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When faced with complex optimization problems with multiple objectives and multiple variables, many multiobjective particle
swarm algorithms are prone to premature convergence. To enhance the convergence and diversity of the multiobjective particle
swarm algorithm, a multiobjective particle swarm optimization algorithm based on the grid technique and multistrategy
(GTMSMOPSO) is proposed. .e algorithm randomly uses one of two different evaluation index strategies (convergence
evaluation index and distribution evaluation index) combined with the grid technique to enhance the diversity and convergence of
the population and improve the probability of particles flying to the real Pareto front. A combination of grid technology and a
mixed evaluation index strategy is used to maintain the external archive to avoid removing particles with better convergence based
only on particle density, which leads to population degradation and affects the particle exploitation ability. At the same time, a
variation operation is proposed to avoid rapid degradation of the population, which enhances the particle search capability. .e
simulation results show that the proposed algorithm has better convergence and distribution than CMOPSO, NSGAII, MOEAD,
MOPSOCD, and NMPSO.

1. Introduction

Most of today’s scientific and engineering problems are
characterized by the fact that they usually have multiple
conflicting objectives [1], and decision makers need to si-
multaneously optimize multiple objectives as best as possible
within a given range, namely, multiobjective optimization
problems (MOPs). .e optimization result of such problems
is not single, and there exists a Pareto optimal solution set
consisting of a set of compromise solutions [2]. .e goal of
solving such problems is to obtain well-distributed Pareto
fronts in the objective space [3–6].

With the expansion of human existence and the wid-
ening of the scope of understanding and transforming the
world, the complex optimization problems encountered in
reality are characterized by complex, multipolar, nonlinear,
strongly constrained, and difficult modeling, which cannot

be solved in polynomial time by classical algorithms, such as
simplex algorithm and conjugate gradient method, or even
cannot be solved effectively with the model. With the de-
velopment of information technology, swarm intelligence
algorithms are widely used, and such algorithms simulate
the centralized learning process of a group composed of
individuals. Such algorithms can effectively overcome the
models that cannot be solved by classical algorithms. As a
kind of swarm intelligence algorithm, particle swarm op-
timization (PSO) algorithm has the characteristics of simple
operation and fast convergence and has good solution po-
tential in solving MOPs.

When PSO deals with MOPs, it is called multiobjective
particle swarm optimization (MOPSO). PSO needs to solve
at least three problems when dealing with MOPs. .e first
problem is how to preserve a set of noninferior solutions
generated by the algorithm at each iteration, especially when
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the number of iterations is large, and how to control the
number of solutions to ensure that the noninferior solutions
obtained by the algorithm can meet the solution quality
requirements. .e second problem is how to select the
learning samples of particles among the many noninferior
solutions. Since there is no truly optimal solution in MOPs,
the global optimal particle and the individual optimal
particle of MOPSO need to be selected by a specific strategy.
.e third problem is how to maintain the population di-
versity and prevent the population from falling into local
optimal solutions. Due to the faster convergence speed of
MOPSO, the resulting set of noninferior solutions is prone
to lose diversity rapidly during the algorithm learning
process.

.e problems of maintaining the size of external ar-
chives, selecting learning samples of particles among many
noninferior solutions, maintaining the diversity of the
population, and preventing the population from falling into
local optimal solutions are the core of MOPSO. In [7],
MOPSOhv, a new hypervolume-based multiobjective par-
ticle swarm optimizer, is proposed. .e algorithm uses the
hypervolume contribution of the archiving solution to select
global and individual leaders for each particle in the master
cluster and is used to update the noninferior solution of the
external archive. To increase the diversity of particles, the
algorithm introduces a mutation operator. In [8], R2-
MOPSO, amultiobjective particle swarm optimizer based on
R2 indicator and decomposition, is proposed..e algorithm
uses one strategy of R2 contribution rate to select the global
best leader and update the individual best leader. Also, the
algorithm uses an elite learning strategy and a Gaussian
learning strategy to improve the diversity of particles. In [9],
balancing convergence and diversity is a key problem in
high-dimensional target spaces, and handling many objec-
tive optimization problems with R2 indicator and decom-
position-based particle swarm optimizer is proposed to solve
this problem. To balance convergence and diversity, a two-
level archivingmaintenance method based on r2metrics and
a target space decomposition strategy are designed. .e
algorithm selects the best global leader based on the r2
metric, while the selection of the best individual leader is
based on Pareto dominance. Also, the target space de-
composition leader selection used feedback from a two-level
profile. A new velocity update method improves the ex-
ploitation ability of particles. Also, an elite learning strategy
and an intelligent Gaussian learning strategy are embedded
in R2-MaPSO to improve the ability of particles to jump out
of local optimal solutions.

.e current improved MOPSO improves the conver-
gence and diversity of MOPSO to a certain extent, but there
are still shortcomings. To further improve the performance
of MOPSO, this paper proposes a multiobjective particle
swarm algorithm based on grid technology and multi-
strategy. .e main improvements to MOPSO are as follows:
(1) for the maintenance of external archives, a grid technique
and mixed evaluation index are used to remove noninferior
solutions in the external archives to improve the quality of
candidate solutions; (2) to enhance the diversity and con-
vergence of the population, one of the two different

evaluation index strategies is randomly used to select the
global optimal sample based on the grid technique; and (3)
to further increase the population diversity, a variation
operation strategy is used to vary the particle positions. .e
simulation experimental results show that the proposed
algorithm has certain advantages over the other five mul-
tiobjective particle swarm algorithms.

.e rest of this paper is organized as follows. Section 2
introduces the multiobjective optimization problem, related
work, and the concept of particle swarm algorithm. Section 3
presents the details of the algorithm in this paper. Section 4
shows the comparison results and analysis of GTMSMOPSO
with other 5 multiobjective particle swarm algorithms. Fi-
nally, the conclusion of the algorithm in this paper is given in
Section 5.

2. Background

2.1. Multiobjective Optimization Problem. .e definition of
the general multiobjective optimization problem is de-
scribed as follows:

min F(x) � f1(x), f2(x), . . . , fk(x)(  ,

s.t. gi(x) ≤ 0, i � 1, 2, . . . , m,

hj(x) � 0, j � 1, 2, . . . , p,

(1)

where x � (x1, x2, . . . , xn)T is the n-dimensional decision
vector, fi: Rn⟶ R, i � 1, 2, . . . , k is the objective function,
and gi, hj: Rn⟶ R, i � 1, 2, . . . , m, j � 1, 2, . . . , p is the
inequality constraint and the equality constraint,
respectively.

Definition of multiobjective optimization is given as
follows.

Definition 1 (Pareto dominance). A vector
m � (m1, m2, . . . , mk) is dominant n � (n1, n2, . . . , nk), if
and only if

∀i ∈ 1, 2, . . . , k{ }, mi ≤ ni ∧∃i ∈ 1, 2, . . . , k{ }, mi < ni.

(2)

Definition 2 (Pareto optimal). A solution x′ ∈ Ω is a Pareto
optimal or a noninferior solution, if and only if

∃x ∈ Ω, x<x′. (3)

Definition 3 (Pareto optimal solution set). .e set S in-
cluding all Pareto optimal solutions is a Pareto optimal
solution set, which is defined as

S � x′ ∈ Ω|∃x∗ ∈ Ω: F x
∗

( <F((x′) . (4)

Definition 4 (Pareto frontier). .e set PF of all objective
function values with the Pareto optimal solution set as the
feasible region is called the Pareto frontier and is defined as
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PF � y � f1(x), f2(x), . . . , fk(x)( |x ∈ S . (5)

2.2. Related Work. PSO is a kind of population intelligence
optimization algorithm with simple operation and fast
convergence, which is widely used in single objective op-
timization problems. It is the simplicity of operation and fast
convergence of particle swarm algorithm that has attracted
increasing scholars to study it. Since MOPs have no truly
optimal solutions, MOPSO generally selects the global op-
timal samples in the set of noninferior solutions, and because
MOPSO has a fast convergence rate in the learning process,
it is easy to make the obtained set of noninferior solutions
lose diversity rapidly, leading to a fall into local optimal
solutions.

In order to solve the above problems, increasing
scholars have proposed many improvement methods for
MOPSO. Coello et al. [10] proposed a multiobjective
particle swarm optimization algorithm based on adaptive
grid, which uses adaptive grid technology to maintain
external archives, guide particle updates, and implement
mutations on the particle and particles flight area. Although
the algorithm shows some advantages over traditional
multiobjective evolutionary algorithms for MOPs, it has
difficulties in solving complex MOPs with multiple local
fronts and poor diversity of nondominated solutions. Li
et al. [11] proposed grid search-based multipopulation
particle swarm optimization algorithm for multimodal
multiobjective optimization, which uses a multiple cluster
algorithm based on the k-means clustering method to
locate more equivalent PSs in the decision space and uses a
grid in GSMPSO-MM to explore high-quality solutions in
the decision space, but the algorithm still suffers from
insufficient convergence.

It is different from the abovementioned MOPSO which
determines the search mechanism through the dominance
relationship. In [12], a multiobjective particle swarm al-
gorithmwith randommigration is proposed..e algorithm
sets an age threshold. When a particle does not improve its
individual position, it will increase its age, and when the
particle age exceeds this age threshold, the particles will be
reinitialized to increase the diversity of the population and
avoid falling into local extremes. However, because de-
composition replaces the dominant relationship, the al-
gorithm cannot cover the entire Pareto frontier when
solving some complex MOPs. To solve this problem, Han
et al. [13] proposed multiobjective particle swarm opti-
mization with adaptive strategy for feature selection, which
mainly uses the PBI decomposition method to select the
optimal solution and adaptively provides different penalty
values for each weight vector and further improves the
ability of MOPSO to solve MOPs. Some scholars also
proposed some improved MOPSO. In [14], a modified
particle swarm optimization for multimodal multiobjective
optimization was proposed. .e algorithm introduces a
community-based dynamic learning strategy to replace the
global learning strategy, enhances the population diversity,
and introduces a competition mechanism to improve the

performance of the particle swarm algorithm. In [15], a self-
organized speciation based multiobjective particle swarm
optimizer for multimodal multiobjective problems is
proposed, which uses a species formation strategy to es-
tablish multiple stable ecological niches to increase the
probability of species flying to the true Pareto front. In [16],
a simplified multiobjective particle swarm optimization
algorithm was proposed. .e algorithm uses an adaptive
penalty mechanism for the PBI parameters, which can
adaptively adjust the penalty value to enhance the selection
pressure of the archive and improve the selection pressure
of each particle. In [17], multiobjective reservoir operation
using particle swarm optimization with adaptive random
inertia weights is proposed, which combines the ARIW
algorithm with the traditional PSO, while using a triangular
probability density function, randomly generates inertia
weights, and automatically adjusts the probability distri-
bution function as it evolves. In [18], based on penalty
function theory and particle swarm optimization (PSO)
algorithm, an improved multiobjective particle swarm
optimization algorithm based on archive management is
proposed, while multiple swarm coevolution of crowded
distance archive management is used to improve the search
ability and diversity of the population.

Most of the current improved MOPSO rely on only one
strategy to select the learning samples of particles and
maintain external archives, without considering the perfor-
mance of particles at different stages, resulting in insufficient
convergence and diversity of the algorithms when solving
complexMOPs. In this paper, a multiobjective particle swarm
algorithm based on grid technology and multistrategy is
proposed, and experimental simulations show that the al-
gorithm effectively improves the performance of MOPSO.

2.3. Particle Swarm Optimization. .e particle swarm op-
timization [19] is an optimization algorithm based on an
iterative model, proposed by Dr. Eberhart and Dr. Ken-
nedy in 1995, and originated from the study of the be-
havior of bird flocks foraging. .e group searches for the
global optimal solution within a range, and each particle
has a fitness and speed to adjust its flight direction. During
the flight, all particles in the group have a memory
function, and each particle continuously learns from its
own optimal position and the optimal particle position in
the group. .e particle velocity and position update for-
mula are as follows:

v(t + 1) � ωv(t) + c1r1(p(t) − x(t)) + c2r2(g(t) − x(t)), (6)

x(t + 1) � x(t) + v(t + 1). (7)

Among them, ω is the inertia weight, and its size controls
the size of the search ability. c1 and c2 are the acceleration
factors to make the particles have the ability to self-sum-
marize and learn from the outstanding individuals in the
group. r1 and r2 are random numbers in the range [0,1]. p

and g, respectively, represent the individual optimal solution
and the global optimal solution.
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3. The Proposed GTMSMOPSO Algorithm

.e problems of maintaining the size of external archives,
selecting learning samples of particles among many non-
inferior solutions, maintaining the diversity of the pop-
ulation, and preventing the population from falling into
local optimal solutions are the core ofMOPSO. In this paper,
we propose a grid technique and a multistrategy approach in
the part of maintenance of external archives and selection of
globally optimal particles, to further improve the perfor-
mance of MOPSO by a variational operation on the posi-
tions of particles.

3.1.GridTechnique. InMOPSO, each iteration generates a set
of noninferior solutions. .e grid technique divides the grid
area by the information of all noninferior solution function
values in the external archive, so that the grid location to which
the noninferior solution belongs can be found according to the
function value of the noninferior solution. .e definition of
grid technology is introduced as follows.

3.1.1. Coordinates of the Grid Boundary. In the target space,
the maximum and minimum values of the noninferior
solution of the mth objective function are minfm(x) and
maxfm(x), respectively, and then the upper and lower
boundaries of the mth target grid are given by

Lm � minfm(x) −
maxfm(x) − minfm(x)

b
,

Um � maxfm(x) +
maxfm(x) − minfm(x)

b
,

(8)

where b is the number of mesh divisions.

3.1.2. Grid Coordinates (Gm). let fm(x) be the function
value of particle x as the mth dimensional target, then the
corresponding grid coordinates are

Gm(x) �
fm(x) − Lm

dm

, (9)

where dm � (Um − Lm/b − 1) � ((maxfm(x) − minfm(x))

+2ep/b − 1) and ep � (maxfm(x) − minfm(x)/b) is the
grid width

3.2. GlobalOptimal Sample SelectionBased onGridTechnique
and Multistrategy. .e global optimal particle selection in
MOPSO is a key factor affecting the diversity and conver-
gence of the algorithm. To enhance the convergence and
diversity of MOPSO, this paper uses two different evaluation
indices (convergence evaluation index and distribution
evaluation index) to select noninferior solutions in each grid
based on the roulette wheel strategy.

3.2.1. Selection Method of Convergence Evaluation Index and
Distribution Evaluation Index. To improve the convergence
of the algorithm, the noninferior solution with the largest

contribution to the Pareto solution set is selected as the
global optimal sample in the same grid. In this paper, the
inflection point distance of particles is used as the evaluation
index of particle convergence.

.e inflection point distance (IPD) is to determine an
extreme straight line through the two extreme noninferior
solutions in the external archive of two-objective functions
and then calculate the distance from the particle to this
straight line. If there are three or more goal functions, it is
necessary to calculate the distance from each solution in the
noninferior solution set to the extreme “hyperplane.”

.e equation of the extreme straight line L is as follows:

Ax + By + C � 0, (10)

where A, B, and C are all real numbers.
Supposing that the coordinate of the noninferior solu-

tion x is (x0, y0), then the distance from the noninferior
solution x to the straight line L is

Ax0 + By0 + C



�������
A

2
+ B

2
 . (11)

.e hyperplane in n-dimensional space is determined by
the following equation:

Ax + b � 0. (12)

Among them, A is an n-order square matrix, x is an
n-dimensional column vector, and b is a real number,
representing the distance from the hyperplane to the origin.
.e distance from each solution in the noninferior solution
is set to the extreme “hyperplane”:

|Ax + b|

‖A‖
. (13)

.e inflection point of the curve is the “most concave”
point on the front surface of Pareto, which contributes the
most to the Pareto solution set. IPD is an index reflecting the
convergence of particles in the same grid. .e smaller the
IPD index of the particle, the better the convergence of the
particle. Taking the dual objective function as an example, as
shown in Figure 1, the black noninferior solution has the
best convergence, the red noninferior solution is the extreme
noninferior solution, and the noninferior solution above the
extreme straight line has the worst convergence.

To increase the diversity of the population, the most
dispersed noninferior solution in the same grid is selected as
the global optimal sample. In this paper, the grid density of
particles is used as the evaluation standard of particle
distribution.

.e average of the sum of Euclidean distances between
particle xi and all other particles in the same grid is defined
as the grid density of particle xi, which is defined as follows:

gd xi(  �
1
S



S

s�1

M

m�1

�����������������

fm xi(  − fm xj  
2



, (14)

where S is the number of particles in the same grid andM is
the number of objective functions.
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gd is an indicator that reflects the distribution of particles
in the same grid. .e larger the gd index of the particles, the
more dispersed the particle distribution.

3.2.2.=e Gbest SelectionMethod of Two Different Evaluation
Indicators on Roulette. To ensure the diversity of the
population, the noninferior solutions of each grid are
selected as the global optimal sample. Due to the different
number of noninferior solutions in the grid, the more
noninferior solutions are selected by the roulette strategy
for the grid with more noninferior solutions. To further
balance the convergence and diversity of the algorithm
and enable the population to explore more regions, one of
the convergence evaluation index and diversity evaluation
index is selected according to the current iteration
number of the algorithm to select noninferior solutions in
the same grid. Suppose that the noninferior solution with
the largest inflection point distance in the j-th grid is
max(IPDj), and the noninferior solution with the largest
grid density in the j-th grid is max(gdj). .en, in the j-th
grid, the particles select max(IPDj) or max(gdj) as the
gbest probability:

gbesti �

max gdj , rand< k ×
iter

maxiter
,

max IPDj  otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

where rand is a random number between [0,1], iter is the
current number of iterations, itermax is the maximum
number of iterations, and k is a real number. .rough ex-
perimental simulation, the best effect is obtained when
k� 1.3. From equation (15), it can be seen that the good
particle diversity but poor convergence in the early iteration
of the algorithm makes the particles have a higher proba-
bility of choosing max(IP D) as the gbest to guide the flight
as a way to improve the particle exploitation. Particles
converge better but are less diverse in the late iterations of
the algorithm, allowing particles to have a higher probability

of selecting max(g d) as the gbest to guide their flight as a
way to improve particle exploration.

3.3. External Archive Maintenance Based on Mixed Evalua-
tion Indicators. In MOPSO, each iteration of the algorithm
will generate a set of noninferior solutions, and these
noninferior solutions will be stored in the external archive.
As the algorithm runs, the number of noninferior solutions
will increase. .e external archive needs to be maintained
when the maximum size of the external archive is reached.
Most MOPSO delete highly crowded particles to maintain
external archives. However, although this method guaran-
tees the uniform distribution of noninferior solutions in the
external archive, it is possible to delete noninferior solutions
with better convergence. .erefore, this paper adopts a
hybrid evaluation index of convergence evaluation index
and distribution evaluation index to delete noninferior
solutions in external archives to improve the quality of
candidate solutions.

It is deleted by finding the grid with the largest number
of particles..e deletionmethod is a hybrid evaluation index
strategy of the convergence evaluation index and the dis-
tribution evaluation index of the particles. .e specific
formula is as follows:

ME xj  � IPD xj  × gd xj . (16)

.e larger the IPD index of the particle, the greater the
contribution of the particle to the Pareto solution set, and the
better its convergence. From formula (14), it can be seen that
the larger the gd index of the particle, the more dispersed the
particle distribution. It can be seen from formula (16) that
the particle ME index can reflect not only the degree of
convergence of the particle but also the distribution of the
particle. .e smaller the particle ME index, the better the
overall performance of the particle. .erefore, when the
external archive reaches the maximum limit, the grid with
the largest number of particles is found, and the particles
with the smallerME index in the grid are deleted to improve
the quality of the candidate solutions.

f2

f10

Figure 1: Selection of the global optimal sample.
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3.4. Mutation Operation. MOPSO has strong exploration
capabilities in the early iterations and can continuously
search for new areas. However, MOPSO has a fast con-
vergence effect, which makes the algorithm very likely to
search around the local optimal solution in the later itera-
tions, which makes the algorithm converge prematurely.
.erefore, to make the algorithm maintain good population
diversity in the early iterations and increase population
diversity in the later iterations, mutation operations are used
to increase the degree of position mutation. .e position
variation of particles increases linearly with the increase in
the number of iterations. At the beginning of the iteration,
the diversity of the population is good, so that the variation
of the particles is small, so that the diversity of the pop-
ulation remains stable. In the later stage of the iteration, the
diversity of the population is insufficient, which makes the
particles vary greatly to increase the diversity of the pop-
ulation. In GTMSMOPSO, the update formula of particle
velocity is given in equation (6), and the update formula of
particle position is as follows:

x(t + 1) �
e

− (n/N)

1 + e
− (n/N)

x(t) + v(t + 1), (17)

where itermax is the maximum number of iterations, iter is
the current iteration number, and e is the natural logarithm.

3.5. =e Main Flow of the Algorithm. .e main flow of
GTMSMOPSO is as follows.

Step 1. Set the number of populations, the maximum
number of external archives, the dimension of particles, the
number of grids, and the maximum number of iterations.
Initialize the position and velocity randomly, set the initial
value of each particle position as the best value of the in-
dividual particle, and create an external archive and set it to
an empty set.

Step 2. Calculate the fitness of each particle and store the
noninferior solutions in an external archive.

Step 3. Establish grids for the target space, and calculate the
noninferior solutions in each grid with the inflection point
distance formula and the grid density formula.

Step 4. .e best sample of an individual is the best between
the current position and the best position in the history of
the individual. If the rankings are equal, one of them is
randomly selected. First use the roulette method to deter-
mine the number of noninferior solutions that need to be
selected in each grid, and then use equation (15) to deter-
mine the global optimal sample for the same grid.

Step 5. Use flight formulas (6) and (17) to update the speed
and position of each particle.

Step 6. If the external archive does not reach saturation,
continue to add noninferior solutions. If the external archive
reaches a saturated state, find the grid with the largest

number of grid particles, use formula (14) to delete the
particles with a smaller ME index, and then introduce
noninferior solutions into the external archive to update the
external archive.

Step 7. If the current number of iterations is less than the
maximum number of iterations, return to the second step;
otherwise, output the optimal solution set.

.e algorithm flowchart of GTMSMOPSO is presented
in Figure 2.

4. Experimental Simulation Analysis

4.1. Performance Evaluation Index. To evaluate the perfor-
mance of each algorithm, this paper uses inverse generation
distance (IGD) [20] and super volume (HV) [21] to evaluate
the algorithm respectively. IGD is a measure of the distance
between the true Pareto front and the approximate Pareto
front. .e lower the IGD value, the better the convergence
and diversity of the approximate Pareto frontier obtained by
the algorithm, and the closer it is to the true Pareto frontier.
Its calculation formula is as follows:

IGD(P, Q) �
V∈Pd(v, Q)

|P|
, (18)

where P is the set of solutions uniformly distributed over the
true PF and|P| is the number of individuals in the set of
solutions distributed over the true PF.Q is the set of Pareto
optimal solutions obtained by the algorithm, and d(v, Q) is
the minimum Euclidean distance from a single v in P to the
population Q.

.e HV measures the noninferiority distribution of the
algorithm in the space, and a larger HV indicates a better
noninferiority distribution in the space.

4.2. Selection of Parameters. .e parameter settings of
GTMSMOPSO are as follows: the external archive size is set
to 200, the population size is set to 200, the maximum
number of iterations is 2000, the number of grids is 50,
c1�c2�2, and ω � 0.4. .e parameter settings of the other
four comparisons of multiobjective particle swarm opti-
mization are consistent with the original literature.

4.3. Experimental Results and Data Analysis. To verify the
effectiveness of GTMSMOPSO, we selected typical multi-
objective test function sets ZDT [22], UF [23], and DTLZ
[24], representative 14 multiobjective functions (ZDT1-4,
ZDT6, UF2-5, UF8-10, DTLZ1, and DTLZ6), and com-
parative algorithms including CMOPSO [25], NSGAII [26],
MOEAD [27], MOPSOCD [28], and NMPSO [29]. All al-
gorithms, except GTMSMOPSO, run on the platform [30].
.e mean (Mean) and standard deviation (Std.) of the IGD
metrics and HV metrics for GTMSMOPSO and the five
multiobjective intelligence algorithms on the 14 tested
functions are given in Tables 1 and 2, respectively. .e
bolded data in the table represent the best values.

.e multiobjective test function sets ZDT (ZDT1-4 and
ZDT6) are all biobjective test functions. ZDT1 has a convex
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Start

Initialize the particle swarm

Calculate the fitness value and
perform pareto ranking 

Use ME indication to update and
maintain external archive update

Update pbest based on Pareto
dominance 

Use equation (15) to update gbest

Flight

Whether to terminate

endYes

No

Figure 2: Algorithm flowchart of GTMSPSO.

Table 1: .e IGD value of the algorithm on 14 test functions.

Function IGD GTMSMOPSO CMOPSO NSGAII MOEAD MOPSOCD NMPSO

ZDT1 Mean 5.65E-03 3.25E-03 3.87E-02 1.89E-01 2.05E-02 3.16E-02
Std. 6.97E-04 5.13E-04 8.49E-03 7.89E-02 6.41E-02 9.92E-03

ZDT2 Mean 5.99E-03 2.80E-03 1.09E-01 5.66E-01 1.43E-01 6.25E-02
Std. 9.06E-04 3.78E-04 9.68E-02 7.72E-02 2.24E-01 1.32E-01

ZDT3 Mean 2.05E-01 3.56E-03 3.27E-02 1.73E-01 3.83E-02 9.79E-02
Std. 6.89E-03 6.42E-04 8.31E-03 6.56E-02 4.76E-02 7.02E-03

ZDT4 Mean 5.90E-03 1.63E+02 3.14E+01 4.77E-01 1.57E+02 1.37E+02
Std. 6.89E-04 3.42E+01 5.00E+00 1.92E-01 3.07E+01 2.71E+01

ZDT6 Mean 2.20E-03 2.72E-01 2.99E+00 8.37E-02 1.39E+00 2.21E-03
Std. 1.92E-04 2.65E-01 2.10E-01 2.12E-02 1.80E+00 1.60E-04

UF2 Mean 8.26E-02 6.38E-02 6.63E-02 2.17E-01 1.38E-01 8.19E-02
Std. 7.73E-03 4.76E-03 6.48E-03 7.33E-02 1.45E-02 7.06E-03

UF3 Mean 3.18E-01 3.97E-01 4.40E-01 3.47E-01 3.65E-01 3.64E-01
Std. 3.12E-02 2.56E-02 1.82E-02 2.85E-02 5.30E-02 5.59E-02
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PF and ZDT2 has a nonconvex PF. From Tables 1 and 2, it
can be seen that both GTMSMOPSO and CMOPSO have
smaller IGD values and larger HV values on ZDT1 and
ZDT2 test functions, so they have better overall perfor-
mance. .e performance of NSGAII and MOEAD is slightly
worse. ZDT3 has a broken Pareto front and is nonconvex. It
can be seen from Tables 1 and 2 that GTMSMOPSO has the

best HV value on the ZDT3 test function, although it has a
poor IGD value. ZDT4 has many locally optimal solutions
and has convex PFs, and ZDT6 has nonconvex and non-
uniformly spaced PFs. GTMSMOPSO showed the best IGD
and HV values on the ZDT4 test function. GTMSMOPSO
showed the best IGD value on the ZDT6 test function, and
its HV value was slightly lower than the HV value of

Table 1: Continued.

Function IGD GTMSMOPSO CMOPSO NSGAII MOEAD MOPSOCD NMPSO

UF4 Mean 5.55E-02 1.09E-01 8.07E-02 1.15E-01 7.82E-02 6.39E-02
Std. 4.55E-03 1.12E-02 2.33E-03 4.84E-03 7.18E-03 8.78E-03

UF5 Mean 1.93E+00 8.45E-01 8.20E-01 1.36E+00 3.92E+00 1.69E+00
Std. 1.70E-01 1.75E-01 2.98E-01 2.73E-01 4.67E-01 4.19E-01

UF8 Mean 4.26E-01 5.54E-01 3.12E-01 5.01E-01 7.61E-01 4.48E-01
Std. 8.11E-02 1.05E-01 4.58E-02 2.53E-01 1.83E-01 1.18E-01

UF9 Mean 4.34E-01 8.45E-01 4.49E-01 5.36E-01 9.05E-01 4.70E-01
Std. 2.67E-02 1.14E-01 6.02E-02 1.05E-01 1.29E-01 6.12E-02

UF10 Mean 4.88E-01 4.51E+00 1.44E+00 7.04E-01 5.23E+00 1.50E+00
Std. 1.91E-01 4.79E-01 5.08E-01 9.49E-02 8.63E-01 3.41E+00

DTLZ1 Mean 6.34E-02 7.46E+01 5.38E+00 5.79E+00 4.29E+01 4.25E+01
Std. 1.86E-02 1.03E+01 1.53E+00 4.08E+00 1.56E+01 6.56E+00

DTLZ6 Mean 2.62E-02 1.47E-01 4.05E-03 1.87E-01 5.76E-02 1.29E-02
Std. 3.61E-02 3.32E-01 1.46E-03 3.34E-01 1.65E-01 2.18E-03

Table 2: .e HV value of the algorithm on 14 test functions.

Function HV GTMSMOPSO CMOPSO NSGAII MOEAD MOPSOCD NMPSO

ZDT1 Mean 7.18E-01 7.20E-01 6.69E-01 5.41E-01 7.00E-01 6.87E-01
Std. 7.16E-04 6.96E-04 1.38E-02 5.36E-02 7.54E-02 1.18E-02

ZDT2 Mean 4.41E-01 4.45E-01 3.29E-01 9.20E-02 3.30E-01 4.03E-01
Std. 1.31E-03 6.18E-04 5.30E-02 2.53E-02 1.68E-01 9.11E-02

ZDT3 Mean 6.55E-01 6.00E-01 5.77E-01 5.58E-01 5.82E-01 5.69E-01
Std. 2.89E-03 1.31E-03 4.85E-03 7.46E-02 3.33E-02 4.15E-03

ZDT4 Mean 7.18E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. 1.42E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

ZDT6 Mean 3.84E-01 1.86E-01 0.00E+00 0.00E+00 1.82E-01 3.90E-01
Std. 1.19E-03 1.49E-01 0.00E+00 0.00E+00 1.51E-01 1.37E-04

UF2 Mean 6.28E-01 6.45E-01 6.37E-01 5.58E-01 5.45E-01 6.22E-01
Std. 6.92E-03 6.62E-03 5.41E-03 3.05E-02 1.85E-02 7.51E-03

UF3 Mean 6.30E-01 2.62E-01 2.11E-01 2.91E-01 2.66E-01 2.75E-01
Std. 6.75E-03 2.78E-02 1.19E-02 3.91E-02 4.02E-02 5.43E-02

UF4 Mean 3.35E-01 2.85E-01 3.34E-01 2.85E-01 3.34E-01 3.59E-01
Std. 2.56E-02 9.46E-03 3.71E-03 5.11E-03 9.82E-03 1.32E-02

UF5 Mean 3.70E-01 1.67E-02 1.06E-02 0.00E+00 0.00E+00 6.91E-05
Std. 5.95E-03 2.89E-02 2.42E-02 0.00E+00 0.00E+00 3.79E-04

UF8 Mean 3.88E-01 1.21E-02 2.82E-01 1.72E-01 8.58E-03 2.85E-01
Std. 1.94E-02 1.72E-02 3.36E-02 6.56E-02 1.44E-02 4.65E-02

UF9 Mean 2.84E-01 2.37E-02 2.95E-01 2.80E-01 2.18E-02 3.14E-01
Std. 3.00E-02 2.75E-02 5.75E-02 6.53E-02 2.29E-02 5.54E-02

UF10 Mean 2.66E-01 0.00E+00 0.00E+00 4.02E-02 0.00E+00 0.00E+00
Std. 6.06E-02 0.00E+00 0.00E+00 2.66E-02 0.00E+00 0.00E+00

DTLZ1 Mean 7.60E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. 3.43E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

DTLZ6 Mean 1.63E-01 1.69E-01 1.99E-01 1.44E-01 1.90E-01 1.98E-01
Std. 4.01E-02 7.15E-02 3.10E-03 7.38E-02 2.77E-02 6.18E-04
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NMPSO. In summary, it can be seen that GTMSMOPSO has
the best performance on the multiobjective test function set
ZDT series.

.e multiobjective test functions UF2-UF5 are bio-
bjective test functions and UF8-10 are three-objective test
function. As can be seen from Tables 1 and 2, GTMSMOPSO
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Figure 3: Pareto frontier effect of three different algorithms for ZDT1 function.
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Figure 4: Pareto frontier effect of three different algorithms for ZDT2 function.
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has four optimal IGD averages and three optimal HV av-
erages in the UF series of test functions. GTMSMOPSO
performs suboptimally for the IGD value in the UF8 test

function. In summary, it can be seen that GTMSMOPSO
outperforms the other three multiobjective intelligent al-
gorithms in the UF series of test functions.
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Figure 5: Pareto frontier effect of three different algorithms for ZDT4 function.
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Figure 6: Pareto frontier effect of three different algorithms for ZDT6 function.
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.emultiobjective test functions DTLZ1 and DTLZ6 are
both three-objective test functions. DTLZ1 is a multimodal
function containing many local Pareto hyperplanes. .e

GTMSMOPSO algorithm achieves the best IGD and HV
values in the DTLZ1 function, which reflects a good per-
formance. .e GTMSMOPSO algorithm in the DTLZ6
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Figure 7: Pareto frontier effect of three different algorithms for UF10 function.
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Figure 8: Pareto frontier effect of three different algorithms for DTLZ1 function.
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function has suboptimal IGD values and HV values. In
summary, it can be seen that the performance of the
GTMSMOPSO algorithm in the test function of the DTLZ
series is good.

To visualize the convergence and diversity of the non-
inferior solution sets obtained by each algorithm,
Figures 3–8 show the noninferior solution sets obtained by
each algorithm on the two-objective test functions (ZDT1,
ZDT2, ZDT4, and ZDT6) and the three-objective test

functions (UF10 and DTLZ1) with the true Pareto front
shown. Experimental simulations show that NSGAII and
MOEAD both suffer from multiple underdiversity and
underconvergence on the test functions in the ZDT series,
and CMOPSO suffers from severe underdiversity and
underconvergence on the ZDT4 test function, as seen in
Figures 3–6. However, GTMSMOPSO not only approxi-
mates the true Pareto front on the test functions in the ZDT
series, but also has better distributivity. .erefore,
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Figure 9: Convergence curves of different algorithms on 6 test functions.
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GTMSMOPSO has better convergence and distribution of
the test functions in the ZDT series. As can be seen from
Figures 7 and 8, GTMSMOPSO is closer to the true Pareto
front in the three-objective test functions (UF10 and
DTLZ1), and the other five algorithms show multiple
underconvergence or underdistribution. In summary, it can
be seen that GTMSMOPSO has good convergence and
distributivity compared with the other five compared
algorithms.

From Figure 9, it can be concluded that GTMSMOPSO
can converge faster to a smaller and stable IGD value with
ZDT1, ZDT2, ZDT4, ZDT6, UF10, and DTLZ1 test func-
tions among the 6 multiobjective test functions. .erefore,
the algorithm in this paper outperforms the other five
comparison algorithms.

5. Conclusion

In this paper, we propose a multiobjective particle swarm
algorithm based on grid technology and multistrategy. .e
algorithm is improved by the maintenance of external ar-
chives and the selection of global optimal samples, and the
variational operation of positions is proposed. For the
maintenance of the external archive, the particles in the grid
with the highest number of particles are removed by using a
mixed evaluation index strategy, which provides a better
quality of particles for selecting the global optimal solution.
In the selection of globally optimal samples, the particles in
the same grid are selected according to the current number
of iterations using one of the inflection distance strategies
and the grid density strategy to achieve a balance between
algorithm exploration and exploitation, thus improving the
diversity and convergence of the algorithm. To further
enhance the diversity of the population, a linear incremental
variation of the position of the particles is performed to
enhance the exploration capability of the algorithm. To
verify the effectiveness of the algorithm in this paper,
simulation experiments are performed on 14 multiobjective
functions (ZDT1-ZDT4, ZDT6, UF2-UF5, UF8-UF10,
DTLZ1, and DTLZ6) of this paper’s algorithm and five other
multiobjective particle swarm algorithms. .e experimental
simulation results show that the algorithm in this paper has
good convergence and diversity and has a good spatializa-
tion effect.
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