W3, W4 ∈ Γ(T M). )e odd-dimensional
Euclidean space R2m+1 and odd-dimensional sphere S2m+1

with sectional curvatures of ε � − 3 and ε � 1 are remarkable

examples of Sasakian space forms in [25]. Moreover, if the
structure vector field ζ belongs to the normal space of Mn,
then Mn is said to be a C-totally real submanifold; for more
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details, see the work presented in [22–24, 26, 27]. It should
be noted that the curvature tensor R for Mn in Sasakian
space form M

2m+1
(ε) is defined as

R W1, W2, W3, W4(  �
ε + 3
4

  g W2, W3( g W1, W4(  − g W1, W3( g W2, W4(  . (8)

Suppose Mn is a Riemannian submanifold of a Rie-
mannian manifold M2m+1 considering the induced metric g

and ∇ and ∇⊥ are connections along TM and T⊥M of Mn,
where TM is a tangent bundle and T⊥M is a normal bundle
of Mn. )erefore, for any W1, W2 ∈ X(TM) and
ξ ∈ X(T⊥M), the Gauss and Weingarten formulas are

written as ∇W1
W2 � ∇W1

W2 + B(W1, W2)and ∇
W1
ξ � − AξW1 + ∇⊥W1

ξ, respectively. Note that B and Aξ
denote the second fundamental form as well as the shape
operator, respectively. )ey are governed by the relation
g(B(W1, W2), N) � g(AξW1, W2). )e Gauss equation is

R W1, W2, W3, W4(  � R W1, W2, W3, W4(  + g B W1, W4( ,B W2, W3( (  − g B W1, W3( ,B W2, W4( ( , (9)

for any W1, W2, W3, W4 ∈ X( M), where the curvature
tensors of M2m +1 and Mn are represented by R and R.
Furthermore, H, which is the mean curvature of Mn, is
calculated as H � (1/n)trace(B). Mn is totally umbilical if
B(W1, W2) � g(W1, W2)H and totally geodesic if
B(W1, W2) � 0, for any W1, W2 ∈ X(M). Furthermore, Mn

is minimal if H � 0. Here,

Nx � X ∈ TxM |B W1, W2(  � 0, for allW2 ∈ TxM 

(10)

gives the second fundamental form kernel of Mn over x. If
the plane section is spanned by eα and eβ over x in M

2m+1,
then such a curvature is called a sectional curvature and is
denoted by Kαβ � K(eα ∧ eβ). )e relation between the
scalar curvature τ(Tx

M) ofM2m+1 and K(eα ∧ eβ) at some x

in M2m+1 is represented by

τ Tx
M(  � 

1≤α<β≤2m+1

Kαβ.
(11)

)e first equality in (11) is reciprocal to the following:

2τ TxM
n

(  � 
1≤α<β≤n

Kαβ, 1≤ α, β≤ n.
(12)

)e previous relation will be utilized in the subsequent
proofs. Similarly, the scalar curvature τ(Lx) of an L-plan is
expressed as

τ Lx(  � 
1≤α<β≤m

Kαβ.
(13)

Let e1, . . . , en  be an orthonormal frame of the tangent
space TxM and er � (en+1, . . . , e2m+1) be an orthonormal
frame of the normal space T⊥M. )us, we have

Br
αβ � g B eα, eβ , er ,

‖B‖
2

� 
n

α,β�1
g B eα, eβ ,B eα, eβ   � 

n

α,β�1
Br
αβ 

2
.

(14)

Let Kαβ and Kαβ be the sectional curvature of a sub-
manifold Mn and M2m+1; then, we have following relation
due to the Gauss equation (9):

2τ TxM
n

(  � Kαβ � 2τ TxM
n

(  + 
2m+1

r�n+1
Br
ααB

r
ββ − Br

αβ 
2

 

� Kαβ + 
2m+1

r�n+1
Br
ααB

r
ββ − Br

αβ 
2

 .

(15)

Furthermore, the Ricci tensor is defined as

S W1, W2(  � 
n

i�1
g R eα, W1( W2eα(  , W1, W2 ∈ Γ TxM

n
( . (16)

Fixing the distinct indices for vector fields from
e1, . . . , en  on Mn by eu, which is governed by W, the Ricci
curvature is given as

Ric(W) � 
n

α�1
α≠u

K eα ∧ eu( .
(17)
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)erefore, equation (12) can be written as

τ TxM
n

(  � 
1≤α<β≤n

K eα ∧ eβ  �
1
2



n

A�1
Ric eu( . (18)

)us,

2τ TxM
n

(  � 
1≤α<β≤n

K eα ∧ eβ  �
1
2



n

u�1
Ric eu( , (19)

which will be frequently used in future studies.)e gradient-
squared norm of the positive smooth function φ for an
orthonormal basis e1, . . . , en  is given by

‖∇φ‖
2

� 
n

i�1
ei(φ)( 

2
. (20)

Assume that B and F are Riemannian manifolds with
Riemannian metrics g1 and g2, respectively. Suppose f is a
differentiable function on B. )en, the manifold B × F

endorsed by the Riemannian metric g � g1 + f2g2 is re-
ferred to a warped product manifold and classified as no-
tation Mn � B×fF [28]. Assume that Mn � B×fF is a
warped product, then we have

∇W2
W1 � ∇W1

W2 � W1 lnf( W2, (21)

∀W1 ∈ Γ(B) and W2 ∈ Γ(F). It was proved in Section 3.3 in
[28] that the following relation holds:



p

α�1


q

β�1
K eα ∧ eβ  �

qΔf
f

� q Δ(lnf) − ‖∇(lnf)‖
2

 . (22)

Remark 1. Mn � B×fF is Riemannian product manifold iff

is a constant.

Remark 2. Sometimes we will use the following abbreviation
throughout the paper: “WPS” for Warped product sub-
manifold, “WF” for warping function, “RM” for Riemannian
manifold, and “SSF” for Sasakian space form.

3. Ricci Curvature for C-Totally Real
Warped Products

Inspired by the work [2, 3, 9], we prove the following
proposition which we will use in further result.

Proposition 1. Let Mn � B×fF be a C-totally real warped
product submanifold into a Sasakian space form M2m+1(ε)
having the minimal base B. 7en, for all unit vectors
W ∈ TxMn, the following Ricci inequality holds:

Ric(W) + qΔ lnf≤
n
2

4
‖H‖

2
+ q‖∇ lnf‖

2
+
ε + 3
4

(pq + n − 1), (23)

where p � dimB and q � dimF .

(i) In case H(x) � 0, for x ∈Mn, there exists a unit
vector W satisfying the equality in (23) if and only if
Mn is mixed totally geodesic and W lies in Nx at x.

(ii) If Mn is B-minimal, thus

(a) 7e equality in (23) remains for any unit tangent
vectors at B and any x ∈Mn⟶Mn is totally
geodesic and B-totally geodesic WPS in
M2m+1(ε).

(b) 7e equality in (23) remains for any unit tangent
vectors at F and any x ∈Mn⟶Mn is totally
geodesic, either a F-totally geodesic WPS or a
F-totally umbilical WPS in M2m+1(ε) such that
dimF � 2.

(iii) 7e equality in (23) is satisfied for any unit tangent
vectors at Mn and any x ∈Mn⟶Mn is either

totally geodesic, or totally umbilical, mixed totally
geodesic, and B-totally geodesic WPS such that
dimF � 2.

Proof. Assume that Mn is aB-minimal C-totally real warped
product. An analogous technique will be used for similar
cases. Utilizing the Gauss equation (9), we derive

n
2
‖H‖

2
� 2τ TxM

n
(  +‖B‖

2
− 2τ TxM

n
( . (24)

Assume e1, . . . , ep, ep+1, . . . , en  is the local orthonor-
mal frame field of M2m+1(ε) in which the basis e1, . . . , ep 

are tangent toB and ep+1, . . . , en  are tangent to F .)us, for
the unit tangent vector W � eu ∈ e1, . . . , en , we can expand
(24):

n
2
‖H‖

2
� 2τ TxM

n
(  +

1
2



2m+1

r�n+1
Br
11 + · · · + Br

nn − Br
uu( 

2
+ Br

uu( 
2

  − 
2m+1

r�n+1


1≤α≠β≤n
Br
ααB

r
ββ − 2τ TxM

n
( , (25)
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which is equivalent to the following by using (8):

n
2
‖H‖

2
� 2τ TxM

n
(  + 

2m+1

r�n+1
Br
11 + · · · + Br

nn( 
2

+ 2Br
uu − Br

11 + · · · + Br
nn( ( 

2
 

+ 2 
2m+1

r�n+1


1≤α<β≤n
Br
αβ 

2
− 2 

2m+1

r�n+1


1≤α<β≤n
Br
αB

r
β −

ε + 3
4

n(n − 1).

(26)

As we assumed that the base of the warped product
submanifold Mn is minimal, we derive

n
2
‖H‖

2
+
ε + 3
4

n(n − 1) � 
2m+1

r�n+1
Br

p+1n1+1 + · · · + Br
nn 

2
+ 2Br

uu − Br
p+1p+1 + · · · + Br

nn  
2

 

+ 2τ TxM
n

(  + 

2m+1

r�n+1


1≤α<β≤n
Br
αβ 

2
− 

2m+1

r�n+1


1≤α<β≤n
Br
ααB

r
ββ

+ 
2m+1

r�n+1


a�1a≠u
Br

au( 
2

+ 
m

r�n+1


1≤α<β≤n
α,β≠u

Br
αβ 

2
− 

2m+1

r�n+1


1≤α<β≤n
α,β≠u

Br
ααB

r
ββ.

(27)

In view of (15), we obtain



2m+1

r�n+1


1≤α<β≤n
α,β≠u

Br
αβ 

2
− 

2m+1

r�n+1


1≤α<β≤n
α,β≠u

Br
ααB

r
ββ � 

1≤α<β≤n
α,β≠A

Kαβ − 

1≤α<β≤n
α,β≠A

Kαβ.
(28)

From the fact that the baseB is minimal and putting (28)
in (27), we deduce

1
2
n
2
‖H‖

2
+
ε + 3
4

n(n − 1) � 2τ TxM
n

(  +
1
2



2m+1

r�n+1
2Br

uu − Br
p+1p+1 + · · · + Br

nn  
2

+ 
2m+1

r�n+1


1≤α<β≤n
Br
αβ 

2
− 

m

r�n+1


1≤α<β≤n
α,β≠u

Br
ααB

r
ββ + 

2m+1

r�n+1


a�1,a≠u
Br

au( 
2

+ 

1≤α<β≤n
α,β≠u

Kαβ − 

1≤α<β≤n
α,β≠u

Kαβ.

(29)
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On the contrary, using (11), we define

τ TxM
n

(  � 
1≤α<β≤n

K eα ∧ eβ 

� 

p

i�1


n

j�p+1
K ei ∧ ej  + 

1≤i<k≤p
K ei ∧ ek(  + 

p+1≤l<o≤n
K el ∧ eo( .

(30)

From (22) and (11), we obtain

τ TxM
n

(  �
qΔf

f
+ τ TxB

p
(  + τ TxF

q
( . (31)

From (29)–(31) and using (14), we deduce

1
2
n
2
‖H‖

2
+
ε + 3
4

n(n − 1) �
qΔf

f
− 2τ TxM

n
(  + 

1≤α<β≤n
α,β≠u

Kαβ + τ TxB
p

(  + τ TxF
q

( 

+ 

2m+1

r�n+1


1≤α<β≤n
Br
αβ 

2
− 

1≤α<β≤n
α,β≠u

Br
ααB

r
ββ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ 
2m+1

r�n+1


a�1
a≠u

Br
au( 

2
+ 

m

r�n+1


1≤i≠j≤p
Br

iiB
r
jj − Br

ij 
2

 

+ 
2m+1

r�n+1


p+1≤s≠t≤n
Br

ssB
r
tt − Br

st( 
2

  +
1
2



2m+1

r�n+1
2Br

uu − Br
p+1p+1 + · · · + Br

nn  
2
.

(32)

Now, we note that eu is either tangent to the base B or to
the fiber F . After that, the proof of the former case is
introduced.

Case 1. Let eu be tangent toB. We fix the unit tangent vector
from e1, . . . , ep  to be eu and consider W � eu � e1. )en,
from (17) and (32), we obtain

1
2
n
2
‖H‖

2 ≥Ric(W) +
qΔf

f
− 2τ TxM

n
(  + τ TxB

p
(  + τ TxF(  −

ε + 3
4

n(n − 1)

+ 
2≤α<β≤n

Kαβ +
1
2



2m+1

r�n+1
2Br

11 − Br
p+1p+1 + · · · + Br

nn  
2

+ 
2m+1

r�n+1


1≤α<β≤n
Br
αβ 

2
− 

2m+1

r�n+1


1≤i<j≤p
Br

ij 
2

+ 
p+1≤s<t≤n

Br
st( 

2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

+ 
2m+1

r�n+1


1≤i<j≤p
Br

iiB
r
jj + 

2m+1

r�n+1


p+1≤s≠t≤n
Br

ssB
r
tt − 

2≤α<β≤n
Br
ααh

r
ββ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(33)

Substituting W1 � W2 � eα and W2 � W2 � eβ for
1≤ α, β≤ n in (7) and summarizing, we obtain



n

α,β�1

R eα, eβ, eα, eβ  �
ε + 3
4

n(n − 1). (34)
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)erefore, using (34) in equation (33), we obtain

RicM(W)≤
n
2

2
‖H‖

2
−

qΔf
f

+
ε + 3
4

(pq + n − 1)

−
1
2



m

r�n+1
2Br

11 − Br
p+1p+1 + · · · + Br

nn  
2

+ 

2m+1

r�n+1


1≤i<j≤p
Br

ij 
2

+ 
p+1≤s<t≤n

Br
st( 

2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

− 
2m+1

r�n+1


1≤i<j≤p
Br

iiB
r
jj + 

m

r�n+1


p+1≤s≠t≤n
Br

ssB
r
tt

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

+ 
2m+1

r�n+1


2≤α<β≤n
Br
ααB

r
ββ − 

2m+1

r�n+1


1≤α<β≤n
Br
αβ 

2
.

(35)

)e calculation of the last two terms of (35) implies



2m+1

r�n+1


1≤i<j≤p
Br

ij 
2

+ 
p+1≤s<t≤n

Br
st( 

2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
− 

2m+1

r�n+1


1≤α<β≤n
Br
αβ 

2
� 

2m+1

r�n+1


p

α�1


n

β�p+1
Br
αβ 

2
. (36)

In similar way, we obtain



2m+1

r�n+1


1≤i<j≤p
Br

iiB
r
jj + 

m

r�n+1


p+1≤s≠t≤n
Br

ssB
r
tt − 

2≤α<β≤n
Br
αB

r
β

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� 

2m+1

r�n+1


p

j�2
Br
11B

r
jj − 

p

α�2


n

β�p+1
Br
ααB

r
ββ

⎛⎝ ⎞⎠. (37)

Using (37) in (33) leads to

Ric(W)≤
1
2
n
2
‖H‖

2
−

qΔf
f

+
ε + 3
4

(pq + n − 1)

− 
2m+1

r�n+1


p

α�1


n

β�p+1
Bαβ 

2
+ 

n1

b�2
Br
11B

2
bb − 

p

α�2


n

β�p+1
Br
ααB

r
ββ

⎛⎝ ⎞⎠

−
1
2



m

r�n+1
2Br

11 − Br
p+1p+1 + · · · + Br

nn  
2
.

(38)

As for the warped product submanifold Mn such that the
base is minimal in Mn, we compute the following
simplification:



2m+1

r�n+1


p

α�2


n

β�p+1
Br
ααB

r
ββ � − 

2m+1

r�n+1


n

β�p+1
Br
11B

r
ββ. (39)
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Similarly, we have



2m+1

r�n+1


p

b�2
Br
11B

r
bb � − 

2m+1

r�n+1
Br
11( 

2
. (40)

At the same time, utilizing the minimality of the base
manifold Bp, we deduce that

1
2



2m+1

r�n+1
2Br

11 − Br
p+1p+1 + · · · + Br

nn  
2

+ 
2m+1

r�n+1


n

β�p+1
Br
11B

r
ββ

� 2 
2m+1

r�n+1
Br
11( 

2
+
1
2
n
2
‖H‖

2
.

(41)

Utilizing (39)–(41), equation (38) will take the form

Ric(X)≤
ε + 3
4

(pq + n − 1) −
qΔf

f
+ 

2m+1

r�n+1


n

β�p+1
Br
11B

r
ββ − B11( 

2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (42)

)e above inequality is equivalent to the following:

Ric(W)≤
1
2
n
2
‖H‖

2
+
ε + 3
4

(pq + n − 1) −
qΔf

f
+ 

2m+1

r�n+1


n

β�2
Br
11B

r
ββ.

(43)

Using (22), this gives inequality (23). For the second
case, we have the following.

Case 2. Assume that eu is tangent F . We fix a unit tangent
vector field from ep+1, . . . , en in which W � eu � en. Uti-
lizing (17) to (33) and following a similar technique from
(33)–(42), it implies

1
2
n
2
‖H‖

2 ≥Ric(W) +
qΔf

f
− 2τ TxM

n
(  + τ TxB

p
(  + τ TxF

q
( 

+ 
1≤α<β≤n− 1

Kαβ +
1
2



2m+1

r�n+1
2Br

nn − Br
p+1p+1 + · · · + Br

nn  
2

+ 
2m+1

r�n+1


n− 1

β�1
Br

nnB
r
ββ + 

m

r�n+1


p

α�1


n

β�p+1
Br
αβ 

2
− 

2m+1

r�n+1


p

α�1


n− 1

β�p+1
Br
ααB

r
ββ.

(44)
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Using (34), we obtain

Ric(W)≤
1
2
n
2
‖H‖

2
−

qΔf
f

+
ε + 3
4

(pq + n − 1+)

−
1
2



2m+1

r�n+1
2Br

nn − Br
p+1p+1 + · · · + Br

nn  
2

− 
2m+1

r�n+1


n− 1

β�1
Br

nnB
r
ββ

− 
2m+1

r�n+1


p

α�1


n

β�p+1
Br
αβ 

2
+ 

2m+1

r�n+1


p

α�1


n− 1

β�p+1
Br
ααB

r
ββ.

(45)

As the base of Mn is minimal, then



2m+1

r�n+1


p

α�1


n− 1

β�p+1
Br
ααB

r
ββ � 0. (46)

By using a similar technique to the first case, using (46)
in (45), we obtain

Ric(W) +
qΔf

f
≤
1
2
n
2
‖H‖

2
+
ε + 3
4

(pq + n − 1)

−
1
2



2m+1

r�n+1
2Br

nn − Br
p+1q+1 + · · · + Br

nn  
2

− 
2m+1

r�n+1


n− 1

β�1
Br

nnB
r
ββ − 

m

r�n+1


p

α�1


n

β�p+1
Br
αβ 

2
.

(47)

After some calculations, we obtain



2m+1

r�n+1

1
2

Br
p+1p+1 + · · · + Br

nn  − 2B
r
nn 

2
+ 

n− 1

β�n+1
Br

nnBββ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� 
2m+1

r�n+1

1
2
Br

p+1p+1 + · · · + Br
nn 

2
+ 2 

m

r�n+1
Br

nn( 
2

− 
2m+1

r�n+1


n

β�p+1
Br

nnB
r
ββ + 

m

r�n+1


n− 1

β�n+1
Br

nnBββ − 
2m+1

r�n+1


n

β�p+1
Br

nnB
r
ββ.

(48)

Performing other calculations for the last two terms gives



2m+1

r�n+1


n− 1

β�n+1
Br

nnBββ − 
m

r�n+1


n

β�p+1
Br

nnB
r
ββ � − 

2m+1

r�n+1
Br

nn( 
2
.

(49)

)us, (48) can be reduced, using the above relation, as
follows:



2m+1

r�n+1

1
2

Br
p+1p+1 + · · · + Br

nn  − 2Br
nn 

2
+ 

n− 1

β�p+1
Br

nnBββ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� 
2m+1

r�n+1

1
2
Br

p+1p+1 + · · · + Br
nn 

2
+ Br

nn( 
2

− 
n− 1

β�p+1
Br

nnBββ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(50)

)erefore, using (50) in inequality (47), we deduce that
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Ric(W)≤
1
2
n
2
‖H‖

2
+
ε + 3
4

(pq + n − 1) −
qΔf

f
−
1
4



2m+1

r�n+1
Br

p+1p+1 + · · · + Br
nn 

2

− 
2m+1

r�n+1
Br

nn( 
2

− 
n− 1

β�p+1
Br

nnBββ +
1
4
Br

p+1p+1 + · · · + Br
nn 

2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(51)

From the minimality of the base of warped product
submanifold Mn, we obtain

Ric(X)≤
1
4
n
2
‖H‖

2
+
ε + 3
4

(pq + n − 1) −
qΔf

f
− 

2m+1

r�n+1
Br

nn − 
n− 1

β�p+1
Br

nnBββ
⎛⎝ ⎞⎠. (52)

)is gives the proof of inequality (23). We will use the
technique adopted for case (i) to determine inequality (23)
when Mn is F-minimal. Now, equality (23) can be verified in
a similar manner as in [2, 3, 29].

For a completely minimal submanifold, Proposition 1
presents the following result.

Lemma 1. Assume φ: Mn � B×fF⟶ M
2m+1

(ε) is a
C-totally real minimal isometric embedding from a warped
product Mn into a Sasakian space form M

2m+1
(ε). 7erefore,

for any unit vector W ∈ TxMn, the following Ricci inequality
is satisfied:

Ric(W) + qΔ lnf≤ q‖∇ lnf‖
2

+
ε + 3
4

(pq + n − 1), (53)

where p � dimB and q � dimF .

4. Application to Differential Equations

4.1. Proof of 7eorem 1. Consider the following equation
with φ � lnf:

|Hess(φ) + tφI|
2

� |Hess(φ)|
2

+ t
2
(φ)

2
|I|

2

+ 2tφg(Hess(φ), I).
(54)

However, we know that |I|2 � trace(II∗) � p as well as
g(Hess(φ), I∗) � tr(Hess(φ)I∗) � trHess(φ). )en, the
proceeding equation takes the form

|Hess(φ) − tφI|
2

� |Hess(φ)|
2

+ pt
2
(φ)

2
− 2tφΔφ. (55)

If λ1 is an eigenvalue of the eigenfunction, then
Δφ � λ1φ. )us, we obtain

|Hess(φ) + tφI|
2

� |Hess(φ)|
2

+ pt
2

− 2tλ1 (φ)
2
. (56)

On the contrary, we obtain


B× q{ }
Δ
φ2

2
dV � 

B× q{ }
φΔφdV − 

B× q{ }
|∇φ|

2dV. (57)

Again, using Δφ � λ1φ, we have


B× q{ }

(φ)
2dV �

1
λ1


B× q{ }

|∇φ|
2dV. (58)

It follows from (56) and (58) that


B× q{ }

|Hess(φ) + tφI|
2dV � 

B× q{ }
|Hess(φ)|

2dV +
pt

2

λ1
− 2t 

B× q{ }
|∇φ|

2dV. (59)
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In particular, taking t � (λ1/p) on (59) and integrating,
we obtain


B× q{ }

Hess(φ) +
λ1
p
φI





2

dV � 
B× q{ }

|Hess(φ)|
2dV −

λ1
p


B× q{ }

|∇φ|
2dV. (60)

Again, integrating (23) and including the Green lemma,
we have


B× q{ }

RicM(W)dV≤
n
2

4

B× q{ }

|H|
2dV + q

B× q{ }
|∇φ|

2dV + 
B× q{ }

ε + 3
4

(pq + n − 1)dV. (61)

From (60) and (61), we derive

1
q


B× q{ }

RicM(W)dV≤
n
2

4q

B× q{ }

|H|
2dV −

p

λ1

B× q{ }

Hess(φ) +
λ1
n
φI





2

dV

+
p

λ1

B× q{ }

|Hess(φ)|
2dV + 

B× q{ }

ε + 3
4

p + 1 +
p − 1

q
 dV.

(62)

Under the assumption that the Ricci curvature is greater
than or equal to zero, i.e., Ric(W) ≥ 0, the above equation
implies


B× q{ }

Hess(φ) +
λ1
p
φI





2

dV≤
n
2λ1
4pq


B× q{ }

|H|
2dV + 

B× q{ }
|Hess(φ)|

2dV +
λ1
p


B× q{ }

ε + 3
4

p + 1 +
p − 1

q
 dV, (63)

which is equivalent to the following:


B× q{ }

Hess(φ) +
λ1
p
φI





2

dV≤
B× q{ }

|Hess(φ)|
2dV +

λ1
4p


B× q{ }

n
2

q
|H|

2
+(ε + 3) p + 1 +

p − 1
q

  dV. (64)

If the following equality holds by assumption (2),


B× q{ }

|Hess(φ)|
2dV �

λ1
4pq


B× q{ }

(ε + 3)(1 − n − pq) − n
2
|H|

2
 dV, (65)

then equations (64) and (65) imply that


B× q{ }

Hess(φ) +
λ1
p
φI





2

dV≤ 0. (66)

However, it is clear that


B× q{ }

Hess(φ) +
λ1
p
φI





2

dV≥ 0. (67)
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Combining equations (66) and (67), we obtain

Hess(φ) +
λ1
n
φI





2

� 0⟹Hess(φ) � −
λ1
p
φI. (68)

Since the WF φ � lnf of a nontrivial WPS Mn is a
nonconstant, then equation (68), reduces to Obata’s dif-
ferential equation where c �

����
λ1/p


by λ1 > 0. )us, B is

isometric to Sp(
����
λ1/p


). )is is a complete proof of the first

part. On the contrary, if we have λ1 � p, then, from (68), we
have

Hess(φ) W1, W2(  � − φg W1, W2( , (69)

for any W1, W2 ∈ Γ(B). )e proof of this theorem is
completed.

4.2. Proof of 7eorem 2. If φ is the positive differential
function on the Riemannian manifold B, then Bochner
formula is defined as

1
2
Δ|∇φ|

2
� |Hess(φ)|

2
+ Ric(∇φ,∇φ) + g(∇φ,∇Δφ).

(70)

Taking the integration along the volume element and
using the Stokes )eorem, we obtain


B× q{ }

|Hess(φ)|
2

+ Ric(∇φ,∇φ) + g(∇φ,∇Δφ) dV � 0.

(71)

Assume that λ1 is an eigenvalue of the eigenfunction;
then, Δφ � λ1φ, and we have


B× q{ }

|Hess(φ)|
2

� − 
B× q{ }

Ric(∇φ,∇φ)dV − λ1
B× q{ }

|∇φ|
2dV. (72)

Inserting the above equation into (60), we find that


B× q{ }

Hess(φ) +
λ1
p
φI





2

dV � − 
B× q{ }

Ric(∇φ,∇φ)dV − λ1
p + 1

p
 

B× q{ }
|∇φ|

2dV. (73)

Utilizing (61) in the above equation, we arrive at

1
q


B× q{ }

Ric(X)dV +
p

λ1(p + 2)

B× q{ }

Hess(φ) +
λ1
p
φI





2

dV

≤
n
2

4q

B× q{ }

|H|
2dV +

(pq + n − 1)

q

B× q{ }

ε + 3
4

dV −
p

λ1(p + 1)

B× q{ }

Ric(∇φ,∇φ)dV.

(74)

)is can be simplified as


B× q{ }

Hess(φ) +
λ1
p
φI





2

dV +
λ1(p + 1)

pq

B× q{ }

Ric(X)dV + 
B× q{ }

Ric(∇φ,∇φ)dV

≤
λ1n

2
(p + 1)

4pq

B× q{ }

|H|
2dV +

λ1(pq + n − 1)(p + 1)

pq

B× q{ }

ε + 3
4

dV.

(75)

Following our assumption that the Ricci curvature is
greater than or equal to zero, i.e., Ric≥ 0, we derive that


B× q{ }

Hess(φ) +
λ1
p
φI





2

dV≤
λ1(p + 1)

4pq

B× q{ }

n
2
|H|

2
+(ε + 3)(pq + n − 1) dV. (76)
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If the hypothesis of the theorem regarding the extrinsic
condition (4) holds, from the above equation, we obtain

Hess(φ) W1, W2(  � −
λ1
p
φg W1, W2( , (77)

for any W1, W2 ∈ Γ(B). )is is again Obata’s ODE [1],
which implies that the base B is isometric to the Euclidean
sphere Sp(

����
λ1/p


). )e proof is completed.

Using the fact that the warped product submanifold Mn

is minimal, we give the following corollary derived from
)eorem 1.

Corollary 1. LetM2m+1(ε) be a Sasakian space form, and let
Ψ: Mn � B×fF⟶ M2m+1(ε) be a C-totally real minimal
isometric embedding of the warped product submanifold Mn

intoM2m+1(ε) with a nonnegative Ricci curvature.7en, there
is an isometry between the compact base B and the sphere Sp

if it satisfies the following:

|Hess(φ)|
2

�
1
4q

(ε + 3) 1 − n − λ1q(  . (78)

Proof. Assuming Φ is minimal and λ1 � p, then, from (64),
we obtain


B× q{ }

|Hess(φ) + φI|
2dV≤

B× q{ }
|Hess(φ)|

2dV +
1
4


B× q{ }

(ε + 3) λ1 + 1 +
λ1 − 1

q
 dV. (79)

If assumption (78) holds, we get the following from (79):

Hess(φ) W1, W2(  � − φg W1, W2( , (80)

for a nonconstant function φ � lnf. )us, [1] completes the
proof of the corollary.

Remark 3. We know that every simply connected Sasakian
space form M2m+1(ε) is isometric to the odd-dimensional
sphere S2m+1 and odd-dimensional Euclidean space R2m+1

with ϕ-constant sectional curvature ε � 1 and ε � − 3, re-
spectively. For more details and examples, see the work
presented in [24, 26, 27].

Another consequence of )eorem 1 is as follows.

Corollary 2. Let S2m+1 be a Sasakian space form and Mn be
the warped product submanifold having the nonnegative Ricci
curvature. If Ψ: Mn � B×fF⟶ S2m+1 is a C-totally real
minimal isometric embedding of Mn to S2m+1. 7en, there is
an isometric between the compact base B and the sphere Sp if
it satisfies the following:

|Hess(φ)|
2

�
2
q

1 − n − λ1q( . (81)

Proof. Now, substituting ε � 1 in (79), we derive that


B× q{ }

|Hess(φ) + φI|
2dV≤

B× q{ }
|Hess(φ)|

2dV + 2
B× q{ }

λ1 + 1 +
λ1 − 1

q
 dV. (82)

Applying equation (81) into the above equation, we
obtain

Hess(φ) W1, W2(  � − φg W1, W2( . (83)

)e result follows from [1]. )is completes the proof of
the corollary.

One result deduced from )eorem 2 is as follows.

Corollary 3. Assume that that S2m+1 is a Sasakian space
form and Mn is a warped product submanifold having the

nonnegative Ricci curvature and the compact base B is
minimal. If Ψ: Mn � B×fF⟶ S2m+1 is a C-totally real
isometric embedding from Mn into S2m+1, then B is an
isometric to the sphere Sp(c) such that c �

����
λ1/p


if the

following equality holds:

|H|
2

�
4(1 − pq − n)

n
2 . (84)

Proof. Inserting ε � 1 into (76), we obtain


B× q{ }

Hess(φ) +
λ1
p
φI





2

dV≤
λ1(p + 2)

4pq

B× q{ }

n
2
|H|

2
+ 4(pq + n − 1) dV. (85)

Following condition (84) and combining it with (85), we
derive that

Hess(φ) W1, W2(  � −
λ1
p
φg W1, W2( . (86)
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)en, the Obata )eorem [1] leads to the desired
result.

If we choose ε � − 3 that is the Sasakian space form is
nothing but the Euclidean space R2m+1 by using )eorem 1,
we obtain

Corollary 4. Suppose Ψ: Mn � B×fF⟶ R2m+1(− 3) is a
C-totally real isometric embedding of the warped product

submanifold Mn into R2m+1(− 3) of a nonnegative Ricci
curvature. 7en, a compact minimal base B is isometric to the
sphere Sp if the following condition holds:

|Hess(φ)|
2

+
n
2

4q
|H|

2
� 0. (87)

Proof. Putting ε � − 3 into (64), we obtain


B× q{ }

Hess(φ) +
λ1
p
φI





2

dV≤
B× q{ }

|Hess(φ)|
2dV +

n
2

4q

B× q{ }

|H|
2dV. (88)

Equations (87) and (88) imply that

Hess(φ) W1, W2(  � − φg W1, W2( . (89)

Again, fromObata’s)eorem [1], we reached the desired
result.

Similarly, from )eorem 2, we derive

Corollary 5. Let Mn be a warped product submanifold and
Ψ: Mn � B×fF⟶ R2m+1(− 3) be a C-totally real minimal
isometric embedding from Mn to the Sasakian space form
R2m+1(− 3). 7en, the compact base B is isometric to the
sphere Sp.

Proof. According to the hypothesis of the theorem, we know
that Mn is minimal and ε � − 3. )erefore, from (76), we
determined the ordinary differential equation (89). )us, we
have completed the proof.

Remark 4. For examples of C-totally real isometric im-
mersions from warped product manifolds, see the work
presented in [27, 30].

For existence such a warped product, we provided an
example is the following

Example 1. (see [30]). At point x, there exists no less than
two types C-totally real submanifolds going within x of the
non-Sasakian(κ, μ)-manifold. Assume the foliations are
denoted by eigendistributions of h; thus, their leaves would
be totally geodesic C-totally real submanifolds for the given
non-Sasakian (κ, μ)-manifold. Suppose a C-totally real
submanifold in a contact metric manifold. Let us consider
g(AζX,Y) � − g( ∇Xζ,Y) � g(ΦX +ΦhX,Y), so Aζ � (Φh)T,
such that (Φh)TX is tangential part of ΦhX to any X ∈TM.
Assume that S is the minimal C-totally real surface of T1M.
Construct the warped product manifold (− (π/2),(π/
2))×cos ;tS. )en, the embedding Φ: (− (π/2),(π/2))×cos ;t

S⟶T1M such thatΦ(t,x) � sintN + costx, where N is the
unit vector perpendicular with the linear subspace including
T1M, which is a C-totally real isometric embedding. For
more classification, see [31–33].

Remark 5. We provided example 1 which shows the exis-
tence of C-totally real isometric immersion from warped
product into an almost contact metric manifolds. However,
we are not claiming that this example will satisfy our
assumption.

5. Concluding Remarks

)e paper dealed with ordinary differential equation on
C-totally real warped product submanifolds from the op-
timization on the warping function of a C-totally real warped
product submanifold of Sasakian space forms. First, we
obtained a Ricci curvature inequality in the setting a
C-totally real warped product submanifold which is a
generalization of)eorem 2.1 in [24].)en, we studied some
characterizations theorems for a C-totally real warped
product submanifold of a Sasakian space forms. )erefore,
the paper has excellent combinations of ordinary differential
equation with Riemnnian geometry. We hope that the paper
will get influence in mathematical science because we first
applied differential equation in product manifolds.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

)e authors declare no conflicts of interest.

Authors’ Contributions

All authors equally contributed to the work and approved
the final version.

Acknowledgments

)is research was funded by the Deanship of Scientific
Research at Princess Nourah Bint Abdulrahman University
through the Fast-track Research Funding Program.

14 Journal of Mathematics



References

[1] M. Obata, “Certain conditions for a Riemannian manifold to
be isometric with a sphere,” Journal of the Mathematical
Society of Japan, vol. 62, pp. 333–340, 1962.

[2] A. Ali, P. Laurian-Ioan, and A. H. Alkhaldi, “Ricci curvature
on warped product submanifolds in spheres with geometric
applications,” Journal of Geometry and Physics, vol. 146,
Article ID 103510, 2019.

[3] A. Ali, P. Laurian-Ioan, A. H. Alkhaldi, and L. S. Alqahtani,
“Ricci curvature on warped product submanifolds of complex
space forms and its applications,” International Journal of
Geometric Methods in Modern Physics, vol. 16, no. 9, Article
ID 1950142, 2019.

[4] R. Ali, F. Mofarreh, N. Alluhaibi, A. Ali, and I. Ahmad, “On
differential equations characterizing Legendrian submani-
folds of Sasakian space forms,” Mathematics, vol. 8, no. 2,
p. 150, 2020.

[5] H. Alodan, S. Deshmukh, N. B. Turki, and G.-E. Vı̂lcu,
“Hypersurfaces of a sasakian manifold,” Mathematics, vol. 8,
no. 6, p. 877, 2020.

[6] A. Barros, J. N. Gomes, and E. Ribeiro, “A note on rigidity of
the almost Ricci soliton,” Archiv der Mathematik, vol. 100,
no. 5, pp. 481–490, 2013.

[7] B.-Y. Chen, “A general inequality for submanifolds in com-
plex-space-forms and its applications,” Archiv der Mathe-
matik, vol. 67, no. 6, pp. 519–528, 1996.

[8] B.-Y. Chen, “Mean curvature and shape operator of isometric
immersions in real-space-forms,” Glasgow Mathematical
Journal, vol. 38, no. 1, pp. 87–97, 1996.

[9] B.-Y. Chen, “Relations between Ricci curvature and shape
operator for submanifolds with arbitrary codimensions,”
Glasgow Mathematical Journal, vol. 41, no. 1, pp. 33–41, 1999.

[10] B.-Y. Chen, “On Ricci curvature of isotropic and Lagrangian
submanifolds in complex space forms,” Archiv der Mathe-
matik, vol. 74, no. 2, pp. 154–160, 2000.

[11] S. Deshmukh and A. Al-Eid, “Curvature bounds for the
spectrum of a compact Riemannian manifold of constant
scalar curvature,” Journal of Geometric Analysis, vol. 15, no. 4,
pp. 589–606, 2005.

[12] S. Deshmukh, “Conformal vector fields and eigenvectors of
laplacian operator,” Mathematical Physics, Analysis and Ge-
ometry, vol. 15, no. 2, pp. 163–172, 2012.

[13] S. Deshmukh and F. Al-Solamy, “A note on conformal vector
fields on a Riemannian manifold,” Colloquium Mathemati-
cum, vol. 136, no. 1, pp. 65–73, 2014.

[14] S. Deshmukh, “Characterizing spheres and Euclidean spaces
by conformal vector fields,” Annali di Matematica Pura ed
Applicata (1923 -), vol. 196, no. 6, pp. 2135–2145, 2017.

[15] S. Deshmukh, “Almost Ricci solitons isometric to spheres,”
International Journal of Geometric Methods in Modern
Physics, vol. 16, no. 5, Article ID 1950073, 2019.
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