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In this study, we used grids and wheel graphs G = (V, E, F), which are simple, finite, plane, and undirected graphs with V as the
vertex set, E as the edge set, and F as the face set. The article addresses the problem to find the face irregularity strength of some
families of generalized plane graphs under k-labeling of type (a,3,y). In this labeling, a graph is assigning positive integers to
graph vertices, graph edges, or graph faces. A minimum integer k for which a total label of all verteices and edges of a plane graph
has distinct face weights is called k-labeling of a graph. The integer k is named as total face irregularity strength of the graph and
denoted as tfs (G). We also discussed a special case of total face irregularity strength of plane graphs under k-labeling of type (1, 1,

0). The results will be verified by using figures and examples.

1. Introduction

This article is based on simple, plane, finite, and undirected
graphs G = (V, E, F). Graph labeling is a mapping that maps
graph elements (V, E, F) into positive integers, and we name
these positive integers as labels. Suppose that «, 3,y € {0, 1}
and k is a positive integer, then a branch of labeling, named
as, k-labeling of type (&, 3,7y), is a mapping ¢ from the set of
graph elements (V,E,F) into the set of positive integers
{1,2,3,...,k}. A labeling of type (1,1,0) of grid graph G
means that vertices and edges are labeled but face is not
labeled. We will work on labeling of type (1, 1, 0) for the grid
graphs G, in which the vertices and edges will be labeled
but our ultimate focus will be on calculating distinct face
weights. A detailed review of graph labeling can be seen
in [1].

If the domain of k-labeling of type («a, 3, y) is vertex set,
edge set, face set, or vertex-edge set, then we name this as
vertex k-labeling of type (1,0,0), edge k-labeling of type
(0,1, 0), face k-labeling of type (0,0, 1), or total k-labeling of
type (1,1,0), respectively. The other possible cases are
vertex-face set, edge-face set, and vertex-edge-face set which
we call as vertex-face k-labeling of type (1,0, 1), edge-face

k-labeling of type (0,1,1), and entire k-labeling of type
(1,1, 1), respectively. The trivial case (a,,7) = (0,0,0) is
not accepted. The weight of any vertex in a graph is the sum
of labels of that particular vertex and its adjacent edges. The
weight of any edge of a graph is the sum of lables of its
adjacent vertices. The weight of any face in a graph is the sum
of labels of that particular face and its surrounding vertices
and edges. For a deep survey on weights of graph elements,
reader can go through [2-4]. The weight of a face f of a plane
graph G under k-labeling ¢ of type (a, 3, y) can be defined as
follows:

Wt(lﬁ(ay/s,y)(f) =a Zfﬁb(") +p ij¢(e) +y¢ () (1)

A k-labeling ¢ of type (a,f3,y) of the plane graph G is
called face irregular k-labeling of type (a, 3, y) of the plane
graph G if every two different faces have distinct weights;
that is, for graph faces f,g € G and f # g, we have

Wty (D #FWt (9). 2)

Face irregularity strength of type (a,f3,y) of any plane
graph G is the minimum integer k for which the graph G
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admits a face irregular k-labeling of type (a,p,y). For
a vertex-edge labeled graph G, the minimum integer k for
which the graph G admits a face irregular k-labeling of type
(a, B,y) is called the total face irregularity strength of type
(a,3,y) of the plane graph G, and it is denoted by
tfsp,) (G). A detailed work on irregularity strength of
graphs can be seen in [4-12].

Gary Ebert et al. worked on the irregularity strength of
2 x n grid in their research “Irregularity Strength for Certain
Graphs,” [13]. Baca et al. determined total irregularity
strength of graphs and calculated bounds and exact values
for different families of graphs [14]. Baca et al. investigated
face irregular evaluations of plane graphs and calculated face
irregularity strength of type (a, 5,y) for ladder graphs [15].

By motivating from all abovementioned, we are working
on grid graphs G} with n rows and m columns. Labeling of
a grid graph has many stages, depending on the size of graph,
on the selection of rows and columns, and sometimes on the
smaller and larger values of labeling. We will calculate the
total face irregularity strength of grid graphs under labeling ¢
of type (a,f3,y), and this work is a modification of above-
mentioned articles. Grid graphs are constructed by the graph
Cartesian products of path graphs, that is, GI' = P,,,00P,,. .

We will prove the exact value for the total face irregu-
larity strength under k-labeling ¢ of type (a,f,y) of grid
graphs with the property | (m+1)/3] =m —2[(m+1)/3]
where 1 <m <n.

We will prove the exact value for the total face irregu-
larity strength under k-labeling ¢ of type («,f3,y) of wheel
graph W,.

Baca et al. determined a lower bound for the face ir-
regularity strength of type (a,f,y) when a 2-connected
plane graph G has more than one faces of the largest sizes
[14, 16]. They presented the following theorem.

Theorem 1 (see [14, 16]). Let G = (V, E, F) be a 2-connected
plane graph with nji-sided faces, i>3. Let a,f, vy € {0, 1},
a =min{i: n;#0}, and b = max{i: n;#0}. Then, the face
irregularity strength of type (a,3,y) of the plane graph G is
(a+Ba+y+|F(G)| -1
(a+pBb+y

18 (ap,p) (G) 2 (3)

Proof. Suppose that face irregularity strength under a k-
labeling ¢ of type a, 8,y of the plane graph G is k.

The smallest face weight under the face irregular k-la-
beling ¢ admits the value at least (a+ ff)a+y. Since
|F(G)| = 2513 n;, it follows that the largest face weight attains
the value at least (a+f)a+y+|F(G)|—1 and at most
((a + B)b + y)k. Hence,

(a+Pa+y+F(G)|-1< ((a+pb+yk,

(a+PBla+y+|F(G) -1

ez (a+P)b+y

(4)
O
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This lower bound can be improved when a 2-connected
plane graph G contains only one face of the largest size, that
is, m, =1 and ¢ = max{i: n;#0,i<b}. So, we present the
following theorem to calculate the lower bounds for grid
graphs GJ/".

2. Main Results

In this research, we will demonstrate the tight lower bound
for the total face irregular strength of type (1;1;0) for the
plan graph particularly grid and wheel graphs. It is sufficient
to prove tight lower bound of grid graph that the exact value
of tfs(G,,n) exists and differences in weights of the hori-
zontal faces must be 1 and the differences in weights of the
vertical faces is m.

Theorem 2. Let G = (V, E, F) be a 2-connected plane graph
with n;i-sided faces, i>3. Let a, B,y € {0,1}, a = min{i: n; #
0} and b= max{i: n;#0}, m, =1, and ¢ = max{i: n;#0,i
<b}. Then, the total face irregularity strength of type (a, ,7y)
of the plane graph G is

(a+Ba+y+|F(G)| -2

(a+PB)c+y (%)

fS (rx,,B,y) (G) >

Proof. 'We suppose that total face irregularity strength of
any 2-connected plane graph G under k-labeling ¢ of type
a, B,y is equal to k, that is,

tfs(%ll)/) (G) = k (6)

Given that the lagest face n;, = 1 for i <b. So, the smallest
face weight under the face irregular k-labeling ¢ of type
(a, B, y) will have the minimum value (« + )¢ + y. The total
number of faces of the graph can be obtained by adding all
the number of i-sided faces where i >3. Hence, the largest
face weight can have the minimum value (a+pf)a+7y+
|F(G)| — 2 and maximum value ((« + f8)c + y)k. So, we can
construct the following results:

(a+Ba+y+|F(G)|-2< ((a+pPb+yp)k

e {(a+ﬁ)a+y+IF(G)l —2}. @
(a+P)c+y
Hence,
(a+Pa+y+|F(G)| -2
BSapy (@)= { (a+pB)c+y w (SD)

From the above result, we see that if a 2-connected plane
graph G contains only one largest face, then the lower bound
for the face irregularity strength of type (1,1,0) can be
calculated as

9)

2a +|F(G)| -2
tfs 110 (G) > [“l()'w

2c
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In this research, we will prove the tight lower bound for
the total face irregularity strength of type (1, 1, 0) for the grid
graph G/ and wheel graph W,. To prove the tight lower
bound of the grid graph, it will be sufficient to show that the
exact value of tfs (G!') exists. The exact value of tfs (G)'), that
is, calculated from grid graph G/ under a graph k-labeling of

type (1,1,0), exists if the differences in weights of the
horizontal faces are 1 and the differences in weights of the
vertical faces are m. Generalized grid graphs can be written
as Gy =P,,0P,,;.

The vertex set and the edge set of the grid graph can be
defined as follows:

V(P OP,.,)={vii=12..,n+1j=12,...,m+1},
. (10)
E(P, 0P, ) ={vlvli=12. nj=12. . m+1itul/ii=1,2,.. ,n+1,j=12,...,m}
Theorem 3. Let n,m>2 be positive integers and In order to prove this, it will be sufficient to show that the

G'=P, 0P, be generalized grid graph, then exact value of tfs (G)') exists.
mn+7 The vertices for the generalized graph G} under a k-
tfs 11,0y (P OPpyy) = [ 3 ] (11) labeling ¢ of type (1,1, 0) in different intervals of i and j can
be defined as follows:
1+[m+1H 1J fori=1,2,3 2 k andj=1,2 m+1
- > rt=1,25..., T 7 . 4N/~ = L4 >
3 2 l [ (m +1)/3] !
¢(vi) = (12)
k
k, fori=2|——— 1,..., landj=1,2,..., 1.
ori {[(m+1)/3J}+ n+1landj m+
The horizontal edges for the generalized graph G under
a k-labeling ¢ of type (1, 1, 0) in different intervals of i and j
can be defined as follows:
1+lm+1Hi_lJ fori=1,2,3,...,2 k dj=12
I ) ri=1,24,5..., T/ AN~ n = 1,4 > >
3 U2 ort Lm+ 73] | "
p(viv") = (13)
k
k, fori=2|———— 1,..., landj=1,2,...,
or i [L(m+1)/3J+ n+land j m

The vertical edges for the generalized graph G/ under
a k-labeling ¢ of type (1, 1,0) in different intervals of i and j
can be defined as follows:
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i = LI T
{[2], fori=1,2,..., 2’7[(Wl+1)/3J“ landj=1,2,..., m+1,

AN mrlff k| Misg| ok
[2] L(m 3k+3+3[ 3 J(’V[(m+1)/3j“ 1>>”2<t Zh(m+l)/3jw+l)“ fori=2{ k },Zh(mfl)/ﬂ}+1andj=1,3,...,m:mzl(m0d2)

[(m+1)/3]

1 m+l 1/, k . o
[2<m 3k+3+3 <[m“ 1>>H5<1—2{m}+1” orj=13,..., m+ 1;m = 0(mod 2),

poN

~

e

S~
1

o(vIvkh) =
m B("’ 3k+3+3{m;1J<L(mf1)/3J'1>>H%<i_2h<mf1)/3jw”ﬂ fori=2|— K P - landj=2,4 L;m = 1(mod2
ori = h(m+l)/3jw’ {L(m+l)/3j}+ andj=2,4,...,m+1;m= 1(mod2)
1 m+1 k 1/, k o o
+\‘2(m 3k+3+3[ 3 J)(L(WHI)BJ“—1>H£<1—2{m}+1>J orj=2,4,...,mym=0(mod2),
J _ mtl k _
[21+(m 3k+3+3l 3 J({L(Wl+l)/3J“ 1)) fori=2[Wkl)BJ}+2 ,,,,, nandj=1,3,...,mym=1(mod2)

m|[1/. k m)|1/(. k . o
+[EHE(1_4W}_lﬂ+[EHE<1_ZL(7"+1)/3J_1>J’ orj=1,3,..., m+ 1;m = 0(mod?2),

j m+1 k
M (m 3’”3*3[ 3 J(h(m+l)/3j“71>) fori:Z[Wkl)BJJr

mi[1/(. k mi|1/. k . L
+[5‘”i<1_4m}_l>“+{?H‘E<1_ZL(M+1)/3J“_1>J’ orj=2,4,...,m;m=0(mod?2).

2.0, nand j=2,4,...,m+1;m = 1(mod2)

(14)

Figure 1 represents the generalized formula for face  a k-labeling ¢ of type (1,1,0) for the graph G can be
weights. The generalization of weights over the face f under ~ defined as follows:

Weao(f1)= 2 FO+ X fe)=9(v]) +o(v/") + ¢(v) + #(viir) + o(v1V]™")
v~f] e~ f] (15)

+¢(vivly) + o(viavii) + o(vITVE).

Horizontal differences in weights among different in-
tervals of 7 and j can be calculated as follows:

k

F0r1—123 ’Vm

} 2andj=1,2,..., m+1,

Weaao (F17) = Weaao(7) = () + ¢(v7) + (V) + 9(VI7) + (V717 ) + 9 (v
+ (i) + () = 0() — 0(v™) = 9(v) - 9(v) - 9 (vl ™) - #(vivl)
= ¢(vlaviil) - o(v V)
e e P e S e P
g e e R e R e | el e FA R e |
-5
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j i j+1 j+1
vl vl vl
V{ Vi+1j fl-j V}H Vi 1]+1
j j+1
Vigl x+1J Vz+1j Viyl

FiGgure 1: Construction of weights over the face f under k-labeling of type (1, 1, 0).

=1, foreveryvalueof j,

. k )
Fort—Z[M“—land]—l,z ..... m+1,

067+ 0(07) 0 (1) 9 (50) 9471 o (412)
EIEE) + 9(ET) o) ~ o2~ 900) 0 ) o) ~ (i)
(k) -9

| R | R e [ R e I S B
| el R e | R Gl | B E R e |
-[571-[3]

=1, forallvaluesof j,

Wt(1,1,0)(fzj ) Wt(llo(fz)

+

=1+

Fori=2hwf—l)/3ﬂandj=1,2 ..... m+ 1,
Weaao (1) = Weano(f1) = 9(7") + 9(v7) + ¢(vlli) + $(viiT) + 9("'!) + 6w i)
#(viiivilT) + o0 id) — 0(4) = (™) — 9(v) = (i) - () — 4(vivi)
= 9(vaviin) — 9" )
|

R e
o[alm-sers P2 [l 1) [l o] )]

(s (el )02 | )

B S e R e e

B(’“ e 33| Gt(mn/zﬂ )JB(’_Z{W}HN

+

+
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d G o (i) | H s e iR
[52 [aCmseesa" ) ([ | 1) oo o [4
‘{%Q”_3k+3+3lm;JJ><hoﬂf1yﬂ}_1>J“)_0
YN

=1, foralj=1,2,..., m+ 1,

Fori=2{ +landj=1,3,..., m;m=1(mod2)orj=1,3,..., m+ 1;m = 0(mod 2),

#w
L(m+ 1)/3]
Wego(F17) = Weaag(f7) = (v™) + ¢(v™) + ¢(vii) + $(vIi7) + (v v ) + o)

+ (V) + (T ) = o(v]) = ¢() = 8(vh) = $(vi1) — $(vIVIT) = #(vivi)
= o(vlavly) - o(v"l),

. . 5
Wt(hl»o)(f{ 1)_\’\/'[(1,1,0)(]7) k+k+k+k+[]-2F ]

+B(m_3k+3+3lm; 1J)<h(mfl)/3ﬂ —1)”%(1‘—2{@] + 1)}
(el ([l ) (-l | +1).

—k—k—k—k—F]
2

s 5 N e (A o)

g G e (e )]GS kel i)
15214

=1, foreveryoddvalueof j,

Fori=2{ +landj=2,4,..., m+1l;m=1(mod2)orj=2,4,..., m;m = 0(mod2),

o ]
[(m+1)/3]
B+ ¢() + $(vily) + $(IT) + 9() + 6 (i)

+ (Vi) + (VI = 0(v) = ¢ (V) = 6(vn) — (V1) — e (vIVIT) = 9 (vivL,)
_‘/)( 1;1"1]:11) ¢(V{+1V{:11)’

Wt(l’m)(f’jﬂ) thlo(f) k+k+k+k+[];r ]

Wt(l,l,O)(f{+1) - Wt(l,l,O)(frj)
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+B<m_3k+3+3[m;1J><L(Mf1)/3J —1)”%(:‘—2{@} +1ﬂ
+B<m—3k+3+3[m;1J)<L(mfl)/3J —1)“%(:’—2{@} +1>J

—k—k—k—k—[l]
2

tEC (e s E O sl
e 5 o )Mo (-2 ] )
5

=1, foreveryevenvalueof j,

k
Fori:Z{m“+2 ..... nj=13..., m;m=1(mod2)ORj=1,3,..., m+1;m =0 (mod2),

Wt(1,1,o)(fzj+l) - Wt(1,1,o)(flj) = ‘/’(szﬂ) + ‘/’(Viﬁz) + (/)(Vz]:ll) + ¢’( f:f) ¢(V{+l"3j+2) + (p(vl]+1vl]:11)
+ (VI ) + o(vIIT) = o(v) = (V) — o(vLy) - o (v ) - e (viv™) - o (vivL,)
—o(vivi) - e(v I,

Weioso (1) = Wega (1) =k ks ko ks [122] +<m—3k+3+3[m3+ IMML)BJ . 1)>
(- {l I RHIE G e R R
(ool o ) B0 )
L33l )
574

=1, foralloddvalues of j,

. k
Fori _zh(m+ 73] +

Wi (1) = W (F]) = 6(v™) + ¢(v™) + (vIl) + ¢(vIi7) + ¢(v V™) + ¢(v] VI
+o(vVIT) + o) = 0(r) = o (V™) = #(vhr) 0 (i) = $(vII™) = ¢(viva)
A ey B ARy

. 2 k
Wt(l,l’o)(f{ ) tho)(f) k+k+k+k+[J2] (m—3k+3+3[m;1J<L(m+1)/3J—1))
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4’3”;("4[(%]{1)/3]1 -1)1 +[’;’JB<1-2L(7}1+"1)/3J —1)J —k—k—k—k—[%]
ool B
L3 fom )

T

=1, foralleven valuesof j.

(16)

Vertical differences in weights among different intervals
of i and j can be calculated as follows:

Fori=1,2,..., 2 -2andj=12,..., m+1,

o
Wia0/(fln) = Weao(F1) = $(va) + @(vih) + ¢(vha) + 8(v112) + $(vvli) ) + 6(vhivla)
+9(vlavl) +o(viiivi ) - ¢(v]) - ¢(v™) - 9(vl) - o(vlD) - 9 (vivI™) - 9(vivi.1)
= o(vhvli) - o (V)
Weaan () = Weaan () = 1 [P 5 e P[] < ]+
e R o U RN S CA BN
[1-5]
e bt e
e (EE )

m+1
L 3 |

Fori = " +1)/3J Lj=12,..., m+1,
Wt(1,1,0)(fzj+1) - Wt(l,l,o)(fl) ‘/5( ) ( 11:11) + ‘/5( 1+2) + ¢(sz:21) + ¢(V{+1"] ) ¢(V{+1Vz+2)
+¢(viavlny) + oV ) — (V) = o(vT) = d(vi) - $(vI) — (V) — #(vivha)
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= (vvli) - o (v VI),

W (Fl) = Weao (71) = k+ ks k[ 2] 4[]
-l )
(50 r s3] 1))
(ol [ )) )
(-l )|
(R ke (i)
(e "5 (| rwrom| 1))
s | el R i el R i e B 1 R
-3l )|

‘({(m—3k+3+3[(m+ D/3)) ([k/| (m + 1)/3]] - I)J

.

+

SR

2

s "(m—3k+3+3[(m+1)/3]([k/L(m+ 1)/3]] - 1))D
2

+B (41— 2[k/| (m+1)/3]] + 1)

‘("(m—3k+3+3[(m+1)/3]([k/L(m+ 1)/3]1 - 1))}
2

s {(m—3k+3+3[(m+1)/3J([k/L(m+ 1)/3]1 - 1))J)

2
e
=3k+(1)(m—3k+3+3lm3+IJ(L(mfI)BJ_1)>+0_3_3lm§1Hi_TlJ

:3k+m_3k+3+3lm;IHL(mfl)BJ —3[m;1J —3-3["1;1H71J

3" 115
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=m+4m;lK[HmEUBJ_I_HUmeBJ_q>

F i=1,2,..., 1,
ori = [(m+DBJJ m

Wt(1,1,0)(fzj+1) - Wt(1,1,0)<f1) ¢(v/ ) ( 11:11) + ‘/5( 1+2) + ‘/’(szjzl) + ¢(V{+1"] ) ¢(V1]+1V1+2)
+¢(viovin ) + o(viviy ) = o(v) - o(v) - o(vy) - o(viY) - e (vivI™) - e(vivl,y)
—¢(vivi) - o(vIVE),

. A |
Wt0)(fln) = Weauo(f]) =k +k+k+ [ﬂ + %]

-l

Q (m ks ;1J<[L(mfl)/3J]_l))J
(s " (| 1))
(] )

(E(”“ he3e3| ™ J(an/sﬂ”m

H’” s3] ;lJGumfn/sJ’l))D

S S | el R i el i e B I R
B( ) {ummm}

N | =

+

(torsmm| )]
L(mfnmﬂ_l))b’
")

(B(’” e 33| 3+1J<[L<mf1>/3J]_lm
{ (h(mfl)/sﬁ_l)m
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//

B('”_3k+3+3m+1 (ool )]
(m o] Gumu)/aﬂ 1)”)
(305" W v 1))
| )

;(m 3k+3+3m+1 (h(m+1)/3j} 1) J)
II57]

s
N | =

m+1

+

+

m+1
3

—3—3[

_(B(’"”k””{m;IJGL(mfl)/sJ} _1>)J
B(m_%””{m;IJGumfl)/sJ _1>>D

(m-3k+3+3m+1/3]([k/[(m+1)/3]]-1))

o
1

(m-3k+3+3m+1/3]([k/| (m+1)/3]]-1))

)

2
e
=3k+m—3k+3+3[m3+1J<—[(mfl)/3J—1)—3—3[
=m+3lm;1J(L(m+k1)/3J- ”‘[%J)
:m”[m;lJ(L(mfnm ”‘[%J)

325y m+1,

)+

; — k - g —
For1—2"7[(m+l)/3jw+l,]—l

Wt (Fhi) = Weann (1) = 0(vhy) + o(vi)) + o(vl,) + 6(vih) + o(vi v} ) + o(

vl

11

|

)

i+1 i+17i+2
+ (vl ) + o(VIEvED ) = o(v]) = o(v) = ¢(vh) - $(VIE) - o (W) - 9(vivly)
— (vl Vi) - o(vITVED),
, , i1 ori+l 1 k
Wt(l,l,o)(ffﬂ) —Wt(l)l,o)(f{) = k+k+k+%-‘ +[%.| +2(m—3k+ 3 +3Vn;r J(L(m+ 1)/3J - 1))
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HGE = Rl (IR
ﬂ%(m—z{ml—1)J<'_%1+t%J>
S R (e - P

'Q(m—3k+3+3[(m+1)/3J([k/L(m+ 1)/3]] - 1))J
2

2

302 ] 1))

s "(m 3k+3+3 (m+1)/3]([k/| m+1)/3]]) - 1)D

"(m 3k+3+3 (m+1)/3]([k/| (m+1)/3]] - 1))}
2

2

3k + 3 3 m+ 1 £ 1
m-—SKk+5+ 3 J | (m+1)/3] -

k
+(1)(m)—(1)(m—3k+3+3lm;IJGWM1)/3Jw _1)>
m+1 k

—(1)<m—3k+3+3[ 3 J("[(m+1)/3J“_l>)

% m—3k+3+3 (m+1)/3]([k/ (m+1)/3]]) - 1)J)
-2

Fori = { H)/J ..... mj=12,...,m+1,
Weo () = Weano(F]) = ¢(vhi) + ¢(vi0) + 6(v) + 6(v2) + ¢(vh i) + ¢(v1 )
+9(vl) + $(vIvID) - ¢(v]) - o (V™)
= ¢(vl) - o (vii) — $(vvI™) - 9(vivi)
= ¢(vhaviit) - o),

Wt(l,l,o)(ffﬂ)—Wt<1,1,0)(f{)=k+k+k+[ﬂ []; ]+2(m—3k+3+3lm+IJGL k w_1>>

3 (m+1)/3]

[l - ON2 )
N (R E
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_k_H_[LW 2<m—3k+3+3[mJr1
21712 3

(
(o=l ] )

1,12 k ] 1
+mil+—m— —mi

sl 1)

J([L(mfwsﬂ_l))
sl NG Dol )15

(=] 1)

G(H 1 —2[k/[(m+1)/3ﬂ - 1)} {(H 1-2[k/| (m+1)/3]] - 1)J>
2

([(1—2[k/[(m+ 1)/3]] - 1)} {(i—z[k/[(m+ /3] - 1)J)
2

. k . k
=m(1+1—2h(m+1)/3J _1)_m<1_2h(m+1)/3j1 —1)

) k
:m(l+1—2’7|_(n1+1)/3-]“—1—1

=m.

Example 1. The total face irregularity strength of grid graph
G., under a k-labeling of type (1,1,0) is 4.

Proof. 'The graph under consideration is G, = P,0OP,.
Figure 2 is a 4-labeling of type (1, 1,0) for the grid graph G2,
and it will help us in calculating total face irregularity
strength in different intervals of the grid graph.

Fori=1,2,3,4,5,6and j = 1,2,3,4,

2 L 1
lm+nn]| "

(17)

Here, k=[(18+7)/8]1=4, [(m+1)/3] =1, [k/|(m+
1)/3]1=4,and m-2| (m+1)/3] =1

In order to show that tfs | o (G?) = 4, it is sufficient to
prove that all the horizontal differences in face weights are 1
and all the vertical differences in face weights are 3. Now, we
prove these results.

Horizontal differences in face weights can be calculated
as follows:

W (1) = Weano (1) = 0(v) + ¢(v]7) + o(vh1) + (vIT) + 0(vv]?) + 9(v] V1)

+ ¢(
—o(vi Vi) - o (v V)
31

=1, foreveryvalueof j,

IV + (v ) = o(v]) = (V) - o(v]y) - o(vE)) - o (viv) = o(vivL,y)
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FIGURE 2: Total face irregular 4-labeling of the (1, 1, 0) of grid graph Gg.

Fori=7andj=1,2,..., m+1,
Wt 10)(f ) Wt 10)(f ) (VJH) + ¢(VJ+2) + ¢( ) + ¢( {:12) + ‘/5( /! zﬁz) + ‘/5( Vjill)
+@(vvLT) + (V) = o (V) = (V) = (V) - ¢ (Vi) - o (v ) - e(vIvL)
—o(vivii) - o (v V)
j+21 1
-5

= 1, forall values of j.

Vertical differences in face weights can be calculated as
follows:

Fori=1,2,3,4,5,6and j = 1,2,3,4,
Wt(1,1,0)(fzj+1) - Wt(l,l,O)(f{) = ‘/’(szﬂ) + ‘/’(Vz]:ll) + ‘/5( 1+2) + ‘/’( z]:zl) + ‘/5( Viavin ) ¢(V1]+1v1+2>
+ ¢(viavla) + oIV ) = 0(v) = o(v) — ¢(via) — $(VI) — $(vIV]) — @(vivha)
‘/’( 1]+1Vz]:11) ¢( {H"{:ll)
m+1
- 3[ 3 J

:3)

Fori=7;j=1,2,3,4,
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V3

FIGURE 3: Wheel graph W,

Wt(l,l,O)(fZ+1) - Wt(l,l,o)(f{) = ‘/’(V{H) + ¢(Vz]:11) + ¢(V{+2) + ¢(Vz]:21) + ¢(V{+1V1]:11) + ¢(V{+1sz+2)

jo g+l J+1 g+l
+ ¢(Vi+2vi+2 ) + ¢(Vi+1 Viva

j j+1 j+1 g+l
- ‘/’(an"{u ) - ¢(Vi Vil

)_

)

:m”lm;lJ(L(mfl)/sJ

= 3.

It shows that all the differences of horizontal faces are
equal to one and all the differences of vertical faces are equal
to m. Hence, total face irregularity strength of grid graph G;
is 4. O

Theorem 4. . Let W, be a wheel graph with n+ 1 vertices,
where n> 3. Then, under a total k-labeling of type (1, 1,0), we
have

s (W,) = [”*4].

5 (20)

Proof. Let W, be a wheel graph with n + 1 vertices, then by
the definition of wheel graph, the total number of edges will
be 2n and the total number of faces will be n + 1, that is,

|[E(W,)| = 2n,

|[F(W,)|=n+1 =

As we see that a wheel graph has 3-sided internal faces
and external face, so by using Theorem 2, we have

ts(w,) = [ 4].

(22)

In Figure 3, v is the vertex in the center of wheel graph
W, which is connecting to all the vertices v; for 1<i<n.
Similarly, for 1 <i<n - 1, the edges of the wheel graph can

o(v)) = o(vI") - o (vy) - o(

|- [l )

Vi) = o(vivi) - ¢(vivla)

(19)

be constructed as E(W,) = {w,, v;v;,1, W, V1 V,}. Also for
1 <i<n -1, there will be exterior face, the nth interior face
can be written as f(W,) = {vv;v,v}, and other all 3-sided
interior faces can be written as f(W,) = {vv;v,,,v}. Let us
define a total k-labeling ¢: VUE — {1,2,3,...,[(n+
4)/51}.

In Figure 4, we consider a finite wheel graph W which is
labeled under a 2-labeling of type (1,1,0). So, for 1<i<3,
we have

p(v) =¢(v,) = (vv;) = p(vivy) = 1,

(23)
$(v1) = ¢(vs) = ¢(vivs) = ¢ (v,v3) = 2.
Weight of exterior face will be
Wt (S exterior) = 10 (24)
Weight of interior faces will be
Wt(f;)=i+6. (25)

Now, let us talk about the graphs except W for which we
define the labeling as ¢ (v) = 1:
(1) For 1<i<[n/2] + 1, we have ¢ (v;) = [2i/5]
(ii) For [n/2]+2<i<n, we have ¢(v;) =[2(n—-i+
1)/51+1
(iii) For 1<i<[n/2] + 1, we have ¢ (vv;) = [ (2i — 1)/5]
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FIGURE 4: 2-labeling of a wheel graph W.

(iv) For [n/2]1+2<i<n, we have ¢(vv;,) =[(2(n-
+1)/5]+1

(v) For i =1, we have ¢ (v,v,) =1
(vi) For 2<i<[n/2], we have ¢ (v;v;,;) = [ (2i — 2)/5]

(vii) For i = [n/2] + 1, where n=m(mod6) in which
m = {2, 3,4,5}, we have ¢ (v;v;,,) = [ (2i —2)/5]

(viii) For i = [n/2] +1 where n = m(mod6) in which
m € {0, 1}, we have ¢ (v;v;,;) = [ (n+4)/5]
(xi) For i=[n/2]+2<i<n-1, we have ¢ (v;v; ;) =[(2
(n-1i)-2)/51+1
For weights of the wheel graph W,, we proceed as
follows:
(i) For i =1, we have Wt(f;) =6
(ii) For 2<i<[(n+ 1)/2], we have Wt(f;) =2i+3
(iii) For [ (n+1)/2] + 1<i<n, we have Wt(f,) =2(n—-
i)+8
(iv) For external weight, we will use Wt(f gerior) =
2n+8

We can easily observe that under the k-labeling ¢ of type
(1,1,0), the minimum k for which the wheel graph admits
total face irregular strength is [ (n + 4)/5]. Hence,

(26)
O

tfs(W,) = V * 4].

3. Conclusion

We investigated total face irregularity strength of general-
ized plane grid graphs G' and wheel graphs W, under
a graph k-labeling of type (a, f3,y) where a, 8 € {0, 1}. This
work was based on the bright idea of finding face irregularity
strength of ladder graphs by Martin Baca et al. [14]. In this
article, we worked on the total face irregularity strength of
grid and wheel graphs. We labeled graph vertices and graph
edges but focussed on estimating face weights of graphs to
prove the sharpness of k-labeling. We derived generalized
formulas by considering graphs with different values of n, m,
[(m+1)/3], and m — 2| (m + 1)/3]. Also, we verified the
final results with example. In future, total and entire face

Journal of Mathematics

irregular strength of some more products of different plane
graphs can be investigated under k-labeling of type (a, 3, y).
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