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(emain purpose of this paper is to use the elementary and analytic methods, the properties of Gauss sums, and character sums to
study the computational problem of a certain hybrid power mean involving the Dedekind sums and a character sum analogous to
Kloosterman sum and give two interesting identities for them.

1. Introduction

We all know that the classical Dedekind sums S(h, q) is
defined (see [1]) as

S(h, q) � 

q

a�1

a

q
  

ah

q
  , (1)

where q≥ 2 is a positive integer, h is any integer prime to q, and

((x)) �

x − [x] −
1
2
, if x is not an integer,

0, if x is an integer.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

(is sum describes the behaviour of the logarithm of
the eta function under modular transformations, see
[1, 2], for related references. Because of the importance of

this sum in analytic number theory, many scholars have
studied its various properties and obtained a series of
important results. Perhaps, the most important property
of S(h, q) is its reciprocity theorem (see [3]). (at is, for
any positive integers h and q with (h, q) � 1, one has the
identity

S(h, q) + S(q, h) �
h
2

+ k
2

+ 1
12hq

−
1
4
. (3)

Some other papers related to Dedekind sums can be
found in [4–6], and we do not want to list them all here.

On the contrary, we also introduce another character
sums analogous to Kloosterman sums as follows. For any
integer q≥ 3, let χ be a Dirichlet character mod q. For any
positive integer k and integer h, we define

G(k, h, χ; q) � 

q

a1�1

′ 

q

a2�1

′ . . . 

q

ak�1
χ a1 + a2 + . . . + ak + ha1 · a2 . . . ak( , (4)
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where 
q
a�1′ denotes the summation over all 1≤ a≤ q such

that (a, q) � 1 and a denotes the inverse of a. (at is,
a · a ≡ 1mod q.

About the properties of G(k, h, χ; q), some people had
studied it and obtained some important results. For example,
from the very special case of Weil’s work [7] one can obtain
the estimate



p− 1

a�1
χ(a + ma)




≤ 2

��
p


, (5)

where p is a prime and m is any integer. Some related
important works can also be found in [7–11].

In this paper, we consider the computational problem of
the hybrid power mean involving the Dedekind sums S(h, q)

and G(k, h, χ; q). (at is,



q

h�1

′G(k, h, χ; q) · S(h, q). (6)

However, for this hybrid power mean, it seems that none
has studied it yet; at least, we have not seen any related
results before.(e problem is interesting because it is closely
related to Dirichlet L-functions. In fact, for some special
positive integers k, we can give an exact computational
formula for (6). (e main work of this paper is to reveal this

point. (at is, we shall use the elementary and analytic
methods, and the properties of character sums to prove the
following two conclusions.

Theorem 1. Let p be an odd prime with p ≡ 3mod 4, and
χ2 � (∗ /p) denotes Legendre’s symbol mod p. &en, for any
positive integer k with (2k + 1, p − 1) � 1, we have the
identity



p− 1

h�1
G 2k, h, χ2; p(  · S(h, p) � (− 1)

k
· p

k
· h

2
p, (7)

where hp denotes the class number of the quadratic field
Q(

���
− p

√
).

Theorem 2. Let p be an odd prime with p ≡ 1mod 8 and k

be any positive integer with (k, p − 1) � 1. &en, we have the
identity



p− 1

h�1
G 2k − 1, h, χ2; p(  · S(h, p) � 0. (8)

If p be an odd prime with p ≡ 5mod 8, then we have the
identity



p− 1

h�1
G 2k − 1, h, χ2; p( ·S(h, p)

�
1
π2 · p

(k+1)/2
· L 1, χ4( 



2
· 

[k/2]

h�0
(− 1)

h
·

k

k − h
·

k − h

h

⎛⎝ ⎞⎠ · (2α)
k− 2h

· p
h
,

(9)

where χ4 denotes the fourth-order character modp,
α � 

(p− 1)/2
a�1 ((a + a)/p) is an integer, and L(s, χ) denotes the

Dirichlet L-function corresponding to χ.
Taking k � 1 in(eorem 1 and(eorem 2, then we have

the following.

Corollary 1. Let p be an odd prime with p ≡ 3mod 4 and
(3, p − 1) � 1; then, we have the identity



p− 1

h�1
G 2, h, χ2; p(  · S(h, p) � − p · h

2
p. (10)

Corollary 2. Letp be an odd prime with p ≡ 5mod 8; then, we
have



p− 1

h�1
G 1, h, χ2; p(  · S(h, p) �

2α
π2 · p · L 1, χ4( 



2
. (11)

Notes: Obviously, in a sense, Corollary 1 gives us efficient
methods to compute the class number hp that can be done on a
computer.

It is easy to prove that if p ≡ 3mod 4, then, for any
positive integer k, we have



p− 1

h�1
G 2k − 1, h, χ2; p(  · S(h, p) � 0. (12)

If p ≡ 1mod 4, then, for any positive integer k, we also
have



p− 1

h�1
G 2k, h, χ2; p(  · S(h, p) � 0. (13)

For general composite number q> 3, whether there
exists an exact computational formula for (6) will be our
further research problem.

2. Several Lemmas

In this section, we shall give several simple lemmas, and they
are necessary in the proofs of our theorems. First, we have
the following.

Lemma 1. Let p> 3 be a prime, and λ and χ are two
nonprincipal characters mod p with χ(− 1) � − 1. &en, for
any positive integer k, we have the identity
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p− 1

m�1
χ(m)G(k, m, λ; p) �

(p − 1) ·
τk+1

(χ)

τ(λ)
, if λ � χk+1

;

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

where τ(χ) denotes the classical Gauss sums.

Proof. For any integer n and nonprincipal character
χmodp, from the properties of Gauss sums τ(χ) (see
(eorem 8.20 in [12]), we have

χ(n) �
1

τ(χ)


p− 1

a�1
χ(a)e

na

p
 . (15)

Using (15) and the properties of the reduced residue
system mod p, we have

G(k, m, λ; p) � 

p− 1

a1�1


p− 1

a2�1
. . . 

p− 1

ak�1
λ a1 + a2 + . . . + ak + ma1a2, . . . , ak( 

�
1

τ(λ)


p− 1

b�1
λ(b) 

p− 1

a1�1


p− 1

a2�1
. . . 

p− 1

ak�1
e

b a1 + a2 + . . . + ak(  + bma1, . . . , ak

p
 

�
1

τ(λ)


p− 1

b�1
λ(b) 

p− 1

a1�1
. . . 

p− 1

ak�1
e

a1 + . . . + ak + b
k+1

ma1, . . . , ak

p
 .

(16)

So, with the repeated use of (15) in (16), we have



p− 1

m�1
χ(m)G(k, m, λ; p)

�
1

τ(λ)


p− 1

b�1
λ(b) 

p− 1

a1�1
. . . 

p− 1

ak�1


p− 1

m�1
χ(m)e

a1 + . . . + ak + b
k+1

ma1 . . . ak

p
 

�
τ(χ)

τ(λ)


p− 1

b�1
λ(b)χk+1

(b) 

p− 1

a1�1
. . . 

p− 1

ak�1
χ a1 . . . ak( e

a1 + . . . + ak

p
 

�
τk+1

(χ)

τ(λ)


p− 1

b�1
λ(b)χk+1

(b) �

(p − 1) ·
τk+1

(χ)

τ(λ)
, if λ � χk+1

,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

(is proves Lemma 1. □

Lemma 2. Let q> 2 be an integer; then, for any integer a with
(a, q) � 1, we have the identity

S(a, q) �
1
π2q


d/q

d
2

ϕ(d)


χmod d

χ(− 1)�− 1

χ(a)|L(1, χ)|
2
,

(18)

where L(1, χ) denotes the Dirichlet L-function corresponding
to character χmod d.

Proof. See Lemma 2 of [6]. □

Lemma 3. If p is a prime with p ≡ 1mod 4 and ψ is any
fourth-order character mod p, then we have the identity

τ2(ψ) + τ2(ψ) � 2
��
p


· α, (19)

where α � 
(p− 1)/2
a�1 ((a + a)/p) is an integer.

Proof. See Lemma 2.2 of [13] or Lemma 3 of [14]. □

Lemma 4. If p is a prime with p ≡ 5mod 8 and ψ is any
fourth-order character mod p, then, for any positive integer
k, we have the identity
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τ2k
(ψ) + τ2k

(ψ) � 

[k/2]

h�0
(− 1)

h
·

k

k − h
·

k − h

h

⎛⎝ ⎞⎠

· (2α)
k− 2h

· p
(1/2)(k+2h)

.

(20)

Proof. First, for all nonnegative integers u and real numbers
X and Y, we have the identity

X
u

+ Y
u

� 

[u/2]

h�0
(− 1)

h
·

u

u − h

u − h

h

⎛⎝ ⎞⎠

· (X + Y)
u− 2h

· (XY)
h
,

(21)

where [x] denotes the greatest integer ≤x. (is formula
is obtained because of Waring [15]. It can also be found in
[16].

Note that if p ≡ 5mod 8, then, for any fourth-order
character ψmodp, we have τ(ψ) � ψ(− 1) · τ(ψ) � − τ(ψ).
So, τ(ψ) · τ(ψ) � − p. (us, taking X � τ2(ψ) and
Y � τ2(ψ), from (4) and Lemma 3, we have

τ2k
(ψ) + τ2k

(ψ) � 

[k/2]

h�0
(− 1)

h
·

k

k − h

k − h

h

⎛⎝ ⎞⎠ · τ2(ψ) + τ2(ψ) 
k− 2h

· p
2h

� 

[k/2]

h�0
(− 1)

h
·

k

k − h

k − h

h

⎛⎝ ⎞⎠ · (2
��
p


· α)

k− 2h
· p

2h

� 

[k/2]

h�0
(− 1)

h
·

k

k − h
·

k − h

h

⎛⎝ ⎞⎠ · (2α)
k− 2h

· p
1/2(k+2h)

.

(22)

(is proves Lemma 4. □

3. Proofs of the Theorems

In this section, we shall complete the proofs of our theorems.
First, we prove (eorem 1. From Lemma 2, we have

S(a, p) �
1
π2 ·

p

p − 1
· 

χmodp

χ(− 1)�− 1

χ(a)|L(1, χ)|
2
.

(23)

If p is a prime with p ≡ 3mod 4, then, for any positive
integer k with (2k + 1, p − 1) � 1, let 2k + 1·

(2k + 1) ≡ 1mod (p − 1); then, 2k + 1 must be an odd
number. If characters λ and χ satisfy λ � χ2k+1 with
χ(− 1) � − 1, then χ � λ2k+1. If λ � (∗ /p) � χ2 is Legendre’s
symbol mod p, then we have χ � χ2k+1

2 � χ2. Note that if
p ≡ 3mod 4, then χ2(− 1) � − 1, τ(χ2) � i

��
p

√ and
L(1, χ2) � πhp/

��
p

√ . So, from (23) and Lemma 1, we have



p− 1

h�1
G 2k, h, χ2; p(  · S(h, p)

�
1
π2 ·

p

p − 1
· 

χmodp

χ(− 1)�− 1



p− 1

h�1
χ(h) · G 2k, h, χ2; p(  · |L(1, χ)|

2

�
1
π2 · p · 

χmodp

χ�χ2

τ2k+1
(χ)

i ·
��
p

√ · |L(1, χ)|
2

�
1
π2 · p · (i ·

��
p


)
2k

·
π2

p
· h

2
p � (− 1)

k
· p

k
· h

2
p.

(24)

(is proves (eorem 1.
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Now, we prove (eorem 2. Let p be a prime with
p ≡ 5mod 8; then, τ(χ2) �

��
p

√ . For any four-order character
χmodp, we have χ(− 1) � − 1. So, for any positive integer k

with (k, p − 1) � 1, note that k is an odd number; if χ2 � χ2k,

then χ2 � χ2. In this time, χ � χ4 must be a fourth-order
character mod p and |L(1, χ4)| � |L(1, χ4)|; from (23),
Lemma 1, and Lemma 4, we have



p− 1

h�1
G 2k − 1, h, χ2; p(  · S(h, p)

�
1
π2 ·

p

p − 1
· 

χmodp

χ(− 1)�− 1



p− 1

h�1
χ(h) · G 2k − 1, h, χ2; p(  · |L(1, χ)|

2

�
1
π2 · p · 

χmodp

χ2�χ2

τ2k
(χ)
��
p

√ · |L(1, χ)|
2

�
1
π2 · p ·

τ2k χ4( 
��
p

√ · L 1, χ4( 



2

+
τ2k χ4( 

��
p

√ · L 1, χ4( 



2

 

�
1
π2 ·

��
p


· τ2k χ4(  + τ2k χ4(   · L 1, χ4( 



2

�
1
π2 ·

��
p


· 

[k/2]

h�0
(− 1)

h
·

k

k − h
·

k − h

h

⎛⎝ ⎞⎠ · (2α)
k− 2h

· p
(1/2)(k+2h)⎛⎝ ⎞⎠ · L 1, χ4( 



2

�
1
π2 · p

(k+1)/2
· 

[k/2]

h�0
(− 1)

h
·

k

k − h
·

k − h

h

⎛⎝ ⎞⎠ · (2α)
k− 2h

· p
h⎛⎝ ⎞⎠ · L 1, χ4( 



2
.

(25)

If p ≡ 1mod 8, then χ4(− 1) � 1, so in this time, we have



p− 1

h�1
G 2k − 1, h, χ2; p(  · S(h, p)

�
1
π2 ·

p

p − 1
· 

χmodp

χ(− 1)�− 1



p− 1

h�1
χ(h) · G 2k − 1, h, χ2; p(  · |L(1, χ)|

2

�
1
π2 · p · 

χmodp

χ2�χ2

τ2k
(χ)
��
p

√ · |L(1, χ)|
2

� 0.

(26)

Combining (25) and (26), we may immediately deduce
(eorem 2.
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