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In this paper, the exact artificial boundary conditions for quasi-linear problems in semi-infinite strips are investigated. Based on
the Kirchhoff transformation, the exact and approximate boundary conditions on a segment artificial boundary are derived. +e
error estimate for the finite element approximation with the artificial boundary condition is obtained. Some numerical examples
show the efficiency of this method.

1. Introduction

+e quasi-linear problems in semi-infinite strips have many
physical applications in the field of magnetostatics or
compressible flow around an obstacle in a channel. +ere
have been many relevant works about quasi-linear problems
in bounded domains, for example, the Galerkin approxi-
mations [1, 2], the finite element method [3, 4], and the
mixed finite element method [5–7] for quasi-linear prob-
lems. One can refer to [8–10], for more related works.

+e artificial boundary method [11, 12], which is also
called coupling of the finite element method with natural
boundary reduction [13–15] or the DtN method [16, 17], is a
common method to deal with quasi-linear problems in
unbounded domains. In the last decade, artificial boundaries
of various shapes have been derived for quasi-linear prob-
lems in unbounded domains. Circular [18, 19] and elliptical
[20] artificial boundaries are for two-dimensional problems,
spheroidal artificial boundaries [18] are for three-dimen-
sional problems, and circular arc artificial boundaries [21]
are for problems in concave angle domains.

+e purpose of this paper is to propose an artificial
boundary method of using a segment artificial boundary for
quasi-linear problems in semi-infinite strips. +e segment
artificial boundary we proposed in this paper is different

with the circular artificial boundary in [18].We also obtain an
error estimate in Section 3, which was not discussed in [18].

Let Ω be a strip, and b is the width of the channel Ω. +e
boundary of domain Ω is decomposed into three disjoint
parts: ΓW, ΓN, and ΓS (see Figure 1). We introduce a Car-
tesian coordinate system (x1, x2), such that the ray ΓS co-
incides with the x1-axis.

We consider the following quasi-linear problem:
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(1)

where n is the unit exterior normal vector on ΓN or ΓS and
a(x, u) and f are two given functions.

Suppose that za/zs and z2a/zs2 are continuous, and
a(·, ·) satisfies [1]
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0<C0 ≤ a(x, u)≤C1, ∀u ∈ R, and for almost all x ∈ Ω,

(2)

where C0 andC1 are two positive constants, and

|a(x, u) − a(x, v)|≤CL|u − v|,

∀u, v ∈ R, and for almost allx ∈ Ω,
(3)

where CL > 0 is a positive constant. We also assume that
f ∈ L2(Ω) has compact support, i.e., there exists a constant
d0 > 0, such that

suppf ⊂ Ωd0
� x ∈ Ω|x1 ≤d0􏼈 􏼉. (4)

Additionally, we suppose that

a(x, u) ≡ 􏽥a(u), whenx1 ≥d0. (5)

+e rest of the paper is organized as follows. In Section 2,
we derive the exact artificial boundary condition on a
segment. In Section 3, we discuss the finite element ap-
proximation and a new error estimate. In Section 4, we give
some numerical examples to show the efficiency of the
method. +e conclusions are given in Section 5.

2. Exact Quasi-Linear Artificial
Boundary Condition

We introduce a segment artificial boundary ΓE � (x1,􏼈

x2)|x1 � d, 0≤x2 ≤ b} to enclose suppf, which divides Ω
into a bounded domain ΩW and an unbounded domain ΩE

(see Figure 2).
+en, the original problem (1) can be described in the

coupled form:
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(6)
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􏽥a(u)
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zn
� 0, onΓNEUΓSE,

u(x) isbounded, asx1⟶ +∞,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

u(x)and􏽥a(u)
zu

zn

arecontinuousontheartificialboundaryΓE,

(8)

where ΓNW � ΓN ∩ΩW, ΓSW � ΓS ∩ΩW, ΓNE � ΓN ∩ΩE, and
ΓSE � ΓS ∩ΩE.

We introduce the Kirchhoff transformation [22]:

w(x) � 􏽚
u(x)

0
􏽥a(ξ)dξ, forx ∈ ΩE. (9)

Since 􏽥a(u) is a positive function, transformation (9) is
invertible. Notice that

∇w � 􏽥a(u)∇u. (10)

+en, quasi-linear problem (1) can be transformed into a
linear problem as follows:

− Δw � 0, inΩE,

zw

zn
� 0, on ΓNEUΓSE,

w(x) is bounded, asx1⟶ +∞.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

By the natural boundary reduction [13–15], we know
that the solution of problem (11) has the Fourier series
expansion:

w x1, x2( 􏼁 �
a0

2
+ 􏽘

+∞

n�1
ane

d− x1( )(nπ/b) cos
nπx2

b
, (12)

where

an �
2
b

􏽚
b

0
w d, x2′( 􏼁cos

nπx2′

b
dx2′, n � 0, 1, 2, · · · . (13)

We differentiate (12) with respect to x1 and set x1 � d to
obtain

zw

zx1
x1,x2( 􏼁|x1�d � −

2π
b
2 􏽘

+∞

n�1
n􏽚

b

0
w d,x2′( 􏼁cos

nπx2′

b
cos

nπx2

b
dx2′

(14)

Since

􏽥a(u)
zu

zn
�

zw

zn
� −

zw

zx1
, (15)

we have the exact artificial boundary condition of u on ΓE:
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Figure 1: +e illustration of domain Ω.
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Figure 2: +e illustration of domain ΩW and ΩE.

2 Journal of Mathematics



􏽥a(u)
zu

zn
�
2π
b
2 􏽘

+∞

n�1
n 􏽚

b

0
􏽚

u d,x2′( )

0
􏽥a(ξ)dξ􏼠 􏼡

cos
nπx2′

b
cos

nπx2

b
dx2′ ≜Ku d, x2( 􏼁.

(16)

By the exact artificial boundary condition (16), we obtain
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a(x,u)

zu
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􏼠 􏼡 +
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zx2
a(x,u)

zu

zx2
􏼠 􏼡􏼠 􏼡 � f, ∈ inΩW,

zu

zn
� 0, onΓNWUΓSW,

u � 0, onΓW,

􏽥a(u)
zu

zn
�Ku d,x2( 􏼁, onΓE.
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(17)

Suppose V � v ∈ H1(ΩW)|v|ΓW � 0􏽮 􏽯; then, problem
(17) is equivalent to the following variational problem:

Find u ∈ V, such that,

A(u; u, v) + B(u; u, v) � F(v), ∀v ∈ V,
􏼨 (18)

where

A(w; u, v) � 􏽚
ΩW

a(x, w)
zu

zx1

zv

zx1
+

zu

zx2

zv

zx2
􏼠 􏼡dx,

(19)

B(w; u, v) � 􏽘
+∞

n�1

2
nπ

􏽚
b

0
􏽚

b

0
􏽥a w d, x2′( 􏼁( 􏼁

zu

zx2′

· d, x2′( 􏼁
zv

zx2
d, x2( 􏼁sin

nπx2′

b
sin

nπx2

b
dx2′dx2,

(20)

F(v) � 􏽚
ΩW

f(x)v(x)dx. (21)

For any s ∈ R, we have the following equivalent defi-
nition of Sobolev spaces Hs(ΓE) [23]:

∀H
s ΓE( 􏼁⇔v d, x2( 􏼁 �

c0

2
+ 􏽘

+∞

n�1
cn cos

nπx2

b
and

c
2
0
2

+ 􏽘
+∞

n�1
1 + n

2
􏼐 􏼑

s
c
2
n <∞.

(22)

+e norm of Hs(ΓE) can be defined as follows:

v d, x2( 􏼁
����

����s,ΓE
�

c20
2

+ 􏽘
+∞

n�1
1 + n

2
􏼐 􏼑

s
c
2
n

⎡⎣ ⎤⎦
1/2

. (23)

+en, we obtain the following lemma.

Lemma 1. #e bilinear form B(u; u, v) is symmetric, con-
tinuous, and semidefinite on V × V.

Proof. For u, v ∈ V, we suppose that

u d, x2′( 􏼁 �
a0

2
+ 􏽘

+∞

n�1
an cos

nπx2′

b
,

v d, x2( 􏼁 �
c0

2
+ 􏽘

+∞

n�1
cn cos

nπx2′

b
.

(24)

Taking the derivative with respect to x2′ and x2, we obtain

zu

zx2′
d, x2′( 􏼁 � 􏽘

+∞

n�1

nπ
b

an sin
nπx2′

b
,

zv

zx2
d, x2( 􏼁 � 􏽘

+∞

n�1

nπ
b

cn sin
nπx2

b
.

(25)

+en, we have

|B(u; u, v)|≤C 􏽘
+∞

n�1
na

2
n

⎛⎝ ⎞⎠

1/2

􏽘

+∞

n�1
nc

2
n

⎛⎝ ⎞⎠

1/2

≤C‖u‖1/2,ΓE‖v‖1/2,ΓE ≤C‖u‖1,ΩW
‖v‖1,ΩW

.

(26)

Next, we show that B(u; u, v) is semidefinite. For any
given v ∈ V, we consider the auxiliary problem as follows:

−
z

zx1
a(x,u)

zu

zx1
􏼠 􏼡 +

z

zx2
a(x,u)

zu

zx2
􏼠 􏼡􏼠 􏼡 � 0, inΩE,

zu

zn
� 0, onΓNEUΓSE,

u � v, onΓE,

u(x) isbounded, asx1⟶ +∞.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

+e solution u of the above problem satisfies

􏽥a(u)
zu

zn
� Ku d, x2( 􏼁. (28)

We multiply (27) by u and integrate over ΩE; then, we
have

B(u; u, u) � 􏽚
ΩE

􏽥a(u)|∇u|
2dx≥ 0. (29)

+is completes the proof.
In practice, we have to truncate the infinite series in (16)

by finite terms; let

K
N

u �
2π
b
2 􏽘

N

n�1
n􏽚

b

0
􏽚

u d,x2′( )

0
􏽥a(ξ)dξ􏼠 􏼡cos

nπx2′

b
cos

nπx2

b
dx2′.

(30)

Consider the approximation problem
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−
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a x,u

N
􏼐 􏼑

zu
N

zx1
􏼠 􏼡 +

z

zx2
a x,u

N
􏼐 􏼑

zu
N

zx2
􏼠 􏼡􏼠 􏼡 � f, inΩW,

zu
N

zn
� 0, onΓNWUΓSW,

u
N

� 0, onΓW,

􏽥a u
N

􏼐 􏼑
zu

N

zn
�K

N
u

N
, onΓE.
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(31)

Problem (31) is equivalent to the following variational
problem:

Find u
N ∈ V, such that,

A u
N

; u
N

, v􏼐 􏼑 + BN u
N

; u
N

, v􏼐 􏼑 � F(v), ∀v ∈ V,

⎧⎨

⎩

(32)

where

BN(w; u, v) � 􏽘
N

n�1

2
nπ

􏽚
b

0
􏽚

b

0
􏽥a w d, x2′( 􏼁( 􏼁

zu

zx2′
d, x2′( 􏼁

zv

zx2
d, x2( 􏼁sin

nπx2′

b
sin

nπx2

b
dx2′dx2.

(33)

Similar with Lemma 1, we have □

Lemma 2. #e bilinear form BN(u; u, v) is symmetric,
continuous, and semidefinite on V × V.

3. Finite Element Approximation

Suppose that Jh is a quasi-uniform and regular triangula-
tion of ΩW such that

ΩW � UK∈Jh
K, (34)

where K is a (curved) triangle and h is the maximal diameter
of the triangles. Let

Vh � vh ∈ V, vh|Kis a linear polynomial, ∀K ∈ Jh􏼈 􏼉.

(35)

We consider the approximation problem of (32):

Find u
N
h ∈ Vh, such that

A u
N
h ; u

N
h , vh􏼐 􏼑 + BN u

N
h ; u

N
h , vh􏼐 􏼑 � F vh( 􏼁, ∀vh ∈ Vh.

⎧⎪⎨

⎪⎩

(36)

Theorem 1. #e variational problems (18), (32), and (36) are
uniquely solvable.

Proof. By (2), we have

|A(u; v, v)|≥C0‖v‖
2
1,ΩW

,

|A(u; u, v)|≤C1‖u‖1,ΩW
‖v‖1,ΩW

.
(37)

+is means that A(u; u, v) is coercive and bounded in V.
From Lemma 1, we obtain that A(u; u, v) + B(u; u, v) is also
coercive and bounded in V. By (3), we get that a(x, u) is
uniformly Lipschitz continuous with respect to u. Under
these conditions, referring to [1], we obtain that variational
problem (18) has a unique solution u ∈ V, for all f ∈ L2(Ω).
It is easy to deduce that problems (32) and (36) are uniquely
solvable in the same way.

We assume u, uN ∈ H2(ΩW) and uN
h ∈ Vh are the so-

lutions of problems (18), (32), and (36), respectively. We also
suppose that

Vh ⊂ V∩W
1,2+ε ΩW( 􏼁 for some ε ∈ (0, 1). (38)

Additionally, we require that Vh􏼈 􏼉h⟶ 0 is a family of
finite-dimensional subspaces of V∩C(ΩW), such that, for
any

v ∈ V∩C ΩW( 􏼁, there exists vh􏼈 􏼉: vh ∈ Vh,

v − vh

����
����⟶ 0, as h⟶ 0,

(39)

vh

����
����1,2+ε,ΩW

≤C(v), for any h, (40)

where C(v)> 0 is independent of h.
+en, we obtain that the continuous piecewise poly-

nomial spaces (35) satisfy condition (38). Moreover, if we
assume vh � Πhv, where Πh: v⟶ vh is the interpolation
operator, then, by (40), we obtain

vh

����
����1,2+ε,ΩW

≤ Πhv − v
����

����1,2+ε,ΩW
+‖v‖1,2+ε,ΩW

≤C(v). (41)

Following the convergence theory in [4, 15], we have the
result as follows:

lim
h⟶0

u
N
h − u

N
����

����1,ΩW
� 0 and u

N ⊂ V∩W
1,2+ε ΩW( 􏼁, ∀N≥ 0.

(42)

Furthermore, we have the following lemma. □

Lemma 3. Suppose u is the solution of (18) and uN is the
solution of (32); we have

lim
N⟶+∞

u − u
N

����
����1,ΩW

� 0. (43)

Proof. From (2) and +eorem 2, we have

u
N

����
����
2
1,ΩW
≤C A u

N
; u

N
, u

N
􏼐 􏼑 + B u

N
; u

N
, u

N
􏼐 􏼑􏼐 􏼑

� C F u
N

􏼐 􏼑 + B u
N

; u
N

, u
N

􏼐 􏼑 − BN u
N

; u
N

, u
N

􏼐 􏼑􏼐 􏼑

≤C ‖f‖0,ΩW
‖u‖

N
1,ΩW

+ B u
N

; u
N

, u
N

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌􏼒

− BN u
N

; u
N

, u
N

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌􏼓. (44)

For uN ∈ V, we suppose
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w
N

x1, x2′( 􏼁 � 􏽚
uN x1 ,x2′( )

0
􏽥a(ξ)dξ

�
a0

2
+ 􏽘

+∞

n�1
ane

d0− x1( )(nπ/b) cos
nπx2′

b
, ∀x1 > d0,

u
N

d, x2( 􏼁 �
c0

2
+ 􏽘

+∞

n�1
cn cos

nπx2

b
.

(45)

+en,

B u
N

; u
N

, u
N

􏼐 􏼑 − BN u
N

; u
N

, u
N

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 􏽘
+∞

n�N+1

2
nπ

􏽚
b

0
􏽚

b

0

zw
N

zx2′
d, x2′( 􏼁

zu
N

zx2
d, x2( 􏼁sin

nπx2′

b
sin

nπx2

b
dx2′dx2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 􏽘
+∞

n�N+1

nπ
2

e
d0− d( )(nπ/b)

ancn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤Ce

d0− d( )(((N+1)π)/b)
􏽘

+∞

n�N+1
na

2
n

⎛⎝ ⎞⎠

1/2

􏽘

∞

n�N+1
nc

2
n

⎛⎝ ⎞⎠

1/2

≤Ce
d0− d( )(((N+1)π)/b)

w
N

����
����1/2,Γd0

u
N

����
����1/2,ΓE
≤Ce

d0− d( )(((N+1)π)/b)
u

N
����

����
2
1,ΩW

.

(46)

From d>d0, we have that uN􏼈 􏼉 is bounded in V. So,
there exists a subsequence uNn􏼈 􏼉, s.t. uNn⇀u ∈ V. +en,
similar with Lemma 3,4 in [18], we obtain (43).

+en, we have the following convergence theorem. □

Theorem 2. Let u ∈ H2(ΩW), and assumptions (38)–(40) be
satisfied. #en,

lim
h⟶0,N⟶+∞

u − u
N
h

����
����1,ΩW

� 0. (47)

Next, we deduce the error estimates.We suppose that the
solution u of problem (1) satisfies

u|ΩW
∈ V∩W

k,2+ε ΩW( 􏼁, ε> 0, k≥ 2. (48)

For simplicity, we also define some notations as follows:

D(u; u, v)≜A(u; u, v) + B(u; u, v),

DN u
N

; u
N

, v􏼐 􏼑≜A u
N

; u
N

, v􏼐 􏼑 + BN u
N

; u
N

, v􏼐 􏼑,

DN u
N
h ; u

N
h , vh􏼐 􏼑≜A u

N
h ; u

N
h , vh􏼐 􏼑 + BN u

N
h ; u

N
h , vh􏼐 􏼑.

(49)

+en, problems (18), (32), and (36) can be replaced by
some simple forms, respectively. Moreover, we introduce the
following bilinear form D′(u; ·, ·) and DN

′ (uN; ·, ·)

D′(u; v, z) � 􏽚
ΩW

za

zs
(x, u)v∇u · ∇zdx + 􏽚

ΩW

a(x, u)∇v · ∇zdx

+ 􏽚
b

0
􏽚

b

0

z􏽥a

zs
(u)v

zu

zx2′
d, x2′( 􏼁

zz

zx2
d, x2( 􏼁 􏽘

+∞

n�1

2
nπ

sin
nπx2′

b
sin

nπx2

b
dx2′dx2

+ 􏽚
b

0
􏽚

b

0
􏽥a(u)

zv

zx2′
d, x2′( 􏼁

zz

zx2
d, x2( 􏼁 􏽘

+∞

n�1

2
nπ

sin
nπx2′

b
sin

nπx2

b
dx2′dx2,

DN
′ u

N
; v, z􏼐 􏼑 � 􏽚

ΩW

za

zs
x, u

N
􏼐 􏼑v∇uN

· ∇zdx + 􏽚
ΩW

a x, u
N

􏼐 􏼑∇v · ∇zdx

+ 􏽚
b

0
􏽚

b

0

z􏽥a

zs
u

N
􏼐 􏼑v

zu
N

zx2′
d, x2′( 􏼁

zz

zx2
d, x2( 􏼁􏽘

N

n�1

2
nπ

sin
nπx2′

b
sin

nπx2

b
dx2′dx2

+ 􏽚
b

0
􏽚

b

0
􏽥a u

N
􏼐 􏼑

zv

zx2′
d, x2′( 􏼁

zz

zx2
d, x2( 􏼁􏽘

N

n�1

2
nπ

sin
nπx2′

b
sin

nπx2

b
dx2′dx2.

(50)
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Suppose V’ is the dual space of V. By (2) and continuity
of (za/zs)(·, u(·)), we obtain that D′(u; ·, ·) is bounded on
V × V. +en, there exists an operator T: V⟶ V′ such that

(Tv, z) � D′(u; v, z), ∀v, z ∈ V. (51)

Similar to Lemma 2.2 in [19], we have the lemma as
follows:

Lemma 4. #e following inequality,

(Tv, v) + K ‖v‖
2
0,ΩW

+‖v‖
2
1/2,ΓE􏼐 􏼑≥C‖v‖

2
1,ΩW

, ∀v ∈ V,

(52)

holds, where K ≥ 0 is a sufficient large constant.
We suppose that

D′(u; v, z) � 0, ∀z ∈ V⇒v � 0. (53)

Assume I: V⟶ V′ is the canonical injection. SinceV is
compactly embedded in L2(ΩW), we obtain that the oper-
ator J: V⟶ V′ defined by J(v) � (I(v), 0) is also compact.
+en, we deduce that T: V⟶ V′ is an isomorphism.

By conditions (19), (52), and (53) and +eorem 10.1.2 in
[24], there exists h0 ∈ (0, 1], s.t. the following inf-sup con-
dition is satisfied:

sup
z∈Vh

D′(u; v, z)

‖z‖1,ΩW

≥ α1‖v‖1,ΩW
, ∀v ∈ Vh, (54)

where α1 > 0 is a constant independent of h(h< h0).
We define the Galerkin projection with respect to

D′(u; ·, ·) and Ph: V⟶ Vh:

D′ u; Phv, z( 􏼁 � D′(u; v, z), ∀z ∈ Vh. (55)

+en, we obtain

v − Phv
����

����1,p,ΩW
≤C inf

vh∈Vh

v − vh

����
����1,p,ΩW
≤Ch

σ
, (56)

where 2≤p≤∞, 0< σ < 1.

Lemma 5. uN
h ∈ Vh is a solution of (36) if and only if the

following equation,

DN
′ u

N
; u

N
− u

N
h , v􏼐 􏼑 � R u

N
; u

N
h , v􏼐 􏼑, ∀v ∈ Vh, (57)

holds, where

R u
N

; u
N
h , v􏼐 􏼑

≜􏽚
ΩW

􏽚
1

0

z
2
a

zs
2 x, w

N
h􏼐 􏼑∇wN

h · ∇v􏼠 􏼡(1 − t)dt􏼠 􏼡 d
N
h􏼐 􏼑

2
dx

+ 2􏽚
ΩW

􏽚
1

0

za

zs
x, w

N
h􏼐 􏼑∇dN

h · ∇v􏼠 􏼡(1 − t)dt􏼠 􏼡d
N
h dx

+ 􏽚
b

0
􏽚

b

0
􏽚
1

0

z
2
􏽥a

zs
2 w

N
h􏼐 􏼑

zw
N
h

zx2′
zv

zx2
􏽘

N

n�1

2
nπ

sin
nπx2′

b
sin

nπx2

b
⎛⎝ ⎞⎠(1 − t)dt d

N
h􏼐 􏼑

2
dx2′dx2

+ 2􏽚
b

0
􏽚

b

0
􏽚
1

0

z􏽥a

zs
w

N
h􏼐 􏼑

zd
N
h

zx2′
zv

zx2
􏽘

N

n�1

2
nπ

sin
nπx2′

b
sin

nπx2

b
⎛⎝ ⎞⎠(1 − t)dt⎛⎝ ⎞⎠d

N
h dx2′dx2,

(58)

with wN
h � uN + t(uN

h − uN), dN
h � uN

h − uN.

Proof. Suppose η(t)≜DN(wN
h ; wN

h , v). +en, by (32) and
(36) and

η(1) � η(0) + η′(0) + 􏽚
1

0
η’′(t)(1 − t)dt. (59)

we can obtain the desired result.
Suppose

Mh ≜ v ∈ Vh|‖v‖1,∞,ΩW
≤ 1 + u

N
����

����1,∞,ΩW
􏼚 􏼛. (60)

+en, from [19, 25], we have the following lemma. □

Lemma 6. #ere exists a constant C> 0 independent of h,
such that

R u
N

; v, z􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C u
N

− v
����

����
2
1,ΩW

+ u
N

− v
����

����1,ΩW
􏼒 􏼓‖z‖1,ΩW

,

∀v ∈Mh, ∀z ∈ Vh.

(61)

We denote a nonlinear mapping ψ: Vh⟶ Vh, which
satisfies that ψ(v) is the unique solution of

D′(u;ψ(v), z) � D′(u; u, z) − R(u; v, z), ∀z ∈ Vh,

(62)
for any given v ∈ Vh. Suppose

Eh ≜ v ∈ Vh| v − Phv
����

����1,∞,ΩW
≤Ch

σ
􏼚 􏼛. (63)

+en, we obtain the lemma as follows.
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Lemma 7. #e nonlinear mapping ψ is a continuous map-
ping from Eh to Eh.

Proof. By (62), we have

D′ u;ψ(v) − ψ vn( 􏼁, z( 􏼁 � R u; vn, z( 􏼁 − R(u; v, z). (64)

Combining (64) with (54), we deduce that the mapping
ψ is continuous, i.e.,

lim
vn⟶ v

ψ vn( 􏼁 � ψ(v). (65)

For any v ∈ Eh,

‖v‖1,∞,ΩW
≤ u

N
− v

����
����1,∞,ΩW

+ u
N

����
����1,∞,ΩW

, (66)

u
N

− v
����

����1,∞,ΩW
≤ u

N
− Phu

N
����

����1,∞,ΩW
+ Phu

N
− v

����
����1,∞,ΩW

,

(67)

u
N

− Phu
N

����
����1,∞,ΩW
≤ u

N
− Πhu

N
����

����1,∞,ΩW

+ Πhu
N

− Phu
N

����
����1,∞,ΩW

.
(68)

SinceJh is regular and quasi-uniform, according to [26],
we have the following inverse inequality:

‖w‖1,∞,ΩW
≤C log

1
h

􏼒 􏼓
1/2

‖w‖1,ΩW
, ∀w ∈ Vh. (69)

By the definition of Eh, (56), and (69), we obtain

u
N

− v
����

����1,∞,ΩW
≤ 1. (70)

+is implies that v ∈Mh. Under the definition of Ph, (62)
can be rewritten as

D′ u
N

;ψ(v) − Phu
N

, z􏼐 􏼑 � − R u
N

; v, z􏼐 􏼑, ∀z ∈ Vh.

(71)

+en, by (54) and Lemmas 5 and 6, we obtain

ψ(v) − Phu
N

����
����1,ΩW
≤C sup

z∈Vh

D′ u;ψ(v) − Phu
N

, z􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

‖z‖1,ΩW

≤C u
N

− v
����

����
2
1,ΩW

+ u
N

− v
����

����1,ΩW
􏼒 􏼓

≤C u
N

− Phu
N

����
����
2
1,ΩW

+ Phu
N

− v
����

����
2
1,ΩW

+ u
N

− Phu
N

����
����1,ΩW

+ Phu
N

− v
����

����1,ΩW
􏼒 􏼓

≤Ch
σ
.

(72)

+is means that ψ: Eh⟶ Eh. □

Theorem 3. Suppose u ∈ V∩Wk,2+ε (ΩW) is a solution of
problem (1), where ε> 0, k≥ 2. We also assume that

u|Γd0
∈ Hk− (1/2) (Γd0

) and u satisfies (53). With sufficiently
small h, problem (36) has an approximate solution uN

h ∈ Vh,
such that

u − u
N
h

����
����1,ΩW
≤C h

σ
+

1
(N + 1)

k− 1e
d0− d( )(((N+1)π)/b)

‖u‖
k−
1
2
, Γd0

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠. (73)

Proof. By Brouwer’s fixed-point theorem and Lemma 7,
there exists uN

h ∈ Vh, such that ψ(uN
h ) � uN

h . From Lemma 5,
we deduce that uN

h is a solution of (36). Moreover, by (56)
and uN

h ∈ Eh, we have

u
N

− u
N
h

����
����1,ΩW
≤ u

N
− Phu

N
����

����1,ΩW
+ Phu

N
− u

N
h

����
����1,ΩW
≤Ch

σ
,

(74)

For any uN ∈ V, according to Lemma 3, we obtain
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B u
N

; u
N

, v􏼐 􏼑 − BN u
N

; u
N

, v􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤Ce
d0− d( )(((N+1)π)/b)

􏽘

+∞

n�N+1
1 + n

2
􏼐 􏼑

1/2
a
2
n

⎛⎝ ⎞⎠

1/2

􏽘

+∞

n�N+1
1 + n

2
􏼐 􏼑

1/2
c
2
n

⎛⎝ ⎞⎠

1/2

≤C
1

(N + 1)
k− 1e

d0− d( )(((N+1)π)/b)
􏽘

+∞

n�N+1
1 + n

2
􏼐 􏼑

k− 1/2
a
2
n

⎛⎝ ⎞⎠

1/2

􏽘

+∞

n�N+1
1 + n

2
􏼐 􏼑

1/2
c
2
n

⎛⎝ ⎞⎠

1/2

≤C
1

(N + 1)
k− 1e

d0− d( )(((N+1)π)/b)
‖u‖k− (1/2),Γd0

v1,ΩW
.

(75)

From (32), we have

D u
N

; u
N

, v􏼐 􏼑 � A u
N

; u
N

, v􏼐 􏼑 + B u
N

; u
N

, v􏼐 􏼑

� F(v) + B u
N

; u
N

, v􏼐 􏼑 − BN u
N

; u
N

, v􏼐 􏼑.

(76)

Let η(t) � D(u + t(uN − u); u + t(uN − u), v); then,

􏽚
1

0
D′ u + t u

N
− u􏼐 􏼑; u

N
− u, v􏼐 􏼑dt � D u

N
; u

N
, v􏼐 􏼑 − D(u; u, v).

(77)

By (18), (52), and (53) and [24], we have

u − u
N

����
����1,ΩW
≤C sup

v∈V

􏽒
1
0 D′ u + t u

N
− u􏼐 􏼑; u

N
− u, v􏼐 􏼑dt

‖v‖1,ΩW

≤C
B u

N
; u

N
, v􏼐 􏼑 − BN u

N
; u

N
, v􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

‖v‖1,ΩW

≤C
1

(N + 1)
k− 1e

d0− d( )(((N+1)π)/b)
‖u‖k− (1/2),Γd0

.

(78)

Combining (74) with (78), we obtain

u − u
N
h

����
����1,ΩW
≤ u − u

N
����

����1,ΩW
+ u

N
− u

N
h

����
����1,ΩW

≤C h
σ

+
1

(N + 1)
k− 1e

d0− d( )(((N+1)π)/b)
‖u‖k− (1/2),Γd0

􏼠 􏼡.

(79)

+is completes the proof. □

4. Numerical Examples

In this section, we computed some numerical examples by
the method developed in Sections 2 and 3 to test the effi-
ciency of the method.

Example 1. We take Ω � (x1, x2)|x1 > 0, 0<􏼈 x2 < b},

ΓW � (0, x2)|0< x2 < b􏼈 􏼉, ΓN � (x1, b)|x1 > 0􏼈 􏼉, ΓS � (x1, 0)|􏼈

x1 > 0}, b � 1, and a(x, u) � (1/(1 + u2)). +e exact solution
of original problem is u � tan(􏽐

3
m�1(1/m

2) e− (mπx1/b)

cos(mπx2/b)). Let ΓE � (x1, x2)|x1 � d, 0<x2 < b􏼈 􏼉 be
the artificial boundaries. Figure 3 shows the mesh h of
subdomain ΩW(d � 1). +e numerical results are given in
Table 1 and Figures 4 and 5.

From the numerical results, we can deduce that the finite
element mesh, the location of artificial boundary, and the
truncation terms of series can affect the numerical errors. It
is obvious that our method is very effective.
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5. Conclusions

In this paper, we propose a method of artificial boundary
conditions for quasi-linear problems in semi-infinite strips
by using a segment artificial boundary. +e exact and ap-
proximate artificial boundary conditions are given based on
the Kirchhoff transformation. A new error estimate for the
finite element approximation with the approximate artificial
boundary condition is obtained. Finally, some numerical
examples show the efficiency of this method. +e quasi-
linear problem, we considered in this paper, is a two-di-
mensional problem. Based on the proposed method, one can
design some artificial boundary conditions for three-di-
mensional problem; we shall report on progress in some of
these directions in a future publication.
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