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(is paper describes two prediction methods for predicting the non-observed (censored) units under progressive Type-II
censored samples. (e lifetimes under consideration are following a new two-parameter Pareto distribution. Furthermore, point
and interval estimation of the unknown parameters of the new Pareto model is obtained. Maximum likelihood and Bayesian
estimation methods are considered for that purpose. Since Bayes estimators cannot be expressed explicitly, Gibbs and the Markov
Chain Monte Carlo techniques are utilized for Bayesian calculation. We use the posterior predictive density of the non-observed
units to construct predictive intervals. A simulation study is performed to evaluate the performance of the estimators via mean
square errors and biases and to obtain the best prediction method for the censored observation under progressive Type-II
censoring scheme for different sample sizes and different censoring schemes.

1. Introduction

Studying new lifetime models become necessary and exten-
sive as many applications appeared in natural sciences. Over
the last four decades, many authors focused their works on
generating new lifetime distributions that will fit the exper-
imental data, for example, medical, engineering, social sci-
ences, reliability analysis, and others. In literature, those new
models seemed to possess good properties and some were
superior relative to the original ones.Many generalized classes
of lifetime distributions are implemented to describe various
phenomenal data (one may refer to Kumaraswamy [1] and
Marshall and Olkin [2]). (e new family of distributions
should include the original distribution as a submodel and is
expected to give more flexibility to the original model. In our
work, we consider a new form of Pareto distribution which
was introduced by Bourguignon et al. [3]. (e new Pareto
model generalizes the original Pareto distribution, and it
seemed to be more simple in some mathematical calculations
and had new characteristics, see for example referenceNo. [4],
Almetwally and Haj Ahmad (2020).

In some life tests and reliability experiments, units may
be removed or lost from the experiment before its failure.

(e loss can be unplanned, like in accidental damage of an
experimental unit, or if a unit under study drops out.
Sometimes, the experiment must stop due to the unavail-
ability of testing facilities. Most often, the removal of units
from an experiment is preplanned and is made to reduce time
and cost limitations. (e benefit of progressive censoring lies
in its efficient utilization of the available resources, so when
we start an experiment if any of the surviving units are re-
moved early, then we can use them for other tests or ex-
periments. In reliability and life testing experiments, one of
the main objectives is to obtain inference about the unknown
parameters of the lifetime distribution under consideration.
Sometimes, this is based on certain censored observations (see
Cohen [5]). Estimation and prediction problems arise quite
naturally in a lot of real-life situations, and in many studies,
researchers are interested in providing estimates for unknown
parameters and/or making some prediction inference about
censored (future) observations.

(e most commonly used censoring schemes are (i)
progressive Type-I and (ii) progressive Type-II censoring
schemes. One can refer to the books of Balakrishnan and
Cramer [6] and Balakrishnan [7]. Recently, several authors
are interested in studying parameter inference of different
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distributions under progressive Type-II censoring scheme
(PC) (see, for example, Kundu [8], Pradhan and Kundu [9],
Maurya et al. [10], and Bdair et al. [11]). In addition, in-
ference with other censoring schemes appeared in literature
with different lifetime models, such as hybrid Type-I pro-
gressive censoring, adaptive Type-II progressive censoring,
Type-II hybrid censoring, and others (see, for example, Bdair
and Haj Ahmad [12]; Haj Ahmad et al. [13]; Salah et al. [14]
Almetwally et al. [15]; and Sabry et al. [16]). Still there is
much space for more work with different censoring schemes
under new generalized models.

In this paper, we restrict our attention on the case of
censored samples under progressive Type-II censoring
scheme (PC) and find the point and interval estimation of
the unknown parameters of the new Pareto distribution
(NPD); then, we study the prediction problem of the future
data (unobserved).

For the NPD, we can write the probability density
function (PDF) as

f(x; α, β) �
2αβαx

α− 1

x
α

+ βα( 􏼁
2, x≥ β, (1)

where α> 0 and β> 0 are the shape and scale parameters,
respectively.

(e cumulative distribution function (CDF) of NPD is
given by

F(x; α, θ, β) �
1 − (β/x)

α

1 +(β/x)
α �

x
α

− βα

x
α

+ βα
� 1 −

2(β/x)
α

1 +(β/x)
α; x≥ β.

(2)

In this paper, wemainly work on two objectives. First, we
find the point and interval estimation of NPD’s parameters α
and β using the maximum likelihood and the Bayes esti-
mates under PC and compare the effectiveness of the two
methods of estimation numerically by simulation analysis
using the R package. Second, we consider the problem of
predicting unobserved (future) data based on the observed
(available) data. (erefore, we consider two prediction
methods: (i) the best unbiased predictor (BUP) and (ii) the
Bayes predictor (BP). We construct predictive intervals (PIs)
for the unobserved (future) data that are censored from the
experiment. Numerical analysis and simulation are used to
compare the efficiency of prediction methods under
consideration.

(e PC is a generalized censoring scheme for the well-
known Type-II right censoring. PC gained great attention in
the last twenty years. We can simply describe this censoring
scheme as follows: let X1, X2, . . . , Xn denote the real out-
comes of n independent and identically distributed (i.i.d)

units which are under a life test experiment. Also, suppose
that R1, R2, . . . , Rm(m< n) are some fixed non-negative
integers such that 􏽐

m
i�1 Ri � n − m. We need to observe m

units and then remove the remaining n − m units pro-
gressively according to the censoring scheme
R � (R1, R2, . . . , Rm). (e censoring occurs progressively in
m stages, which offer failure times for the m observed units.
When the first failure time (the first stage) X1:m:n occurs, R1

of the n − 1 surviving units will be randomly removed or
censored from the experiment.When the second failure time
(the second stage) X2:m:n occurs, R2 of the n − 2 − R1 sur-
viving units are randomly removed from the experiment.
Finally, when the mth failure time (the m th stage) Xm:m:n

occurs, all the rest of Rm � n − m − (R1 + R2 + · · · + Rm− 1)

units are withdrawn from the experiment. We call this as
progressive Type-II right censoring scheme R. We can verify
easily that Type-II right censoring scheme and the complete
sampling scheme are a special case of PC by choosing (R1 �

R2 � · · · � Rm− 1 � 0, Rm � n − m) and (R1 � R2 � · · · �

Rm− 1 � 0, n � m), respectively.
Prediction is very important in statistics, and many

authors studied the prediction problem and its applications
in real-life data (see, for example, Kaminsky and Rhodin
[17]; Al-Hussaini [18]; Madi and Raqab [19]; Raqab et al.
[20]; and Bdair et al. [11]). Prediction’s idea depends on
predicting the future order statistics based on the observed
(obtained) sample data. Some authors studied the problem
of estimation and prediction under different types of
censored data from different models (see, for example, Kim
et. al [21]; Kundu [8]; and Kundu and Raqab [22]). Raqab
et al. [23] studied the prediction of the remaining time for
the generalized Pareto distribution under a progressive
censored sample. Belaghi et al. [24] considered estimation
and prediction problems for the Poisson-exponential
distribution under Type-II censored data. Bdair et al. [11]
used Bayes prediction to predict future values of a pro-
gressively censored sample under flexible Weibull
distribution.

(e rest of the paper is organized as follows. In Section 2,
we obtain the MLEs for the two parameters of NPD. (e
Bayesian estimation method is used to estimate the un-
known parameters in Section 3. In Section 4, we handle the
point and interval prediction problems for the unknown
observations from the censored sample using the best un-
biased predictors (BUPs) and the Bayesian predictor (BP). In
Section 5, numerical comparisons are performed via sim-
ulation analysis. Finally, some conclusions are drawn in
Section 6.

2. Maximum Likelihood Estimation

In this section, we use the classical method of estimation
which is the maximum likelihood method (MLE) for esti-
mating the two unknown parameters of NPD under PC
scheme. Let x � (x1:m:n, x2:m:n, . . . , xm:m:n) with x1:m:n ≤
x2:m:n ≤ · · · ≤ xm:m:n denote the m observations under PC
from a sample of size n drawn from a NPD with PDF and
CDF given by equations (1) and (2), respectively. Based on a
progressive Type-II censored sample x, the likelihood
function is given by

L(α, β; x) � A 􏽙
m

i�1
f xi:m:n( 􏼁 1 − F xi:m:n( 􏼁􏼂 􏼃

Ri , (3)

where A � n(n − 1 − R1)(n − 2 − R1 − R2) · · · (n − m + 1 −

R1 − · · · − Rm− 1) (see Balakrishnan and Aggrawala [25]).
Using equations (1) and (2), we obtain

2 Journal of Mathematics



L(α, β; x) � A2nαmβαn
􏽙

m

i�1

x
α− 1
i:m:n

x
α
i:m:n + βα( 􏼁

2+Ri
. (4)

(e logarithmic likelihood function of NPD is

l(α, β; x) � log A + n log 2 + m log α + αn log β

+(α − 1) 􏽘
m

i�1
log xi:m:n( 􏼁

− 􏽘
m

i�1
2 + Ri( 􏼁log x

α
i:m:n + βα( 􏼁􏼃.

(5)

We can notice that l(α, β; x) is monotonically increasing
with β. Hence, since x≥ β, the MLE of β will be 􏽢β � x1:m:n,
where x1:m:n is the first progressive ordered statistic.

From the above logarithmic likelihood equation, we find
the partial derivative with respect to parameter α and then
equate it to zero to obtain the MLE of α, and hence 􏽢α is the
solution of

zl α, x1:m:n; x( 􏼁

zα
�

m

α
+ n log x1:m:n( 􏼁 + 􏽘

m

i�2
log xi:m:n( 􏼁

− 􏽘
m

i�2
2 + Ri( 􏼁

log xi:m:n( 􏼁 +

x1:m:n

xi:m:n

⎛⎝ ⎞⎠

α

log x1:m:n( 􏼁

1 +

x1:m:n

xi:m:n

⎛⎝ ⎞⎠

α � 0.

(6)

Numerical analysis and simulation are used to study
the performance of MLE with respect to mean square
errors (MSEs) and biases. We can observe the asymptotic
confidence interval (CI) for α and β using asymptotic
properties of the MLE such that�

n
√

( 􏽢Φ − Φ) d
⟶

N2(0, I− 1(Φ)), whereΦ � (α, β) and I(.) is
the Fisher information matrix, i.e.,

I(Φ) � −
1
n

E ℓαα( 􏼁 E ℓαβ􏼐 􏼑

E ℓβα􏼐 􏼑 E ℓββ􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � −

I11 I12

I21 I22

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (7)

(e second partial derivatives are obtained as

ℓαα � −
m

α2
− 􏽘

m

i�2
2 + Ri( 􏼁

log x1:m:n( 􏼁/ xi:m:n( 􏼁( 􏼁

x1:m:n

xi:m:n

⎛⎝ ⎞⎠

α

1 +
x1:m:n

xi:m:n

⎛⎝ ⎞⎠

α

⎛⎝ ⎞⎠log x1:m:n( 􏼁 − log xi:m:n( 􏼁 +
x1:m:n

xi:m:n

⎛⎝ ⎞⎠

α

log x1:m:n( 􏼁

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

1 + x1:m:n( 􏼁/ xi:m:n( 􏼁( 􏼁
α

( 􏼁
2

ℓββ � −
αn

β2
− 􏽘

m

i�1
2 + Ri( 􏼁

(α − 1) x
α
i:m:n + βα( 􏼁βα− 2

− α2β2(α− 1)

x
α
i:m:n + βα( 􏼁

2 .

(8)

(e variances of the MLEs can be found from the as-
ymptotic property of MLE so that V(􏽢αMLE) ≈
I22/Det(I(Φ)), and V(􏽢βMLE) ≈ (I11/Det(I(Φ))), where
Det(I(Φ)) is the determinant of information matrix I. (e
(1 − ζ)100% asymptotic confidence intervals for 􏽢αMLE and
􏽢βMLE are given as

􏽢αMLE ± zζ/2

��������

V 􏽢αMLE( 􏼁

􏽱

, 􏽢βMLE ± zζ/2

��������

V 􏽢βMLE􏼐 􏼑

􏽱

, (9)

respectively, where zζ/2 is the (zζ/2)100% lower percentile of
the standard normal distribution.

3. Bayes Estimation

In the Bayesian method, all parameters are considered as
random variables with a certain distribution called prior
distribution. But if the prior information is not available
which is usually the case, then we need to select one. Since
the selection of prior distribution is important in parameter
estimation, we chose the independent gamma distributions
g(a1, b1) and g(a2, b2), respectively, for the prior of α and β.
Choosing this prior density is due to the fact that gamma
prior has flexible characteristics as a non-informative prior,
especially when the values of the hyperparameters are
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assumed to be zero.(e suggested gamma distributions have
the following densities:

gα a1, b1( 􏼁 �
b

a1
1
Γ a1( 􏼁

αa1− 1
e

− b1α,

gβ a2, b2( 􏼁 �
b

a2
2
Γ a2( 􏼁

βa2− 1
e

− b2β,

(10)

where a1, a2, b1, and b2 are the hyperparameters of prior
distributions and all are positive real constants.

(e joint prior of α and β is

h(α, β)∝ αa1− 1βa2− 1
e

− b1α− b2β, α, β, a1, a2, b1, b2 > 0.

(11)

(e joint posterior of α and β is

p(α, β|x) �
L x /α, β( 􏼁h(α, β)

􏽒α􏽒βL x /α, β( 􏼁h(α, β)dαdβ
, (12)

where L(x /α, β) is the likelihood function of NPD under
progressive censored samples as in equation (4). Substituting
L(x /α, β) and h(α, β) for NPD under PC, the joint posterior
density can be written as

p(α, β|x)∝ αa1+m− 1βa2+αn− 1
e

− b1α− b2β 􏽙

m

i�1

x
α− 1
i:m:n

x
α
i:m:n + βα( 􏼁

2+Ri

∝gα a1 + m, b1( 􏼁gβ/α a2 + αn, b2( 􏼁Q(α, β),

(13)

where Q(α, β) � 􏽑
m
i�1 xα− 1

i:m:n/(xα
i:m:n + βα)2+Ri and g(., .)

represents the PDF of gamma distribution.
(erefore, the Bayes estimate of any function of α and β,

say k(α, β), under the quadratic loss function is
􏽢k(α, β) � Eα,β/data(k(α, β)). Since it is difficult to compute
this expected value analytically, we decided to use the
Markov Chain Monte Carlo technique (MCMC) (see Kar-
andikar [26]).

Gibbs samplingmethod will be used to generate a sample
from the posterior density function p(α, β/x) and compute
Bayes estimates. For the purpose of generating a sample
from the posterior distribution, it is assumed that the PDFs
of prior densities are as described in equation (10). (e full
conditional posterior densities of α and β and the data are
given by

π(α|β, x)∝gα a1 + m, b1( 􏼁Q(α, β),

π(β|α, x)∝gβ/α a2 + αn, b2( 􏼁 􏽙

m

i�1

1
x
α
i:m:n + βα( 􏼁

2+Ri
.

(14)

(e full conditional distributions above cannot be
simplified to well-known distributions, and hence we cannot
generate α and β from these distributions in a direct way
using standard methods. We can solve this problem by using
the M-H algorithm (for further details about this algorithm,
one may refer to Metropolis et al. [27] and Hastings [28]).

(e main point now is to decrease the number of rejections
as possible. (e algorithm below describes the M-H algo-
rithm based on selecting the normal distribution as the main
distribution which is used to find the Bayes estimators in
addition to constructing the credible intervals for α and β.
(e algorithm is summarized as follows:

(1) Start with initial values (α0, β0).
(2) Use M-H algorithm on equation (14) to generate a

posterior sample for the parameters α and β.
(3) Repeat step 2 M times and obtain

(α1, β1), (α2, β2), . . . , (αM, βM).
(4) When we obtain the posterior sample, we have Bayes

estimates of α and β with respect to quadratic loss
function:

􏽢αMC
� Eπ(α|x)􏼂 􏼃 ≈

1
M − M0

􏽘

M− M0

i�1
αi

⎛⎝ ⎞⎠,

􏽢β
MC

� Eπ(β|x)􏼂 􏼃 ≈
1

M − M0
􏽘

M− M0

i�1
βi

⎛⎝ ⎞⎠,

(15)

where M0 is the Markov Chain’s burn-in period.

4. Prediction

In many fields of life sciences, dealing with the problem of
predicting unobserved, censored, or lost observation from
the experiment has had a great attention so far (one may
refer to Kaminsky and Nelson [29]; Raqab et al. [20]; Raqab
et al. [23, 24]; and Bdair et al. [11]). Here we study two
methods of prediction, namely, (i) the best unbiased pre-
dictor (BUP) and (ii) the Bayes predictor (BP).

4.1. Best Unbiased Predictor. In this section, our goal is to
predict the lifetimes of the sth order Ys:rj

(s � 1, 2, . . . , rj, j �

1, 2, . . . , m) based on observations under PC,
x � (x1:m:n, x2:m:n, . . . , xm:m:n). Now by using the Markovian
property of progressive Type-II censored order statistics,
Ys:rj

/X � x acts similarly as the sth order statistic from a sample
of size rj under truncated distribution at xj:m:n with PDF
f(y)/1 − F(xj:m:n), where y>xj:m:n, and hence we obtain

fYs:rj
|X ys:rj

; α, β􏼒 􏼓 � fYs:rj
|xj:m:n

ys:rj
; α, β􏼒 􏼓

� c
∗

F ys:rj
􏼒 􏼓 − F xj:m:n􏼐 􏼑􏼔 􏼕

s− 1

· 1 − F ys:rj
􏼒 􏼓􏼔 􏼕

rj− s f ys:rj
􏼒 􏼓

1 − F xj:m:n􏼐 􏼑􏽨 􏽩
rj

,

· ys:rj
>xj:m:n,

(16)
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where c∗ � rj!/(s − 1)!(rj − s)!. Now substituting the PDF
and CDF of NPD into equation (16) and after some sim-
plifications, we observe that

fYs:rj
|X ys:rj

|α, β􏼒 􏼓 �
c
∗α 1 − xj:m:n/ys:rj

􏼒 􏼓
α

􏼒 􏼓
s− 1

y
α s− rj− 1( 􏼁− 1
s:rj

x
− α s− rj − 1( 􏼁
j:m:n

1 + β/ys:rj
􏼒 􏼓

α
􏼒 􏼓

rj+1
1 + β/xj:m:n􏼐 􏼑

α
􏼐 􏼑

s− rj− 1
.

(17)

Since ys:rj
>xj:m:n, the term (1 − (xj:m:n/ys:rj

)α)s− 1 in
equation (17) can be represented as a series expansion using
well-known binomial theorem, so the conditional density is
rewritten as

fYs:rj
|X ys:rj

|α, β􏼒 􏼓 �

c
∗α􏽐

s− 1
k�0(− 1)

k
s − 1

k

⎛⎝ ⎞⎠y
α s− rj− k− 1( 􏼁− 1
s:rj

x
− α s− rj− k− 1( 􏼁
j:m:n

1 + β/ys:rj
􏼒 􏼓

α
􏼒 􏼓

rj+1
1 + β/xj:m:n􏼐 􏼑

α
􏼐 􏼑

s− rj− 1
.

(18)

(ebest unbiased predictor (BUP) ofYs:rj
is the expected

value E(Ys:rj
|Xj:m:n), that is,

E Ys:rj
|Xj:m:n􏼒 􏼓

� c
∗α 􏽘

s− 1

k�0
(− 1)

k
s − 1

k

⎛⎝ ⎞⎠x
− α s− rj − k− 1( 􏼁
j:m:n 1 +

β
xj:m:n

􏼠 􏼡

α

􏼠 􏼡

rj− s+1

􏽚
∞

xj:m:n

y
α s− rj− k− 1( 􏼁
s:rj

1 +
β

ys:rj

⎛⎝ ⎞⎠

α

⎛⎝ ⎞⎠

rj+1

dy,

(19)

where y � ys:rj
. Using integration techniques and binomial

expansion in the integral part, equation (19) reduces to

E Ys:rj
|Xj:m:n􏼒 􏼓 � c

∗
􏽘
i,k

u − (1/α) − 1

i

⎛⎝ ⎞⎠x
αu
j:m:n Δ

u− k
− Δu− s− i− (1/α)

􏽨 􏽩

βαu− 1
(k − i − s − (1/α))

,
(20)

where 􏽐i,k � 􏽐
∞
i�0 􏽐

s− 1
k�0(− 1)k+i s − 1

k
􏼠 􏼡, Δ � 1 + (β/xj:m:n)α

and u � k + rj − s + 1. If we assume that the parameters α
and β are unknown, the BUP of Ys:rj

will be

􏽢Ys:rj
� c
∗

􏽘
i,k

u − (1/􏽢α) − 1

i

⎛⎝ ⎞⎠x
􏽢αu
j:m:n

􏽢Δu− k
− 􏽢Δu− s− i− (1/􏽢α)

􏼔 􏼕

x
αu− 1
1:m:n(k − i − s − (1/􏽢α))

,

(21)

where 􏽢α and 􏽢β � x1:m:n are the MLEs of α and β, respectively,
and 􏽢Δ � 1 + (x1:m:n/xj:m:n)􏽢α.

4.2. Bayesian Prediction. Bayes prediction (BP) of the cen-
sored observation from the future sample depends on the

actual observed sample which is known as informative
sample. For that reason, we consider the estimation of
posterior predictive density (PPD) of the sth order Ys:rj

. (e
posterior predictive density of Ys:rj

given the observed
censored data x is given by

π Ys:rj
|X􏼒 􏼓 � 􏽚

∞

0
􏽚
∞

0
fYs:rj

|X ys:rj
|α, β􏼒 􏼓p(α, β|x)dαdβ,

ys:rj
> xj:m:n,

(22)

where fYs:rj
|X(ys:rj

|α, β) is the conditional density of Ys:rj

given α, β, and data x, which is given in equation (18), and
p(α, β|x) is the joint posterior given in equation (13). Now
the Bayes predictor (BP) of Y � Ys:rj

under squared error
loss function (SEL) can be obtained as
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(24)

(e form of the PPD in equation (23) is not easy to
compute; therefore, Bayesian predictive estimates
Eπ(Y|data) are difficult to find explicitly. (us, there is a
need to use the MCMC sample technique which was de-
scribed in Section 3. (e MCMC technique is conducted to

generate samples from the PPD. (ese samples are of the
form (αℓ, βℓ): ℓ � 1, 2, . . . , M􏼈 􏼉 and are obtained using the
M-H methods and Gibbs sampling. (e sample-based
predictor 􏽢Y

BP

s:rj
of Y � Ys:rj

is given by

􏽢Y
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(25)

and hence after integration techniques and algebraic sim-
plifications, the sample-based predictor can be written as

􏽢Y
BP

s:rj
�

c
∗

M
􏽘
ℓ,k,t

u − 1/αℓ( 􏼁 − 1

t
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where 􏽐ℓ,k,t � 􏽐
M
ℓ�1 􏽐

s− 1
k�0 􏽐
∞
t�0 (− 1)k+t s − 1

k
􏼠 􏼡αa1+m− 1

ℓ βa2
ℓ

+ αℓ(n − u) e− b1αℓ − b2βℓ and Λ � 1 + (βℓ/xj:m:n)αℓ .
From the above PPD, one can obtain a two-sided pre-

dictive interval for Y � Ys:rj
(s � 1, 2, . . . , rj, j � 1, 2, . . . , m).

For that purpose, we need to find the predictive survival
function of Y � Ys:rj

at point y> xj:m:n, which can be defined
as

SY|data(y|α, β) � 􏽚
∞

y
fY|data(z|α, β)dz

� c
∗

􏽘

∞

i�0
􏽘
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.

(27)

Under the SEL function, the predictive survival function
of Y � Ys:rj

is given by
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(e predictive survival function in equation (28) cannot
be easily evaluated analytically, and hence numerical ap-
proximation technique will be preferable in this case. (e
MCMC samples can be used to approximately evaluate

equation (28), so let (αℓ, βℓ): ℓ � 1, 2, . . . , M􏼈 􏼉, and then the
simulated estimator for the predictive survival function can
be written as

􏽢S
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c
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􏽘
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Now, the (1 − ξ)100% predictive interval of Y � Ys:rj
is

found by solving the following non-linear equations using a
suitable numerical technique which is given in the following
equation:

􏽢S
P

Y\data(L) � 1 −
ξ
2
,

􏽢S
P

Y\data(U) �
ξ
2
,

(30)

where (L) denotes the lower bound and (U) denotes the
upper bound.

5. Simulation Analysis

In this section, we perform a simulation analysis to check the
performance of the Bayes estimators compared with the
classical estimators obtained by the MLE based on PC with
NPD lifetimes. Also, we compute the best unbiased predictor
and Bayes predictor for the missing data with respect to the
observed PC. In Bayes estimation, we use the square error
loss function SEL. We compute the mean square errors
(MSEs) and the biases for Bayes and MLE estimators based
on 10000 replications using R package. In estimation and
prediction, we suggest fixed values of the parameters to be
(α, β) � (0.5, 0.5), (1.5, 0.5){ } and sample sizes to be
n � 50, 100, in order to generate progressive Type-II cen-
sored data. Also, under PC, we obtain the point predictors
and the 95% prediction intervals for the missing order
statistics Ys:rj

; s � 1, . . . , rj, j � 1, . . . , m.
(e MLE and Bayes estimators for the NPD parameters’

and their corresponding CI lengths, in addition to the results
of prediction problem, are all reported in Tables 1–6. (e
following censoring schemes are suggested:

(1) Scheme 1: (0∗ (0.9∗ n − 1), 0.1∗ n)

(2) Scheme 2: (0.1∗ n, 0∗ (0.9∗ n − 1))

(3) Scheme 3: (1∗ (0.1∗ n), (0∗ 0.8∗ n)).

In Tables 1 and 2, we show the MLEs and the Bayes
estimates of α and β under different censoring schemes.
Numerical results of estimators and their corresponding
biases and MSEs are computed using the algorithm pre-
sented in Sections 2 and 3. In Tables 3 and 4, we present
numerical comparisons between the average lengths (AL)
and the coverage percentages (CP) of the credible intervals
and asymptotic intervals under NPD parameters. In Tables 5
and 6, we present MLE and Bayes point predicted values and
the prediction intervals for the missing sth order statistics
Ys:rj

; s � 1, . . . , rj, j � 1, . . . , m, based on the observed
sample of size m with censoring scheme (r1; r2; . . . ; rm), for
all schemes described above under the loss function SEL.(e
MCMC samples (αi, βi)i � 1, . . . , M􏼈 􏼉, M � 10000, the point
BUP, and BP for the missing order statistics Ys:rj

in cen-
soring stage j, s � 1, . . . , rj, are computed. (e 95% lower
bound L and upper bound U of prediction interval for the
missing sth order statistics Ys:rj

are also computed.
From Tables 1 and 2, we observe many attractive results

that are summarized as follows:

(i) (e best point estimation method for estimating the
shape parameter α is Bayesian method under SEL,
and this result is observed since it has minimum
biases and minimum MSEs.

(ii) For the scale parameter β, the MLE proves to have
the minimum biases and MSEs, and hence it is
preferable to be used for point estimation of β.

(iii) When comparing the efficiency of censoring
schemes with respect to biases and MSEs, it ap-
pears that scheme 3 performs well when estimating
α, while scheme 1 is better than others for esti-
mating β.

For interval estimation of NPD parameters, we use as-
ymptotic CI from the MLEmethod and the credible CI from
the Bayesian method under SEL. A simulation analysis with
some numerical methods and MCMC technique show some
results that appear in Tables 3 and 4. Comparisons between
the two CIs are conducted depending on the average interval
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Table 1: MSEs and biases for MLEs and Bayes estimators of α � 0.5 and β � 0.5.

MLE Bayes (SEL)

Scheme N Parameters Bias MSE Bias MSE

1
50 α − 0.158 0.026 − 0.152 0.024

β − 0.445 0.198 − 0.445 0.198

100 α − 0.162 0.027 − 0.158 0.025
β − 0.447 0.200 − 0.452 0.204

2
50 α − 0.147 0.023 − 0.141 0.021

β − 0.454 0.201 − 0.448 0.201

100 α − 0.151 0.023 − 0.147 0.022
β − 0.456 0.208 − 0.454 0.206

3
50 α − 0.143 0.021 − 0.1375 0.020

β − 0.450 0.203 − 0.447 0.200

100 α − 0.147 0.022 − 0.143 0.021
β − 0.453 0.210 − 0.453 0.206

Table 2: MSEs and biases for MLEs and Bayes estimators of α � 1.5 and β � 0.5.

MLE Bayes (SEL)

Scheme N Parameters Bias MSE Bias MSE

1
50 α − 0.572 0.330 − 0.553 0.308

β − 0.234 0.055 − 0.454 0.206

100 α − 0.579 0.336 − 0.562 0.317
β − 0.236 0.056 − 0.466 0.217

2
50 α − 0.545 0.300 − 0.527 0.280

β − 0.249 0.063 − 0.467 0.217

100 α − 0.548 0.294 − 0.522 0.275
β − 0.250 0.063 − 0.466 0.217

3
50 α − 0.540 0.294 − 0.522 0.275

β − 0.245 0.060 − 0.455 0.207

100 α − 0.545 0.278 − 0.529 0.281
β − 0.246 0.061 − 0.466 0.217

Table 3: Average lengths and coverage percentages for 95%
asymptotic and credible CI based on PT2CS, with α � 0.5 and
β � 0.5.

MLE Bayes (SEL)

Scheme N Parameters AL (CP) AL (CP)

1
50 α 0.123 (98.81%) 0.129 (99.21%)

β 0.083 (95.92%) 0.053 (96.44%)

100 α 0.084 (95.99%) 0.085 (96.07%)
β 0.052 (93.76%) 0.037 (95.20%)

2
50 α 0.120 (98.59%) 0.125 (98.92%)

β 0.068 (97.52%) 0.044 (95.77%)

100 α 0.084 (96.02%) 0.086 (96.13%)
β 0.044 (95.75%) 0.035 (92.49%)

3
50 α 0.118 (98.44%) 0.122 (98.71%)

β 0.073 (97.85%) 0.046 (95.87%)

100 α 0.084 (98.70%) 0.086 (98.84%)
β 0.048 (96.06%) 0.035 (95.11%)

Table 4: Average lengths and coverage percentages for 95%
asymptotic and credible CI based on PT2CS, with α � 1.5 and
β � 0.5.

MLE Bayes (SEL)

Scheme N Parameters AL (CP) AL (CP)

1
50 α 0.183 (97.35%) 0.190 (97.79%)

β 0.081 (95.78%) 0.016 (93.65%)

100 α 0.123 (98.77%) 0.125 (98.95%)
β 0.054 (93.85%) 0.012 (93.42%)

2
50 α 0.184 (97.38%) 0.197 (98.27%)

β 0.079 (98.33%) 0.018 (93.59%)

100 α 0.136 (99.70%) 0.139 (99.92%)
β 0.058 (96.74%) 0.013 (90.95%)

3
50 α 0.174 (96.75%) 0.187 (97.61%)

β 0.081 (98.47%) 0.016 (93.65%)

100 α 0.124 (93.41%) 0.132 (93.91%)
β 0.055 (96.55%) 0.013 (93.45%)
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lengths and the coverage percentages (CP) as well, and hence
the main results are summarized below:

(i) (e asymptotic CI has less average interval length
for estimating α than credible CI based on CI av-
erage lengths, under the three suggested censoring
schemes and sample sizes 50 and 100.

(ii) (e credible CI has higher CP for estimating α than
the asymptotic CI, under the three suggested cen-
soring schemes and sample sizes 50 and 100.

(iii) (e credible CI has less average interval length for
estimating β than asymptotic CI, under the three
suggested censoring schemes and sample sizes 50
and 100.

(iv) (e credible CI has higher CP for estimating β
under censoring scheme 1, while the asymptotic CI
has higher CP than the credible CI under censoring
schemes 2 and 3 (see Table 3).

(e two prediction methods that are used in this paper
are BUP and BP, so for the purpose of comparison between
these methods, we conduct a simulation analysis. (e nu-
merical results for the predicted unobserved order statistics
Ys:rj

are reported in Tables 5 and 6. Tables 5 and 6 illustrate
point and 95% interval prediction values under different
censoring schemes and sample sizes n � 50 and 100.

From these tables, we notice that the predicted values of
Ys:rj

belong to the proposed confidence interval and the
predicted values under BP are less than their values under
BUP for censoring scheme 1, while the converse is true for
censoring scheme 2. Under censoring scheme 3, no fixed
rule is obtained for the prediction value comparison.

For a fixed sample size, we observe that the largest
predicted value is observed when applying censoring scheme
3. One may also notice that the lower and the upper bounds
of prediction interval for the missing sth order statistics Ys:rj

increase as 0< s< rj increase for each rj.

Table 5: Point and interval prediction of the unobserved order statistics Ys:rj
, 1≤ i≤m, for scheme 1, with α � 0.5, β � 0.5.

BUP BP
n (m) Yi:m:n Predicted Yi:m:n 95% CI CP Predicted Yi:m:n 95% CI CP

50 (5)

Y1:1:50 0.033 (0.007, 0.058) 93.64% 0.031 (0.010, 0.052) 93.02%
Y2:1:50 0.259 (0.156, 0.362) 98.84% 0.249 (0.126, 0.371) 98.48%
Y3:1:50 1.531 (1.157, 1.901) 96.61% 1.470 (0.841, 2.098) 94.03%
Y4:1:50 6.016 (5.146, 6.886) 95.91% 5.825 (4.301, 7.350) 99.89%
Y5:1:50 11.060 (9.990, 12.130) 98.38% 10.988 (10.189, 11.787) 94.50%

100 (10)

Y1:1:100 0.003 (− 0.001, 0.007) 95.60% 0.003 (− 0.001, 0.006) 95.52%
Y2:1:100 0.012 (0.001, 0.022) 91.54% 0.011 (0.002, 0.019) 91.24%
Y3:1:100 0.036 (0.012, 0.061) 93.51% 0.033 (0.013, 0.053) 92.87%
Y4:1:100 0.104 (0.052, 0.156) 97.45% 0.095 (0.046, 0.144) 96.97%
Y5:1:100 0.302 (0.192, 0.412) 96.83% 0.275 (0.138, 0.412) 94.23%
Y6:1:100 0.914 (0.666, 1.162) 96.61% 0.832 (0.412, 1.252) 99.12%
Y7:1:100 2.737 (2.161, 3.313) 98.03% 2.507 (1.358, 3.656) 98.92%
Y8:1:100 7.088 (6.056, 8.120) 98.05% 6.603 (4.402, 8.804) 98.90%
Y9:1:100 12.055 (10.991, 13.118) 98.33% 11.754 (10.613, 12.896) 98.88%
Y10:1:100 13.065 (12.119, 14.010) 97.07% 12.972 (11.857, 14.087) 98.71%

Table 6: Point and interval prediction of the unobserved order statistics Yi:m:n, 1≤ i≤m, for scheme 2, with α � 0.5, β � 0.5.

BUP BP
n (m) Yi:m:n Predicted Yi:m:n 95% CI CP Predicted Yi:m:n 95% CI CP

50 (5)

Y1:1:50 0.026 (0.005, 0.047) 93.05% 0.027 (0.010, 0.044) 92.44%
Y2:1:50 0.199 (0.117, 0.280) 96.02% 0.211 (0.113, 0.309) 98.22%
Y3:1:50 1.211 (0.927, 1.495) 96.50% 1.265 (0.722, 1.808) 99.05%
Y4:1:50 5.196 (4.471, 5.922) 92.65% 5.302 (3.845, 6.758) 99.82%
Y5:1:50 10.758 (9.744, 11.772) 97.87% 10.826 (10.080, 11.573) 93.23%

100 (10)

Y1:1:100 0.003 (− 0.001, 0.006) 95.52% 0.003 (− 0.000, 0.006) 95.44%
Y2:1:100 0.010 (0.001, 0.019) 96.34% 0.010 (0.003, 0.017) 96.08%
Y3:1:100 0.030 (0.010, 0.049) 97.99% 0.030 (0.014, 0.046) 97.45%
Y4:1:100 0.082 (0.041, 0.122) 95.82% 0.083 (0.045, 0.122) 95.57%
Y5:1:100 0.230 (0.149, 0.310) 98.71% 0.235 (0.125, 0.346) 91.04%
Y6:1:100 0.685 (0.519, 0.851) 94.52% 0.701 (0.353, 1.049) 94.60%
Y7:1:100 2.106 (1.731, 2.481) 96.69% 2.134 (1.129, 3.138) 97.77%
Y8:1:100 5.853 (5.111, 6.594) 97.74% 5.856 (3.767, 7.944) 99.00%
Y9:1:100 11.895 (11.087, 12.703) 94.70% 11.534 (10.041, 13.028) 99.86%
Y10:1:100 12.530 (11.540, 13.521) 97.62% 12.826 (11.968, 13.684) 95.69%
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In order to select the suitable predictionmethod, one can
depend on either the average interval length or the coverage
percentages (CP) of the observed intervals. (is can be
calculated easily from Tables 5 and 6; for example, in the case
of censoring scheme 1 with sample size 50, we prefer to use
BP to predict the unobserved statistics Y1:1:50, since it has
shorter CI length, but based on the CP, BUP is preferable. To
predict Y2:1:50, we prefer to use the BUP as it has shorter CI
length and higher CP as well (more valuable results are
found in Tables 5 and 6).

6. Conclusions

In this article, we used estimation of the unknown pa-
rameters of NP distribution under progressive Type-II
censored sampling to assess the performance of theMLE and
Bayesian estimation methods and to determine the best
prediction method for predicting unobserved lifetimes. (e
MLE and the Bayes estimation methods were considered to
observe both the point and interval estimation. Two
methods of prediction for the future observation were
employed, namely, the BUP and the BP. Numerical methods
and simulation analysis were used for comparison between
methods of estimation and methods of prediction. We
concluded that MLE is better to estimate the scale parameter
β, while Bayes estimation is better to estimate the shape
parameter α. Many valuable results were found and sum-
marized from the tables in Section 5. Researchers may de-
velop new distributions and apply different censoring
schemes to their sample data to obtain better point and
interval estimation and prediction criteria for the future
unobserved data, such as adaptive, hybrid progressive, and
other censoring schemes.
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