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In this paper, a two-stage consistency estimator for change point in the mean of panel data is given. Firstly, a single sequence is
extracted, and the initial estimator and confidence interval of the change point are given by the least square method. Based on the
confidence interval, a random interval containing change point with probability tending to 1 is constructed. Secondly, using all
panel data falling into the random interval, the final estimator of change point is obtained by least square estimation. (e
asymptotic distribution is established. Simulation results show that our method can not only ensure the estimation accuracy but
also greatly reduce time complexity.

1. Introduction

One of the tools to analyse large, high-dimensional
datasets is the panel data model. (is paper studies the
problem of structural changes for panel data, in which
there are N series (variables), and each series has T
observations. It is assumed that there is only one change
that has taken place in each series at an unknown
common point, referred to as the common change point.
Common change points in panel data are wide spread
phenomena. For example, the outbreak of the epidemic
may impact every country’s GDP. A tax policy change
may alter each firm’s investment incentive. While it may
be difficult to identify a change point with single series, it
should be, naturally, much easier to locate the common
change point using a number of series together. (is
paper explores the panel data approach to the estimation
of change point.

Joseph and Wolfson [1, 2] are the early researchers
who laid the groundwork in change point for panel data.
(ey proposed a random change point in which each
series has its own change point; across N series, the
change points are assumed to be independent and
identically distributed (i.i.d.). (ey proved that the
common distribution of the i.i.d. change points can be

consistently estimated. (is random change point model
is extended to the autoregressive model proposed by
Joseph et al. [3]. Joseph et al. [4] considered the Bayesian
framework. Skates et al. [5] and Jackson and Sharples [6]
studied the application-oriented Bayesian models. Bai
[7] established the consistency of the estimated common
change point in panel data by the least square method.
Horváth and Hušková [8] and Shin and Hwang [9] used
the CUSUM method to test change point in the mean of
panel data. Bai [7] conducted ratio-type statistics to
detect change point in panel data.

Computer-based technology allows scientists to
collect enormous datasets, and huge data demand new
methodology. In massive data, how to quickly and ac-
curately estimate the change point location has become a
real problem to be solved. Cao and Xia [10] considered a
fast estimation method for univariate sequence. (is
paper proposes a two-stage estimation method to locate
change point in the mean of panel data, and the con-
sistency of the estimator is proved.

2. Model and Assumptions

We assume that we study N panels and we have T obser-
vations in each panel. We define our model as
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Xit �
μi1 + εit, 1≤ t≤ k0,

μi2 + εit, k0 + 1≤ t≤T,
 t � 1, 2, . . . , T, i � 1, 2, . . . , N, (1)

where Eεit � 0 for all i and t. In this model, each series has a
change point at k0, where k0 is unknown and k0 � [τ0T] for
some τ0 ∈ (0, 1). (e prechange mean of Xit is μi1, and
postchange mean is μi2. (e difference λi � μi2 − μi1 repre-
sents the magnitude of change in ith panel, which can be
either random or nonrandom, and is assumed to be inde-
pendent of error process εit. In this paper, we assume that
each series has common change point at k0. Our purpose is
to give consistent estimators with lower time complexity.

For a given k such that 1⩽ k⩽T − 1, define

Xi1 �
1
k



k

t�1
Xit,

Xi2 �
1

T − k


T

t�k+1
Xit.

(2)

So, Xi1 and Xi2 are estimators for μi1 and μi2, respec-
tively. (e classical least square estimator for k0 in Peštová
and Pešta [11] is defined as

kLS � argmin
1≤k≤T− 1

SSR(k), (3)

where

SSR(k) � 
N

i�1
SiT(k),

SiT(k) � 

k

t�1
Xit − Xi1( 

2
+ 

T

t�k+1
Xit − Xi2( 

2
.

(4)

(is estimator is straightforward to compute, and the
time complexity is O(NT2). When T and N are huge, it is
not to easy to locate the change point. In this paper, a two-
stage estimation method is proposed to reduce the time
complexity.

We adopt some assumptions in Bai [7].

Assumption 1. εit � 
∞
j�0 aijei,t− j, ei,t∼(0, σ2ie) are i.i.d. over t;

jj|aij|≤M for all i. In addition, εit are independent over t.
Let σ2i � E(εit)

2 � σ2ie(ja
2
ij).

Assumption 2. limN⟶∞
1
i�1 (μi2 − μi1)

2 �∞.

Assumption 3. T is larger than N such that
((log(log(T))N)/T)⟶ 0 as T and N go to infinity.

Assumption 4. μi2 − μi1 � N− 1/2Δi, with limN⟶∞
N
i�1 (μi2

− μi1)
2 � limN⟶∞(1/N) 

N
i�1△

2
i � λ, limN⟶∞

N
i�1[(μi2−

μi1)
2 σ2i ] � limN⟶∞(1/N) 

N
i�1△

2
i σ2i � ϕ.

3. Two-Stage Estimator

3.1. )e Initial Estimator. For any given 1≤ i0 ≤N, a uni-
variate change point series with T observations Xi0t is se-
lected from N panels. (e initial estimator for k0 is defined
as

l � argmin
1≤l≤T− 1



l

t�1
Xi0t − Xi01 

2
+ 

T

t�l+1
Xi0t − Xi02 

2⎧⎨

⎩

⎫⎬

⎭ � argmax
1≤l≤T− 1

l(T − l)

T2 

1/2

Xi02 − Xi01



 . (5)

Actually, the initial change point estimator l is an or-
dinary least square estimator for change point in mean of
univariate series. Let c � (l/T) and λi0

� μi02 − μi01. (en,
according to Proposition 3 and (eorem 1 in Bai [12], the
following conclusions can be drawn.

c − τ0 � Op

1
Tλ2i0

⎛⎝ ⎞⎠, (6)

Tλ2i0 c − τ0( ⟶
d



∞

j�0
ai0j

⎛⎝ ⎞⎠

2

σ2i0argmax
υ

W(υ) −
|υ|

2
, ,

(7)

where W(v) is a two-sided Brownian motion on R.

Denote λ
2
i0

� Xi02 − Xi01;
Ai0

is a consistent estimator for
D(εi0t) � (

∞
j�0 ai0j)

2σ2i0 , and cα is the α quantile of
argmaxυ W(υ) − |υ|/2{ }. Using (7), the (1 − α)% confidence
interval for k0 is conducted as

l −
Ai0

λ
2
i0

· cα,l +
Ai0

λ
2
i0

· cα
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦. (8)

Given BT⟶∞(T⟶∞) and (BT/T)⟶ 0, we
enlarge confidence interval (8) to

l − BT ·
Ai0

λ
2
i0

· cα,l + BT

Ai0

λ
2
i0

· cα
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦. (9)

Define h1 � l − BT · (Ai0
/λ

2
i0

) · cα, h2 � l + BT · (Ai0
/

λ
2
i0

) · cα, and T0 � h2 − h1 + 1. So,
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P k0 ∈ h1, h2  ⟶ 1, asT⟶∞. (10)

(e time complexity for initial estimator is O(T2).

3.2. )e Finial Estimator. Using all samples falling into the
random interval [h1, h2], the finial estimator is defined as

kTS � argmin
h1≤k<h2

SSR1(k), (11)

where

SSR1(k) � 
N

i�1

k

t�h1

Xit − Xi1( 
2

+ 

h2

t�k+1
Xit − Xi2( 

2⎛⎝ ⎞⎠.

(12)

Denote

UNT(k) �
1

NT
SSR1(k) �

1
NT



N

i�1
SiT(k), (13)

and then
kTS � argmin

k∈ h1 ,h2[ ]
SSR1(k) � argmin

k∈ h1 ,h2[ ]
UNT(k).

(14)

It is easy to see that time complexity for finial estimator is
O(NB2

T)). So, total time complexity for the two-stage esti-
mation method is O(T2 + NB2

T)), which is smaller than
O(NT2) because (BT/T)⟶ 0. It implies that the two-stage
estimation method can give the change point position faster.

Furthermore, (eorems 1 and 2 in Section 4 ensure the
accuracy of our estimator.

In order to prove the properties of the two-stage esti-
mator, we need the following lemmas described in Bai [7].

Lemma (A.1). Assume that model (1) and Assumption 1
hold, and we have

sup
1≤k≤T

UNT(k) − EUNT(k)


 � Op

1
���
NT

√ . (15)

Lemma (A.2). Assume that model (1) and Assumption 1
hold. For all k ∈ [1, T], the expected value of UNT(k) satisfies

EUNT(k) − EUNT k0( ≥
λC k − k0




(NT)
, (16)

where λ � 
N
i�1 (μi2 − μi1)

2 for some C> 0.

4. Theorem and Proof

(e following properties can be obtained.

Theorem 1. Under Assumptions 1–3, we have

lim
N,T⟶∞

P kTS � k0  � 1. (17)

Proof. Due to symmetry, it is sufficient to consider k≤ k0.
According to Lemmas (A.1) and (A.2), for any k ∈ [h1, h2],
since

UNT(k) − UNT k0(  � UNT(k) − EUNT(k) − UNT k0(  − EUNT k0(   + EUNT(k) − EUNT k0( 

UNT(k)


 − UNT k0( 


≥ − 2 sup
h1 ≤ k≤ h2

UNT(k) − EUNT(k)


 + EUNT(k)


 − EUNT k0( 




≥ − 2 sup
h1 ≤ k≤ h2

UNT(k) − EUNT(k)


 +
λC k − k0




(NT)
,

(18)

and P UNT(kTS) − UNT(k0)≤ 0 ⟶ 1, then we have that

kTS − k0



≤ 2λ
− 1

C
− 1

NT sup
h1≤k≤h2

UNT(k) − EUNT(k)




� 2λ− 1
C

− 1
(NT)

1/2
Op(1).

(19)

It can be concluded from Assumptions 1 and 2 and (19)
that

kTS − k0





T
�

2
λC

��
N

T



Op(1) � op(1). (20)

(us, |kTS − k0| � op(T). So, for any ε> 0, |kTS − k0|≤ εT
for large T, with probability tending to 1. Because k0 � [Tτ0]
and τ ∈ (0, 1), there exists δ > 0 such that P(kTS ∈ [δT, (1 −

δ)T])⟶ 1 as T⟶∞. (at is, P(kTS ∈ D)⟶ 1, where
D � k: δT≤ k≤ (1 − δ)T, h1 ≤ k≤ h2 .

Define the set D(k0) � D/ k0  so that D(k0) excludes k0
from D. (en,

P kTS ≠ k0 ≤P kTS ∉ D  + P kTS ∈ D, kTS ≠ k0 

� P kTS ∉ D  + P kTS ∈ D k0(  .
(21)

By the definition of kTS, UNT(kTS)≤UNT(k0). So, a
necessary condition for kTS ∈ D(k0) is
mink∈D(k0))UNT(k)UNT(k0)≤ 0. Similar to Lemma A.3 of Bai
[7], it can be proved that
P mink∈D(k0)UNT(k) − UNT(k0)≤ 0 ⟶ 0, which implies
that P(kTS ∈ D(k0))⟶ 0. (us,

P kTS ≠ k0 ≤P kTS ∉ D  + P kTS ∈ D k0(  ⟶ 0. (22)
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(is completes the proof. □

Theorem 2. Under Assumptions 1, 3, and 4, as T, N⟶∞,

kTS − k0⟶
d

argmin
ℓ

[|ℓ|λ + 2
��
ϕ


W(ℓ)], (23)

where W(0) � 0 and W(ℓ) � 
0
s�− ℓ+1 Zs, ℓ � − 1, − 2, . . .,

W(ℓ) � 
ℓ
s�1 Zs, ℓ � 1, 2, . . ., and Zs, s � . . . , − 1, 0, 1, . . . are

i.i.d. standard normal random variables.

Proof. Again, by symmetry, it is sufficient to consider k≤ k0.
For k≤ k0 and k ∈ [h1, h2],

Xi1 � μi1 +
1
k



k

t�h1

εit,

Xi2 � μi1 +
T0 − k0

T0 − k
μi2 − μi1(  +

1
T0 − k



h2

t�k+1
εit

�
k0 − k

T0 − k
μi1 − μi2(  + μi2 +

1
T0 − k



h2

t�k+1
εit.

(24)

Introduce

εi1 �
1
k



k

t�h1

εit,

εi2 �
1

T0 − k


h2

t�k+1
εit,

(25)

and let

aik �
T0 − k0

T0 − k
μi2 − μi1( ,

bik �
k0 − k

T0 − k
μi1 − μi2( .

(26)

It follows that

Xi1 � μi1 + εi1,

Xi2 � μi1 + aik + εi2 � μi2 + bik + εi2.
(27)

By the definition of SiT(k), we get

SiT(k) � 
k

t�h1

εit − εi1( 
2

+ 

k0

t�k+1
εit − aik − εi2( 

2

+ 

h2

t�k0+1
εit − bik − εi2( 

2

� 
k

t�h1

εit − εi1( 
2

+ 

h2

t�k+1
εit − εi2( 

2

+ k0 − k( a
2
ik + T0 − k( b

2
ik − 2aik 

k0

t�k+1
εit − εi2( 

− 2bik 

h2

t�k0+1
εit − εi2( .

(28)

Notice that



k

t�h1

εit − εi1( 
2

+ 

h2

t�k+1
εit − εi2( 

2
� 

h2

t�h1

ε2it − kε2i1 − T0 − k( ε2i2,

(29)

and thus

SSR1(k) � k0 − k(  

N

i�1
a
2
ik + T − k0(  

N

i�1
b
2
ik + 

N

i�1


h2

t�h1

ε2it

− 
N

i�1
kε2i1 − 

N

i�1
T0 − k( ε2i2

− 2
N

i�1
aik 

k0

t�k+1
εit − εi2(  − 2

N

i�1
bik 

h2

t�k0+1
εit − εi2( .

(30)

So,

SSR1(k) − SSR1 k0(  � k0 − k(  

N

i�1
a
2
ik + T − k0(  

N

i�1
b
2
ik − 

N

i�1

1
k



k

t�h1

εit
⎛⎝ ⎞⎠

2

−
1
k0



k0

t�h1

εit
⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

− 
N

i�1

1
T0 − k



h2

t�k+1
εit

⎛⎝ ⎞⎠

2

−
1

T0 − k0


h2

t�k0+1
εit

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

− 2
N

i�1
aik 

k0

t�k+1
εit − 2

N

i�1
bik 

h2

t�k0+1
εit + 2

N

i�1
k0 − k( aik + T0 − k0( bik εi2.

(31)
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According to (eorem 4.2 of Bai [7], the first and the
fifth terms are (k0 − k)Op(1) and all others are
(k0 − k)Op(1).

Because ((T0 − k0)/(T0 − k))⟶p 1, we have

k0 − k(  

N

i�1
a
2
ik � k0 − k(  

N

i�1

T0 − k0

T0 − k
μi2 − μi1(  

2

⟶
p

k0 − k( λ. (32)

Similarly,

− 2
N

i�1
aik 

k0

t�k+1
εit � − 2

T0 − k0

T0 − k


k0

t�k+1


N

i�1
μi2 − μi1( εit

⎧⎨

⎩

⎫⎬

⎭

� − 2
T0 − k0

T0 − k


k0

t�k+1
N

− 1/2


N

i�1
Δiεit � − 2

T0 − k0

T0 − k

���
ϕN





k0

t�k+1
N

− 1/2


N

i�1
ωiεit

⎛⎝ ⎞⎠,

(33)

where

ωi �
Δi���
ϕN

 �
Δi

(1/N) 
N
j�1 Δ

2
jσ2 

1/2. (34)

Under Assumption 4, ϕN � (1/N) 
N
j�1 Δ

2
jσ

2
j⟶ ϕ and

N− 1/2 
N
i�1 ωiεit⟶ Zt, where Zt∼N(0, 1). (us, the limit of

the fifth term of (31) is 2ϕ1/2 
k0
t�k+1 Zt.

In summary, for k≤ k0,

SSR1(k) − SSR1 k0( ⟶
d

k0 − k( λ + 2ϕ1/2 

k0

t�k+1
Zt. (35)

Similarly, for k> k0, we can prove that

SSR1(k) − SSR1 k0( ⟶
d

k − k0( λ + 2ϕ1/2 

k

t�k0+1
Zt. (36)

Let ℓ � k0 − k, kTS − k0⟶d argmin
ℓ

[|ℓ|λ + 2
��
ϕ


W(ℓ)]

by functional central limit theorem. □

5. Monte Carlo Comparison

We compare two estimators (3) and (11) by Monte Carlo
simulation on the same computer. (e series is generated
according to model (1), where εit

∼ N(0, 1),
μi1

∼ U(− 10, 10) and μi1 − μi2 ∼ N(0.5, 0.01). Experiments
are carried out for N � 80, 100, 120, T � 1000, 1200, 1400,

and k0 � 0.5T. We choose BT � lg(T), ln(T), log2(T).
Table 1 reports our simulation results based on 500 repli-
cations, where Mean, S d, and Tc stand for the average
estimator, standard deviation, and the operated time for the
computer, respectively, while time is in seconds.

It can be seen from Table 1 that with the increasing
number of sequences of N and the sample size of T, the
running times are getting longer and longer for both the
two-stage method and least square method. When N and T

are fixed, with the increase of BT, the two-stage estimator is
closer to the true change point and the running time is
increased slightly. (e running time of the two-stage esti-
mation method is much less than that of the least square
method. (is shows that in the case of massive data, the
method in this paper can estimate the change point position
faster.
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Table 1: Simulation comparison of two-stage estimation and least square estimation.

N � 80, T � 1000 N � 100, T � 1200 N � 120, T � 1400
Mean(Sd) Tc(s) Mean(Sd) Tc(s) Mean(Sd) Tc(s)

TS
lg(T) 501.218 (26.411) 0.926 601.084 (21.981) 1.180 700.164 (20.535) 1.468
ln(T) 499.998 (0.184) 2.452 600.012 (0.126) 3.194 700.006 (0.073) 3.838
log2(T) 499.998 (0.118) 3.834 600.006 (0.134) 5.074 700.000 (0.063) 5.946

LS 499.998 (0.195) 7.640 599.988 (0.141) 11.378 699.998 (0.077) 24.856
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