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Existing research on credit risk contagion of supply chain finance pays more attention to the influence of network internal
structure on the process of risk contagion. 'e spread of COVID-19 has had a huge impact on the supply chain, with a large
number of enterprises experiencing difficulties in operation, resulting in increased credit risks in supply chain finance. Under the
impact of the epidemic, this paper explores the transmission speed and steady state of credit risk when the supply chain finance
network is affected by external impact so that we can have a more complete understanding of the ability of supply chain finance to
resist risks. 'e simulation results show that external shocks of different degrees will increase the number of initial infected
enterprises and lead to the increase in credit risk contagion speed but have no significant impact on network steady state; the speed
of credit risk contagion is positively correlated with network complexity but not significantly affected by network size; core
enterprises infected will increase the rate of credit risk contagion. 'e intensity of policy intervention has obvious curative effect
on the risk caused by external shock. When the supply chain financial network is affected by external shocks, the intensity, time,
and pertinence of policy response can effectively prevent the credit risk contagion.

1. Introduction

Since the outbreak in 2020, COVID-19 has spread to 191
countries and regions, with more than 200 million con-
firmed cases and 4.4 million deaths. As a result of the ep-
idemic, the unemployment rate has gradually increased,
enterprises have suspended production, and economic in-
dicators have declined significantly. Optimization methods,
in particular, fixed-point methods, are efficient and powerful
for solving various real problems in traffic and trans-
portation, medical imaging, modern management, financial
engineering (see, e.g., [1–5]). For the supply chain, the
continuous decline of market demand and production
stagnation of upstream and downstream enterprises will lead
to serious operational difficulties for enterprises within the
supply chain. Repeated outbreaks caused bymutations in the
virus have cast a shadow over the recovery of global supply
chain. Against the backdrop of the pandemic, supply chain
finance is also facing severe impact.

Supply chain finance integrates logistics, capital flow,
and information flow and forms a corresponding network
structure. With the continuous advancement of financial
globalization, network complexity is strengthened [6], while
making the network more efficient, it also makes it more
vulnerable to default and bankruptcy [7]. 'e credit default
of one participant will cause losses of other members and
eventually lead to credit risk contagion throughout the
supply chain network [8–11]. 'e spread of COVID-19 has
significantly increased the network credit risk of supply
chain finance. 'e supply chain finance plays a role in
resisting the external impact and effectively offsetting losses
caused by the COVID-19 outbreak; therefore, it is important
to study the influence of external impact on supply chain
financial credit risk infection and corresponding policies.

'e rest of this paper is organized as follows. Section 2 is
literature review, which mainly summarizes the existing
research on credit risk of supply chain finance. Section 3 is
the construction of complex network of supply chain
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finance, including model selection and model construction.
Section 4 is the simulation results and discussion, the design
of the relevant simulation experiments, and the results of in-
depth analysis. Section 5 is the conclusion.

2. Literature Review

Supply chain finance is different from traditional financing
methods. By integrating the financing process of all participants
and optimizing the capital flow in the supply chain, supply
chain finance improves the overall capital management level of
the supply chain [12–14].'e existing research on credit risk of
supply chain finance mainly focuses on risk identification and
evaluation [8], and the researchmethod ismainly based around
the construction of the risk evaluation index system. Mou et al.
[9] believed that core enterprises are crucial to the evaluation of
credit risks in the supply chain, and the FAHP method is used
to quantitatively measure and evaluate the credit risks of core
enterprises. Zhu et al. [15] believed that SMEs are in a vul-
nerable position in the supply chain, but their credit risk status
is of great significance to supply chain finance.With the help of
RS-multiboosting machine learning model, they built a pre-
diction model of credit risk for SMEs in supply chain finance,
which has a good effect. Wang et al. [16] believed that the
development of smart city and smart finance makes the fi-
nancial risks of SMEs more complex and uses the improved
PROMETHEE method to build a more accurate credit risk
evaluation model of SMEs. However, enterprises in the supply
chain do not operate in isolation, and the credit risk within the
supply chain is bound to infect the whole supply chain, causing
serious impact on the network.

On the topic of credit risk contagion, existing research
mainly focuses on the influence of internal structure of
supply chain on the process of credit risk contagion. Zhao
et al. [17] established a scale-free complex network model of
supply chain finance and found that network structure had a
significant impact on credit risk contagion. Xie et al. [18]
made a game analysis of the two-tier supply chain with
financing constraints by constructing two-tier financing
channels in the supply chain and found that financing
structure has a significant impact on credit risk contagion,
while the contagion effect under dual-channel financing
mechanism is weak. With the help of the SIRS infectious
disease model, Wang et al. [11] deeply discussed the in-
fluence of multiple factors on supply chain risk contagion,
including enterprise risk preference, operational robustness
and flexibility, completeness of market information, espe-
cially network topology. However, in addition to internal
factors, external shocks also have an impact on the process of
credit risk contagion. 'erefore, this paper mainly studies
the impact of external shocks (COVID-19) on the credit risk
contagion process of supply chain finance.

3. Construction of Supply Chain
Finance Network

3.1. Selection of Network Model and Infection Model.
From the perspective of the development history of complex
network, complex network can be divided into regular

network, random graph, small world network, and scale-free
network. A regular network is one in which any two nodes
are directly connected by an edge; random graph refers to
the network formed by connecting nodes randomly
according to probability. Both small world network and
random network conform to Poisson distribution, which
results that the degree of a large number of nodes in the
network is concentrated near k, and there are no points with
a relatively high degree. 'is kind of network is also called
uniform network. In the structure of supply chain finance
network, newly joined SMEs tend to be connected with core
enterprises with high degree, which makes core enterprises
have a very high degree, while SMEs have a relatively low
degree.'is characteristic of supply chain finance network is
exactly in line with the characteristics of scale-free network.
'erefore, BA scale-free network is selected as the basis to
construct supply chain finance network.

'e premise of virus transmission is a network envi-
ronment conducive to transmission, and only mutual
contact and relationship can complete the transmission
process, which is consistent with the transmission of credit
risk. 'erefore, the epidemic model has been widely used to
study the transmission of credit risk. 'e SIS virus infection
model is a classical model of transmission dynamics in
complex networks and has been applied in a large number of
studies on credit risk [17, 19]. 'e SIS virus infection model
has the advantage that it has no limitation on the network
scale and no special requirements on the network trans-
mission direction and can accurately reflect the dynamic
process of credit risk infection in the network.'erefore, the
SIS virus infection model is very suitable for this paper as the
basic model of credit risk infection.

3.2. Construction of Complex Network of Supply Chain
Finance. Based on the discussion of model selection in the
previous section and the special requirements of the network
model in related studies [17, 19], this paper proposes the
following hypotheses for the supply chain finance network:

(i) Hypothesis 1. Supply chain finance network is an
undirected network. Generally, risk contagion is
transmitted from upstream to downstream, but for
supply chain finance network, it is mainly man-
ifested as upstream and downstream cross infection,
and there is no clear direction.'erefore, this article
sets the network as an undirected network.

(ii) Hypothesis 2. Nodes in the network are only infected
by neighboring nodes. In the supply chain finance
network, the connection between two nodes is the
channel of risk contagion, and nodes without direct
contact have little influence on each other, which is
not considered in this paper.

(iii) Hypothesis 3. Credit risk in supply chain finance
network transmits with a certain probability. Even if
it is connected to the infected node, it does not
necessarily mean that it will be affected accordingly.
'e probability of infection is related to the strength
of the connection between the two nodes. In this
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paper, to simplify the infection model, this proba-
bility is set as a constant.

(iv) Hypothesis 4. 'e structure and scale of supply chain
finance network will not change in the process of
credit risk contagion. In the real world, the network is
always in a dynamic process, some nodes will join,
and also some nodes will disconnect. In this paper,
the network model is simplified, and the changes of
network structure and scale in the process of in-
fection are not considered.

Assume that the probability of credit risk infection in the
network is λ, 0< λ< 1; at time t, the density of infected
individuals on the network is ρ(t). As t approaches infinity,
the network reaches a steady state ρ. Considering that the
scale-free network is a nonuniform network, the infected
density of the node with the degree of k at the time of t is
ρk(t). Each node has a certain recovery capability, and the
recovery coefficient is set as c. 'rough the comprehensive
analysis of the above contents and the characteristics of the
SIS model, we can get the following equation at time t:

zρk(t)

zt
� − cρk(t) + λk 1 − ρk(t)􏼂 􏼃Θ(ρ(t)). (1)

'e first term on the right is the annihilation term, and the
density of infected nodes decreases with the speed c.'e second
item is the generation term, and it is proportional to the
probability of infection λ, density of susceptible nodes
[1 − ρk(t)], the degree of node k, and Θ(ρ(t)). Θ(ρ(t))

represents the probability that any given edge is connected to an
infected node, namely, Θ(ρ(t)) � (1/〈k〉)􏽐kkP(k)ρk(t). We
assume the infected density of the node with degree k at steady
state ρk.

Using the steady-state condition (zρk(t)/zt) � 0, we
have the following:

ρk �
λkΘ(ρ)

c + λkΘ(ρ)
. (2)

According to equation (2), we find that at steady state, the
density of infected nodes with degree k is positively correlated
to the infection probability λ and the degree of the node k but is
negatively correlated to the enterprise’s resilience c.

With equation (2) and Θ(ρ(t)), we have the following:

Θ �
1

〈k〉
􏽘
k

kP(k)
λkΘ

c + λkΘ
. (3)

If the equation has a nontrivial solution Θ≠ 0, the fol-
lowing conditions must be met:

d
dΘ

1
〈k〉

􏽘
k

kP(k)
λkΘ

c + λkΘ
⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Θ�0
≥ 1. (4)

Namely,

􏽘
k

λk
2
P(k)

c〈k〉
�
λ〈k2〉
〈k〉
≥ 1. (5)

'e critical value λc of BA scale-free network is as
follows:

λc �
c〈k〉

〈k2〉
. (6)

In BA scale-free network,

〈k〉 � 􏽚
∞

m
kP(k)dk � 2m,

〈k2〉 � 􏽘
k

k
2
P(k),

P(k) � 2m
2
k

− 3
.

(7)

Assume that the maximum degree in the supply chain
finance network is kl; as the network goes to infinity, kl tends
to mN2, so 〈k2〉 ≈ 2m2 ln(kl/m). 'e critical value λc can be
represented as

λc �
c〈k〉

〈k2〉
�

c

2m lnN
. (8)

According to equation (8), we find that the critical value
λc is negatively correlated with the network structure m and
the network size N but is positively correlated to the en-
terprise’s resilience c.

4. Simulation Results and Discussion under
Epidemic Impact

4.1. Simulation Algorithm Design

(1) BA scale-free network is constructed. According to
the existing research [17, 18, 20], this paper sets the
basic parameters of the network as N � 1000 and
m � 5.

(2) According to the scope of the epidemic, the initial
infected nodes were randomly selected from the
network.

(3) 'e number of newly infected nodes are determined.
Assume that the status of the node i is S(i); when the
node is infected, S(i) � 1; if not infected, S(i) � 0;
External impact on node i can be expressed as

β(i) � 1 − (1 − λ)
αi , (9)

where αi � 􏽐
N
j�1 aijSj, i≠ j indicates the number of infected

nodes in adjacent nodes of the node i, aij indicates the
connection status between node i and node j, aij � 1 in-
dicates that the two nodes are directly connected; otherwise,
they are not adjacent nodes; β(i) denotes the probability that
node i is infected by at least one neighboring infected node,
which can be used to represent its external impact.

'e risk threshold Ci of node i can be expressed as

Ci � δ + ci( 􏼁
ki

2m
. (10)

'e current assets owned by enterprises have a certain
resistance to credit risk, so the resistance of enterprises is
expressed as δ, which is set to 0.25. To represent the dif-
ferences of enterprises, we introduce random number ci
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(0< ci < 1). If Ci < β(i), node i is infected. Otherwise, node i

is not infected.

4.2. Analysis of Simulation Results under Epidemic Impact

4.2.1. Determine the Risk of Contagion λ. First, we need to
determine the probability of risk contagion λ matching the
credit risk contagion network, which is related to λc in
equation (8); when λ> λc, credit risk becomes contagious;
otherwise, credit risk will not be contagious. According to
equation (8), we set the initial network state to N � 1000,
m � 5, and c � 0.2 and simulated the influence of network
parameters c, m, and N on λ. 'e simulation results are
shown in Figure 1.

According to the above simulation results, we found that
with the increase in self-healing rate c, λc increased con-
tinuously. With different c, λc is between 0.2 and 0.3. For
network complexity m, when m � 1, the density of infected
nodes in the steady state is 0, indicating that there is no risk
infection within the network. With the increase in network
complexity, λc gradually decreases, while λc has a maximum
value of about 0.3. 'ere is a negative correlation between
the network size and λc; when N � 200, λc is about 0.21, and
when N � 1000, λc is about 0.25. 'erefore, in order to
ensure that the simulation results are not affected by risk
contagion probability, λ is set as 0.3 in the subsequent
simulation experiments of this paper.

4.2.2. Analysis of Simulation Results of Enterprise Self-
Healing Mode under Epidemic Impact. We first consider
that in the case of no policy intervention, the enterprise has a
certain self-healing rate c.'at is, the enterprise has a certain
probability to recover to a healthy state. Compared with the
credit default of an internal enterprise, the outbreak of
COVID-19 will have a more serious impact, mainly reflected
in the following: a large number of enterprises are faced with
shutdown and production, demand decline, labor shortage,
and other problems, which leads to a sudden increase in the
number of initially infected enterprises. Under the epidemic,
the probability of default of core enterprises increases. As
core enterprises are connected with a large number of en-
terprises, default will inevitably have a serious impact on the
entire network. 'erefore, in the adjustment of the initial
network state, we increased the initial number of infected
nodes m0 to represent the impact caused by the epidemic
impact. 'e initial number of infected nodes indicates the
degree to which different industries are affected by the
epidemic. Finally, the influence of the number of core en-
terprises infected on credit risk contagion is discussed. First,
we consider the impact of the initial number of infected
nodes on the supply chain finance network, and the sim-
ulation results are shown in Figure 2.

According to the simulation results, we find that the
initial number of infected nodes m0 is basically positively
correlated with the contagion speed of credit risk. However,
for the steady state, the difference between Figures 2(a) and
2(b) is not obvious because the risk contagion threshold of
SMEs Ci is relatively low. Without policy intervention and

increase in the initial number of infected nodes, most nodes
will be infected. Now, we will discuss the impact of core
enterprises infection on credit risk contagion. 'e simula-
tion results are shown in Figure 3.

According to the simulation results, it is found that when
the initial number of infected nodes is small (m0 � 10) and
c � 0, there is a difference between the credit risk contagion
rate and the infection rate of core enterprises. With the
increase in external shock intensity (initial infection num-
ber), the difference of credit risk contagion speed gradually
decreases. 'e main reason for this phenomenon is that the
default of core enterprises will affect a large number of small-
and medium-sized enterprises, which makes the contagion
speed increase rapidly.'e increase in initial infection nodes
will also increase the transmission speed of credit risks, thus
narrowing the gap between c � 0 and other cases.

Considering the impact of network nature on credit risk
contagion, we will next discuss the resistance of network
structure to epidemic impact. 'ere are differences between
different types of supply chains, which are related to the
attributes of each enterprise and the connections between
enterprises. Under the impact of the epidemic, it is worth
exploring whether different self-healing rates, network
complexity, and network size will affect the transmission of
credit risk. Here, set the basic network parameters to λ � 0.3,
c � 0, N � 1000, and m � 5. First, we discuss the self-healing
ability of enterprises and its impact on credit risk contagion.
'e simulation results are shown in Figure 4.

According to the simulation results, we find that the
enterprise self-healing rate c has a significant impact on
steady state and credit risk contagion speed. When m0 � 5
and c greater than 0.4, the steady state is 0, and there is no
credit risk contagion. With the continuous decrease in c, the
contagion rate of credit risk gradually increases. When
c � 0.3, the network basically reaches a steady state at 36
steps. When c � 0.1, it takes only 20 steps to basically reach
steady state. When m0 � 5 and c � 0.3, the steady state is
basically maintained at 80%. When c � 0.1, the final steady
state increases to 90%.'is conclusion is basically consistent
in the face of different degrees of initial shock: even when the
initial number of infected nodes reaches 200, the final
steady-state difference between c � 0.1 and c � 0.5 remains
at 10%. It shows that the enterprise self-healing rate has a
regulating effect on the final steady state of the network. In
order to ensure that the enterprise self-healing rate would
not affect the authenticity of other simulation results, the
basic value of the enterprise self-healing rate was set as 0.2.

'e impact of network complexity on credit risk con-
tagion under different external shocks is shown in Figure 5.
According to the simulation results, we find that network
complexity has a significant impact on the rate of credit risk
contagion. When m0 � 5, there is no credit risk contagion in
the network where m is less than 2. With the increase in m,
the contagion rate of credit risk keeps increasing. When
m � 6, the network has basically reached steady state in 6
steps. With the increase in external impact, the law is ba-
sically consistent: even if m0 � 200, the number of infected
nodes at the initial stage of m � 1 increases rapidly; however,
after 4 steps, the number of infected nodes began to decline
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Figure 1: 'e influence of network parameters on risk contagion probability λ. (a) c ranges from 0.05 to 0.25; step length is 0.05. (b) m

ranges from 1 to 9; step length is 2. (c) N ranges from 200 to 1000; step length is 200.
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and finally stopped infection. When m � 2, the contagion
rate of credit risk is also low, but it still reaches steady state
after 50 steps. 'is experimental result shows that network
complexity is positively correlated with the transmission
speed of credit risk. Although network complexity improves
the efficiency of supply chain finance to some extent, when
confronted with external shocks, more connections between
enterprises become the channel of credit risk transmission,
thus accelerating the transmission of credit risk.

Next, we discuss the impact of network size on credit risk
contagion, and the simulation results are shown in Figure 6.
We find that network size has no significant influence on the
final steady state: at different scales, network size does not
have a significant influence on the steady state, and this
conclusion is still valid under the circumstance of increasing

external shocks. When the initial shock is small, the network
size has a certain impact on the transmission speed of credit
risk. When the scale is large, the transmission speed of credit
risk is relatively slow. However, with the increasing external
shock, the curve highly overlaps, and the impact of network
size can be almost ignored.

4.2.3. Analysis of Simulation Results of Policy Intervention
Mode under Epidemic Impact. In order to better study the
influence of policy intervention on credit risk contagion, the
enterprise recovery time td is introduced into the network to
represent the time step required for an enterprise to recover
from an infected state to a healthy state under policy in-
tervention. 'e smaller td is, the stronger the policy
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Figure 2: Effect of initial number of infected nodes m0 on ρk. (a) m0 ranges from 2 to 10; step length is 2. (b) m0 ranges from 50 to 250; step
length is 50.
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Figure 3: Effect of infected core enterprises c on ρk. (a) m0 � 10; c ranges from 0 to 4; step length is 1. (b) m0 � 50; c ranges from 0 to 4; step
length is 1. (c) m0 � 100; c ranges from 0 to 4; step length is 1.
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Figure 4: 'e impact of enterprise self-healing rate c on ρk. (a) m0 � 5; c ranges from 0.1 to 0.5; step length is 0.1. (b) m0 � 100; c ranges
from 0.1 to 0.5; step length is 0.1. (c) m0 � 200; c ranges from 0.1 to 0.5; step length is 0.1.
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Figure 5: Impact of network complexity m on ρk. (a) m0 � 5; m ranges from 1 to 5; step length is 1. (b) m0 � 100; m ranges from 1 to 5; step
length is 1. (c) m0 � 200; m ranges from 1 to 6; step length is 1.
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Figure 6: Impact of network size N on ρk. (a) m0 � 5; n ranges from 100 to 1000; step length is 200. (b) m0 � 100; n ranges from 100 to 1000;
step length is 200. (c) m0 � 200; n ranges from 100 to 1000; step length is 200.
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intervention is; otherwise, the weaker it is. We defined td ≤ 2
as a strong intervention, td � 3 as a moderate intervention,
and td ≥ 4 as a weak intervention. First of all, we consider the
suppression effect of policy intensity on epidemic impact
when there is no initial infection of core enterprises (c � 0),
and the simulation results are shown in Figure 7.

According to the simulation results, we find that in the
face of different degrees of external shocks, policy inter-
vention has a significant restraining effect on the rate of
credit risk contagion: when the external shocks are small
(m0 � 5), td ≤ 2 can effectively suppress the credit risk
contagion. Even if the policy intervention is weak (td ≥ 3),
the contagion rate of credit risk is still low in the initial stage.
When the initial impact is enhanced, the inhibitory effect of
strong intervention on the epidemic impact is still relatively

obvious, but the inhibitory effect of td ≥ 3 on the trans-
mission rate of credit risk is weakened. When m0 � 100, td �

3 could not completely inhibit the transmission of credit
risk. 'ere are two possible explanations for the above
conclusions: first, the impact of the epidemic on different
industries is different and the intervention intensity is dif-
ferent; second, different levels of intervention are required at
different stages of the epidemic. 'erefore, the intensity of
policy intervention in different industries should be dif-
ferent, and the effect of intervention in the early stage of the
outbreak is better, and the cost of intervention is lower. Next,
we consider the case of c � 1, and the simulation results are
shown in Figure 8.

'e infection of core enterprises has a great impact on
the network. In the case of m0 � 5, td < 3 can also restrain the
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Figure 7: Impact of policy intervention td on ρk (c � 0). (a) m0 � 5; td ranges from 1 to 5; step length is 1. (b) m0 � 100; td ranges from 1 to 5;
step length is 1.
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credit risk contagion. However, with the strengthening of
external shocks (m0 � 100), td � 3 is unable to restrain the
credit risk contagion, and the credit risk contagion speed
increases greatly when td ≥ 4. Due to the importance of the
health status of core enterprises to the network risk trans-
mission, attention should be paid in the process of the
outbreak.

5. Conclusion

'is paper conducts a simulation experiment on the credit
risk contagion of supply chain finance network under the
COVID-19 pandemic. First, considering the mode of self-

healing without policy intervention, we find that the increase
in the initial number of infected nodes will significantly
increase the contagion rate of credit risk, but the impact on
the steady state is relatively limited. 'e self-healing rate of
enterprises can significantly reduce the speed of credit risk
contagion and the density of infected nodes in the steady
state. As the complexity of network increases the channels of
credit risk transmission, the speed of risk transmission in-
creases. However, the network size has no significant in-
fluence on the infection rate and the steady state. However,
when the external shock is large enough, the steady state of
the network is above 80%, which indicates that in the ab-
sence of policy intervention, the self-healing ability of
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Figure 8: Impact of policy intervention td on ρk(c � 1). (a) m0 � 5; td ranges from 1 to 5; step length is 1. (b) m0 � 100; td ranges from 1 to 5;
step length is 1.
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enterprises alone cannot resist the impact of external shock
on the network, resulting in the failure of the supply chain
finance network to play its due function.

Second, under the external shock, policy intervention is
essential to ensure the normal operation of the supply chain
and reduces the possibility of credit risk contagion. In the
case of small external impact, even moderate intensity in-
tervention can achieve the effect of infection suppression.
However, as external shocks grow, so too should the scale of
intervention. 'is shows that the impact of the epidemic on
different industries is different, and policy intervention
measures should also be targeted. In the early stage of the
epidemic, timely and targeted government intervention will
achieve obvious results.

Finally, due to the importance of its position, the speed
of the credit risk contagion will be significantly increased
once credit default occurs in core enterprises of the supply
chain. 'erefore, whilst focusing on key industries and
preventing the supply chain network from being severely
impacted, the health of core enterprises should be focused
on.

'is paper has some limitations and could be improved
in the follow-up research. First of all, this paper ignores the
particularity of different supply chain financial networks and
selects the same contagion probability. Subsequent studies
can further explore the characteristics of specific networks.
In addition, this paper assumes that the scale of the network
remains unchanged and does not consider the entry and exit
mechanism of nodes. In order to be closer to the reality,
corresponding discussions can be made in subsequent
studies.
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