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+e generalisation of questions of the classic arithmetic has long been of interest. One line of questioning, introduced by Car in
1995, inspired by the equidistribution of the sequence (nα)n∈N where 0< α< 1, is the study of the sequence (K(1/l)), where K is a
polynomial having an l-th root in the field of formal power series. In this paper, we consider the sequence (L′

(1/l)
), where L′ is a

polynomial having an l-th root in the field of formal power series and satisfying L′ ≡ BmodC. Our main result is to prove the
uniform distribution in the Laurent series case. Particularly, we prove the case for irreducible polynomials.

1. Introduction

In 1952, Carlitz [1] introduced the definition of equidis-
tribution modulo 1 in the formal power series case which
reveals profitable; it uses Weyl’s criterion [1], the general-
isation of van der Corput inequality by Dijksma [2], and the
theorem of Koksma by Mathan [3].

Car in [4], inspired by equidistribution modulo 1 of the
sequence (nα)n∈N where 0< α< 1, characterised equidistribution
modulo 1 of the sequences (L(1/l)) and (P(1/l)), where L de-
scribes the sequence of polynomials in Fq[X] (resp. P describes
the sequence of irreducible polynomials in Fq[X]) with an l-th
root (L(1/l)) (resp. (P(1/l))) in the field of formal power series.

In 2013, Mauduit and Car studied in [5] the
Q− automaticity of the set of k-th power of polynomials in
Fq[X]. Moreover, they calculated the number of polyno-
mials K ∈ Fq[X] with degree N such that the sum of digits of
Kk in base Q is fixed. In the same subject, Madritsch and
+uswaldner in [6] called the maps f: Fq[X]⟶ G, where
G is the group of Q-additives satisfying
f(AQ + B) � f(A) + f(B) for all polynomials A, B ∈ Fq[X]

with deg(B)< deg(Q). +ey proved the equidistribution of
the sequence h(Wi), where h ∈ Fq(X− 1)[Y] is a polynomial
with coefficients in the field of formal power series and (Wi)

is an ordered sequence of polynomials in
C(J) � A ∈ Ln: f(A) ≡ JmodM  if and only if one of the
coefficients of h(Y) − h(0) is irrational.

In this article, we are interested in the subsequences (Ln
′)

of (Ln) and (Pn
′) of (Pn) of polynomials in arithmetic pro-

gression having an l-th root. We will prove that the sequences

(L
′1/l{ }

n ) and (P
′1/l{ }

n ) are equidistributed modulo 1.

2. Preliminary

Let Fq be a finite field of characteristic p with q elements. We
consider Fq[X], Fq(X), and Fq((X− 1)) as analogues of Z,Q,
and R, respectively.

An element f ∈ Fq((X− 1)) is of the form
f � 

+∞
i�n0

aiX
− i, with ai ∈ Fq, n0 ∈ Z, and an0

≠ 0.We define
](f) � deg(f) � − n0 and |f| � qdeg(f). We note [f] the
polynomial part of f and f  its fractionary part. Let
Res(f) � a1 if f≠ 0, and sgn(f) � an0

. Let ψ: Fq⟶ C be a
nontrivial additive character. For all f ∈ Fq((X− 1)), we
suppose that E(f) � ψ(Res(f)).

Let l be a positive integer >2 which is not divisible by the
characteristic p of the field Fq. We introduce
L � a1, . . . , ar  as the set of the r-th elements having an l-th
root in F∗q , and we have

r �
q − 1

(l, q − 1)
. (1)

+en, for f and g ∈ F∗q ((X− 1)), g is called an l-th root of
f; we note f � gl if and only if ](f) ≡ 0mod l and

Hindawi
Journal of Mathematics
Volume 2021, Article ID 1357859, 6 pages
https://doi.org/10.1155/2021/1357859

mailto:wiemgadri@yahoo.fr
https://orcid.org/0000-0002-5049-3179
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1357859


sgn(f) ∈L. In particular, a nonzero polynomial A has an l-
th root in F∗q ((X− 1)) if and only if deg(A) ≡ 0mod l and
sgn(A) ∈L.

We denote by L the set of polynomials with an l-th root
in F∗q ((X− 1)):

L � A ∈ Fq[X]∖ 0{ }: deg(A) ≡ 0modl and sgn(A) ∈L ,

(2)

and if I is the set of irreducible polynomials over Fq[X], we
define P � L∩ I.

If n � 
S
i�1 niq

i, where ni ∈ 0, . . . , q − 1  for all
i ∈ 0, . . . , s{ }, is the representation in base q of the integer
n≥ 1, then let

Hn � χn0
+ · · · + χns

X
s
, (3)

where χni
are given by the bijection ni↦χni

from
0, . . . , q − 1  to Fq. For n � 0 and 1, it is convenient to
suppose that χ0 � 0 and χ1 � 1. We define the order in Fq by
χni
< χni+1, for all ni ∈ 0, . . . , q − 1 , and in Fq by

m< n⟹ deg Hm( ≤ deg Hn( . (4)

+en, we order Fq by posing for all natural numbers n:

Hn <Hn+1. (5)

+is paper is devoted to the study of equidistribution
modulo 1 of a certain sequence in the field of Laurent formal
power series. In 1952, Carlitz introduced and characterised
equidistribution modulo 1 in the field of Laurent formal
power series and obtained the following result.

Lemma 1 (see [1]; Weyl’s criterion). İe sequence Θ � (θn)

with values in Fq((X− 1)) is equidistributed modulo 1 if and
only if

limN⟶∞
1
N



N

n�1
E Hθn(  � 0, (6)

for all H ∈ Fq[X]∗.

Finally, we enounce a result which concerns a class of
irreducible polynomials given by Artin in [7], which will be
very useful later.

Theorem 1 (see [7]). Let C, B ∈ Fq[X] be coprime polyno-
mials. If π(m: C, B) denotes the number of monic irreducible
polynomials with degree m which are congruent to B modulo
C, then

π(m: C, B) �
1
Φ(C)

q
m

m
+ O

q
mθ

m
 , (7)

where θ is a constant <1. /is theorem is analogous to the
theorem of prime numbers in arithmetic progression.

3. Results

Let l≥ 2 be an integer nondivisible by the characteristic p of
the field Fq; we order the set of the l-th powers of L under

the increasing order of Fq, and we fix a polynomial C with
degree c. For all B ∈ Fq[X], we denote by L′ the subset of L
defined in (2),

L′ � LC,B � A ∈ L: A ≡ BmodC{ }, (8)

and P′ the subset of P � L∩ I:

P′ � PC,B � A ∈ L∩ I: A ≡ BmodCwith (B, C) � 1{ }.

(9)

We ordered the elements of L′ and P′ with the order
relation defined in (2); hence,

L′ � L1′, . . . , Ln
′, . . .  andP′ � P1′, . . . , Pn

′, . . . . (10)

+e aim of this paper is to prove the following theorems.

Theorem 2. Let (Ln
′) be the sequence of polynomials of L′

indexed under the increasing order of Fq[X]. /en, for l≥ 2,

the sequence (L
′1/l{ }

n ) is equidistributed modulo 1.

Theorem 3. Let (Pn
′) be the sequence of polynomials of P′

indexed under the increasing order of Fq[X]. /en, the se-
quence (P

′1/l{ }
n ) is equidistributed modulo 1 for

l> (1/(1 − θ)), and θ is a constant defined in /eorem 1. In
particular, if Xq − X does not divide C, then let l≥ 3.

4. Proofs of Theorems 2 and 3

4.1.Tools. A generalisation of+eorem 1 was proved in 1965
by Hayes introducing the arithmetic progression.

Lemma 2 (see [8]). Let C ∈ Fq[X] be a polynomial with
degree c. /en, for all polynomials B, there exist exactly qm− c

monic polynomials with degree m which are congruent to B

modulo C if m≥ c.

Theorem 4 (see [8]). Let k≥ 1 be a positive integer, u �

(u1, . . . , uk) be a sequence of k elements in Fq, and
C, B ∈ Fq[X] be coprime polynomials. If, for m≥ k,
π(m; u, C, B) is the number of irreducible and monic poly-
nomials P with degree m which are congruent to B modulo C

such that deg(P − Xm − u1X
m− 1 − · · · − ukXm− k <m − k, )

then

π(m: u, C, B) �
q

m− k

mΦ(C)
+ O

q
mθ

m
 , (11)

where θ is a constant <1.

Remark 1. In particular, if Xq − X does not divide C, then
(11) is verified for θ � (1/2).

+e proofs of +eorems 2 and 3 are based on Corollary 1
whose proof needs the following lemmas.

Lemma 3 (see [9], Lemma II.1.1). Let k ∈ N, H ∈ Fq[X]∗

with degree h, and A ∈ L with degree lk. /en, for all
Z ∈ Fq[X] such that deg(Z) � z< (l − 1)k − h − 1, we have
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(1) (A + Z) ∈ L
(2) Res(HA(1/l)) � Res(H(A + Z)(1/l))

Lemma 4 (see [9], Lemma II.1.2). Let H ∈ Fq[X]∗ with
degree h and k ∈ N such that (l − 1)k≥ h. /en, for all a ∈L,
all ξ ∈ Fq, and all Y ∈ Fq[X] with degree <k + h, there exists
unique η � η(a, Y) ∈ Fq such that, for all Z ∈ Fq[X] with
degree <(l − 1)k − h − 1, we obtain

ξ � Res H aX
lk

+ YX
(l− 1)k− h

+ ηX
(l− 1)k− h− 1

+ Z 
(1/l)

 .

(12)

Corollary 1. Let H ∈ Fq[X]∗ with degree h and k ∈ N such
that (l − 1)k≥ h. For all a ∈L, we have

(i) A∈Aψ(Res(HA(1/l))) � 0, where A � A ∈ L′, deg
(A) � lk, and sgn(A) � a

(ii) A∈Jψ(Res(HA(1/l))) � O(qlkθ+k+h+1/lk), whereJ �

A ∈ P′, deg(A) � lk, and sgn(A) � a, where θ is a
constant <1

Proof. For A � A or J, we note

σ(A: k, a) � 
A∈A

ψ Res HA
(1/l)

   � 
ξ∈Fq

ψ(ξ)π(ξ),
(13)

where π(ξ) is the number of polynomials A ∈ A such that
Res(HA(1/l)) � ξ, but with Lemma 4, for Y ∈ Fq[X] with
degree <k + h, there exists η ∈ Fq such that the polynomial

K � K(a, Y, ξ) � aX
lk

+ YX
(l− 1)k− h

+ ηX
(l− 1)k− h

, (14)

satisfying

Res HK
(1/l)

  � ξ. (15)

Let Z � A − K; we denote by π(lk: Y, ξ) the number of
polynomials A ∈ A such that

deg(Z)<(l − 1)k − h − 1. (16)

We obtain

σ(A: k, a) � 
ξ∈Fq

ψ(ξ) 

Y∈Fq[X] \\deg(Y)< k+h 

π(lk: Y, ξ).

(17)

(i) If A � A, then by Lemma 2, we have
π(lk: Y, ξ) � q(l− 1)k− h− c− 1 − 1. With the orthogo-
nality criterion of ψ, it results in

σ L′: k, a(  � q
k+h

q
(l− 1)k− h− c− 1

− 1  
ξ∈Fq

ψ(ξ) � 0.

(18)

(ii) If A � J, then by +eorem 4, we have

π(lk: Y, ξ) �
q

(l− 1)k− h− 1

lkΦ(C)
+ O

q
lkθ

lk
 , θ< 1. (19)

We deduce that

σ P′: k, a(  �
q

lk− 1

lkΦ(C)

ξ∈Fq

ψ(ξ) + 
ξ∈Fq

O
q

lkθ+k+h

lk
 . (20)

Finally, with the orthogonality criterion, we obtain

σ P′: k, a(  � O
q

lkθ+k+h+1

lk
 , with θ< 1. (21)

□

4.2. Proof of /eorem 2. In Fq[X], there are qm− c monic
polynomials which are congruent to B modulo C with degree
m, and let c � deg(C). We denote by am (resp. bm) the number
of polynomials in L′ with degree lm (resp. ≤lm). It is sufficient
to verify that

am � rq
lm− c

,

bm � a1 + · · · + am �
r q

l(m+1)− c
− q

l− c
 

q
l
− 1

,

(22)

where r is defined in (1). Let H ∈ Fq[X]∗ with degree h, and
N is an integer such that

N> b[1+((h+1)/(l− 1))], (23)

where [x] defines the least integer ≥x. +e sequence (bm) is
strictly increasing, and there exists a unique integer t such that

bt− 1 ≤N< bt. (24)

Moreover, there exists a unique integer s ∈ 0, . . . , r − 1,
such that

bt− 1 + 1 + sq
lt ≤N< bt− 1 +(s + 1)q

lt
. (25)

Let

W(N) � 
N

n�1
E HL

′1/l
n . (26)

To prove +eorem 2, we have to show that

limN⟶∞
1
N

|W(N)| � 0. (27)

Using relations (24) and (25), we rewrite the sum W(N)

to obtain
W(N) � W1 + W2 + W3, (28)

with
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W1 � 

bt− 1

n�1
E HL

′(1/l)
n ,

W2 � 

s− 1

j�0


bt− 1+(j+1)qlt

n�bt− 1+1+jqlt

E HL
′(1/l)
n ,

W3 � 

N

n�bt− 1+1+sqlt

E HL
′(1/l)
n .

(29)

We start by giving an estimation of the sum W1 which
concerns the polynomials of L′ with degree ≤l(t − 1). We have

W1 � 
k≤t− 1



L′∈L′

deg L′( )�lk

sgn L′( )∈L

E HL
′(1/l)
n ,

� 

k≤t− 1

(l− 1)k<h+c



L′∈L′

deg L′( )�lk

sgn L′( )∈L

E HL
′(1/l)
n  + 

k≤ t− 1

(l− 1)k≥h+c



L′∈L′

textdeg L′( )�lk

textsgn L′( )∈L

E HL
′(1/l)
n .

(30)

We have to just major the first part of the sum by the
number of polynomials with degree <((l(h + c))/(l − 1)),
and we apply Corollary 1 on the second part to obtain

W1


≤ q
((l(h+c))/(l− 1))

. (31)

We apply the same Corollary 1 on W2 that represents the
sum of polynomials with degree lt and and with signature
a1, . . . , as− 1, then

W2 � 
s− 1

i�1


L′∈L′

textdeg L′( )�lt

textsgn L′( )∈ai

E HL
′(1/l)
n  � 0.

(32)

+e polynomials in W3 can be written in the form

Li
′ � asX

lt
+ Hni

, j≤ i≤N, (33)

where j � 1 + bt− 1 + sat and the sequence (Hni
)j≤ i≤N is

strictly increasing in Fq[X].
By the order relation on Fq[X] (4), if

nN � c0 + c1q + · · · + cmq
m

(34)

and is the presentation in base q of the integer nN, we have

HnN
� χc0

+ χc1
X + · · · + χcm

X
m

. (35)

To estimate W3, we will distinguish two cases: when the
degree of HnN

is up to the integer (l − 1)t − h − c − 1 and
when it is not:

1st case: m≤ (l − 1)t − h − c − 1. Using (34) and the fact
that the sequence (ni)j≤ i≤N is strictly increasing, we
obtain

N − j≤ nN − nj ≤ nN ≤ q
m+1

− 1. (36)

+us,

W3


≤N − j + 1≤ q
(l− 1)t− h− c

. (37)

2nd case: m> (l − 1)t − h − c − 1. +e polynomials Hni

defined in (33) are of the form

Hni
� y0 + y1X + · · · + ymX

m ≤HnN
� χc0

+ χc1
X + · · · + χcm

X
m

.

(38)

Let Y be the set of polynomials of the form

Y � y(l− 1)t− h− c + y(l− 1)t− h− c+1X + · · · + ymX
m− (l− 1)t+h+c

(39)

such that, for every polynomial Z with degree
<(l − 1)t − h − c, we have

YX
(l− 1)t− h− c

+ Z≤HnN
(40)

If k is the greatest index i ∈ j, . . . , N for which Li
′ are

written in the form

Li
′ � asX

lt
+ YX

(l− 1)t− h− c
+ Z, (41)

with Y ∈ Y and Z being a polynomial with degree
<(l − 1)t − h − c, then we rewrite the sum W3:

W3 � W4 + W5, (42)

with

W4 � 
k

i�j

E HL
′(1/l)
i  andW5 � 

N

i�k+1
E HL

′(1/l)
i . (43)

We have

W4 � 
ξ∈Fq

ψ(ξ)π(ξ),
(44)

where π(ξ) is the number of couples (Y, Z) such that Y ∈ Y,
Z ∈ Fq[X] with degree <(l − 1)t − h − c, and
Res(H(asX

lt + YX(l− 1)t− h− c + Z)(1/l)) � ξ. Moreover, we
have

π(ξ) � 
Y∈Y

π(lt: Y, ξ),
(45)

where π(lt: Y, ξ) denotes the number of polynomials L′∈ L
such that

deg L′ − K( <(l − 1)k − h − c − 1, (46)

with

K � K(a, Y, ξ) � aX
lk

+ YX
(l− 1)k− h− c− 1

+ ηX
(l− 1)k− h− c− 1

,

(47)
which gives the same arguments presented in the proof of
Corollary 1, and then we deduce that

W4 � 0. (48)
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In (34), let v be the least index >(l − 1)t − h − c such that
cv ≠ 0; then, we have

nN � cmq
m

+ · · · + cvq
v

+ c(l− 1)t− h− c− 1q
(l− 1)t− h− c− 1

+ · · · + c0.

(49)

Since all polynomial L′ of the form

L′ � asX
lt

+ ymX
m

+ · · · + yvX
v

+ yv− 1X
v− 1

+ · · · + y0,

(50)

which coefficients satisfy the condition:

ym ≤ χcm
, ym− 1 ≤ χcm− 1

, . . . , yv− 1 ≤ χcv− 1
, yv ≤ χcv

, (51)

is less then LnN
′ , we obtain

nk ≥ cmq
m

+ · · · + cv− 1q
v− 1

+(q − 1)q
v− 1

+ · · · +(q − 1),

nk ≥ nN − q
(l− 1)t− h− c

,

(52)

which leads to

W5


≤N − k≤ nN − nk ≤ q
(l− 1)t− h− c

. (53)

+en, with (48) and (53), it results in

W3


≤ q
(l− 1)t− h− c

. (54)

With (31), (32), and (54), we obtain

1
N



N

n�1
E HL

′(1/l)
n 




≤
1
N

q
((l(h+c))/(l− 1))

+ q
(l− 1)t− h− c

 ,

(55)

and finally, with (24), we obtain

1
N



N

n�1
E HL

′(1/l)
n 




≤

q
((l(h+c))/(l− 1))

+ q
(l− 1)t− h− c

q
l
− 1 

r q
l(t+1)

− q
l− c

 
≪ q

− t≪N
− (1/l)

, (56)

which ends the proof.

4.3. Proof of /eorem 3. +e proof of +eorem 3 is treated
as the proof of +eorem 2, and we will keep the same
notations with the appropriate modifications. Let
π(m, C, B) be the number of monic irreducible polyno-
mials with degree m in Fq[X], congruent to B modulo C,
satisfying with [4] the following property:

q
m

q − 1
− 1 − 2q

(m/2) ≤mπ(m: C, B)≤
q

m

q − 1
. (57)

In P′, we have am � rπ(lm: C, B), and there exist
constants c1 > 0 and c2 > 0 such that

c1
q

lm

m
≤ bm ≤ c2

q
lm

m
. (58)

Let H be a nonzero polynomial with degree h and N be
an integer satisfying (23). We suppose now that

W′(N) � 
N

n�1
E HP

(′1/l)
n . (59)

With relations (24) and (25), we obtain

W′(N) � W1′ + W2′ + W3′. (60)

By the samemethod used in the proof of+eorem 2, with
Corollary 1, we obtain

W1′


 � 

bt− 1

n�1
E HP

(′1/l)
n 




≤ q

((l(h+c))/(l− 1))
+ O

q
(t− 1)(lθ+1)+h+1

l(h + c)
 ,

(61)

W2′


 � O
q

ltθ+t+h+1

lt
 , (62)

and then

W2′ � 

s− 1

j�0


bt− 1+(j+1)qlt

n�bt− 1+1+jqlt

E HP
(′1/l)
n  � 

r

i�1


P′∈P′
textdeg(P′)�lt

textsgn(P′)�ai

E HP′
(1/l)

 .

W4′


 � 
k

i�j

E HP
(′1/l)
i 




� O

q
ltθ+t+h

lt
 ,

(63)

where W4′ is the sum defined in (42) concerning the poly-
nomials in P′. Finally, we treat the sum

W5′ � 
N

i�k+1
E HP

(′1/l)
i . (64)

With +eorem 4, for all polynomials

Y � asX
lt

+ ymX
m

+ · · · + yvX
v

+ · · · + y(l− 1)t− h− cX
(l− 1)t− h− c

,

(65)

in which coefficients satisfy condition (51), there exists
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π(lt: Y, C, B) �
q

(l− 1)t− h− c

ltΦ(C)
+ O

q
ltθ

lt
 , θ< 1. (66)

Irreducible polynomials P′ are congruent to B modulo C

such that deg(P′ − Y)< (l − 1)t − h − c. Such polynomials
P′ are in P′, and we have

nk ≥ cmq
m

+ · · · + cv− 1q
v− 1

+ · · · +(q − 1)q
(l− 1)t− h− c

nN − 2q
(l− 1)t− h− c

+ 1.
(67)

+en,

W5′


≤N − k≤ 2q
(l− 1)t− h− c

− 1. (68)

With (63and68, it results in

W3′


 � W4′ + W5′


≤ 2q
(l− 1)t− h− c

+ O
q

ltθ+t+h

lt
 . (69)

Finally, from (61), (62), and (69), we have

1
N



N

n�1
E HP

′ 1/l{ }
n 




≤ q

((l(h+c))/(l− 1))
+ O

q
(t− 1)(lθ+1)+h+1

l(h + c)
  + O

q
ltθ+t+h+1

lt
  + 2q

(l− 1)t− h− c
+ O

q
ltθ+t+h

lt
  . (70)

+en,

1
N



N

n�1
E HP

′ 1/l{ }
n 




≪

q
(lθ+1)t

+ q
(l− 1)t

N
≪N

θ+(1/l)
, (71)

which gives the corresponding conclusion needed for
l> (1/(1 − θ)).
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