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Robustness refers to the ability of a system to maintain its original state under a continuous disturbance conditions. The deviation
argument (DA) and stochastic disturbances (SDs) are enough to disrupt a system and keep it off course. Therefore, it is of great
significance to explore the interval length of the deviation function and the intensity of noise to make a system remain ex-
ponentially stable. In this paper, the robust stability of Hopfield neural network (VPHNN) models based on differential algebraic
systems (DAS) is studied for the first time. By using integral inequalities, expectation inequalities, and the basic control theory
method, the upper bound of the interval of the deviation function and the noise intensity are found, and the system is guaranteed
to remain exponentially stable under these disturbances. It is shown that as long as the deviation and disturbance of a system are
within a certain range, there will be no unstable consequences. Finally, several simulation examples are used to verify the ef-

fectiveness of the approach and are described below.

1. Introduction

Life is full of nonlinear phenomena, for example, the re-
sistance of a plane and the starting of a car. On the other
hand, scholars have never stopped the comprehensive
analysis of nonlinear systems and have mainly focused on
system control, for example, adaptive neural finite-time
stabilization [1], adaptive control [2, 3], repetitive control
[4], output feedback stabilization [5, 6], system commuta-
tivity issues [7], H,, control [8], and fuzzy second-order-like
sliding mode control [9]. Similar to p-normal forms, planar
switched nonlinear systems, and semi-Markov jump non-
linear systems, the modeling and analysis of some nonlinear
systems are very complex. The control of system transient
processes and the restriction of nonlinear functions are the
challenges of this study. Hence, it is meaningful to devise
appropriate control methods for the study of nonlinear
systems.

A deviation argument is a function that is related to a
certain degree-of-deviation variable and is also a general-
ization of a time delay. This kind of complex system shows
continuity and discreteness in the operation process. Sys-
tems with DAs are usually composed of differential equa-
tions and difference equations.

This special structure makes up for the local problems in
the practical application of artificial neural networks and
Biomathematics. Therefore, research on this kind of system
also has been increasing. In [10], an adequate condition for
the existence and uniqueness of the solution of a system was
given. In [11], the control scheme of a sequence of hybrid
systems was improved by using sampling data control and
pulse control. In [12], the optimal control problem of a
system is solved. A series of notable issues have been
comprehensively analysed, including out-synchronization
and matrix measure approaches for stability and synchro-
nization [13-15].
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Stochastic disturbances (SDs) also inevitably appear in
nonlinear systems. For instance, in the transmission process
of information along a channel, it inevitably interferes with
varjous internal and external noise, which leads to the de-
terioration of the information transmission quality. In a
radar tracking system, stochastic is embodied in the irregular
movement of a tracked object and a large number of external
disturbances. Obviously, nonlinear models with SDs in-
crease the rationality of modeling the real world. However, it
is very difficult to analyse and design schemes, which has
always been a popular are of research. In [16], the expo-
nential attractor discrete set (MJDS) with (SDs) was ob-
tained by IC. It is worth noting that the subject IC condition
is relatively loose. In [17], the issue of H_, boundary state
output feedback control with collocated boundary mea-
surements is explored. An adaptive neural network state-
feedback controller was designed by building an appropriate
Lyapunov function in [18]. There are other conclusions
about the systematic control design of SD systems in ref-
erences [19, 20]. Extending these approaches to DASs is a
challenging topic.

It is an innovation to describe neural networks with
DAE. A neural network is a typical nonlinear dynamic
system that can be used to describe, recognize, and make
decisions and control intelligent behaviour. The core is the
cognition and simulation of intelligence. Neural networks
have refreshed the concept and function of computing and
made scholars have a new understanding of them. Fur-
thermore, neural networks have a wide range of applications,
such as speech recognition, image recognition, intelligent
robots, and even medicine [21, 22]. Koppe et al. [23] used
recurrent neural networks to evaluate the dynamics of
neuroimaging data. Yuksel et al. [24] predicted the ground-
state binding energies of atomic nuclei with a neural network
model. Researchers are mainly interested in the dynamic
evolution of neural systems. In [25, 26], fuzzy logic and
neural network control problems are explored. As we know,
in the early 1980s, Hopfield combined statistical mechanics
with systematic learning and proposed the classical Hopfield
neural network model, and this model can also be derived
through microelectrical components. The feasibility of ar-
tificial neural networks was demonstrated, and then, there
was an increase in qualitative research on artificial neural
networks.

Although research on nonlinear systems is very mature,
there are few conclusions about the robustness of disturbed
systems. For example, the Lyapunov stability theorem,
controller design, semigroup theorem, and linear matrix
inequality (LIM) methods have difficulties achieving ro-
bustness for nonlinear systems with disturbances. Hence,
there is still much room for improvement for this issue.

DASs are also known as DAEs, which are generalized
equations that use differential systems to represent complex
systems. The algebraic equations in DAE systems are con-
straints that describe actual motion through mathematical
theory. Due to the application of DAEs in chemical processes
[27], power systems [28], computer algebra systems [29],
etc., their system control problems have received unprece-
dented attention. An observer in the form of a DAE is
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designed for nonlinear DASs and can improve system
performance [30]. The sampling data controller is set with an
appropriate sampling period and scale gain to guarantee the
stability of the whole closed-loop system [31]. By inter-
preting the DASs as feedback interconnections between a
pure differential equation and an algebraic equation, the
stability analysis is analogous to a small gain-like condition
[32]. A symplectic indirect method is proposed for the
optimal control problem with index-1 DASs in [33].

The study of the stability of a class of DASs is still in its
initial stage. The Lyapunov direct method and small gain-
like arguments are commonly used. However, methods for
DASs with deviation functions and SDs are difficult to
study. When the interval length of the DA or the SDs
exceeds a fixed range, the DA and SDs in a nonlinear
system will cause instabilities. Therefore, the stability of a
system depends on its own strength. If the influence of a
deviation and disturbance is small, the system will remain
stable. Therefore, the interval length of a deviation and the
quantitative index of the disturbance intensity are of great
significance for the study of nonlinear systems. In fact,
there are few direct studies on the robustness of DASs with
deviations and disturbances. In this paper, the robustness
of index-1 DASs is studied by using the theory of parallel
differential systems. Based on a concrete model, the upper
bounds of the deviation function and disturbance are
given.

The remainder of this paper is laid out as follows.
Section 2 describes the origin of the model; some definitions,
conditions, and lemmas are given; and the proof process of
these lemmas is provided. Section 3 provides an analysis of
the robustness of a system. In Section 4, two numerical
examples are given. Finally, Section 5 provides a brief
summary and future work directions.

2. Preliminaries and Model Description

2.1. Notations. The meaning of symbols will be used in the
whole text. N represents natural numbers, R* = [0, +00). R"
is a space of n-dimensional real numbers. ||| is L;norm in
R", as Y, |vj| = [IvIl,. Define two sequences of real values
{aeh {m}, ke N,  when k— +00, such that
O < Q1> Ape < Mg < Ay -

2.2. Model. Then the model of this paper is introduced as
follows.

As we known, traditional Hopfield neural network
models are usually expressed by differential equations,

dx  x; <& .
C@*ﬁ%%%(%)”vﬁ1’~~-’”~ (1)

Among them, the resistor R and capacitor C formed in
parallel mimic the time constant of the biological nerve
output, and the transconductance T simulates the synaptic
characteristics of the interconnection between neurons.

When capacitor Cis broken down, this phenomenon can
be expressed by the following static equation:
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0=_%+2Ti’jg;(yj)+]i,i=1,...,n. (2)
=

The neural network model described by DAS is as

follows:

dxé-t(t) = —cix; (1) + Y a; f(x; () + Y byg;(y;®)
Jj=1 j=1

+1;

1

=—dy; (t) + Z Pijhj(xj (t)) + Z qijkj(yj (t))
s

Jj=1

L +]1’

(3)

where a;;,b;;, p;;» and g;; represents the synaptic strength of
the ith neuron against the jth neuron at time t which are
continuous and bounded, ¢;—-d; are constants, and
fi(x i (%), p]( ), and g i (%) are nonlinear activation
functlons

Suppose system (3) has a unique solution (u, v) with any
initial values of t, and x,, here u(t) = u(t,t,, x,), v(t) =
v(t,ty, x,) and there is a trivial solution (0,0).

According to the above description, this paper gives a
DAS model with deviation variable function:

( dxét(t) = —¢;x; (1) + Z ai f(x;(B(®) + ]2 b,g:(y; ()
+1,
= —diy;(t) + gl pijhi(x; () + J:il aik;(v; (D)
L+ i

(4)

where ¢ >t, >0, a;; represents the synaptic strength of the
ith neuron agamst the jth neuron at time J(t),
bij, pij> and g;; also expressed as synaptic strength. ¢;, —d,; are
constants, and fj (*),gj (%), p; (*), and q; (*) are nonlinear
activation functions. Here (3) can be viewed as an undis-
turbed model of (4).

Next, DAS with deviation functions and stochastic
disturbed are introduced.

Z“Uff(

1 +1]dt +ox; (t)dW(t)

+ ) pijhi(x; (0
s

+ 2 big,(y;0)

=

)+ diki(7; )
j=

dx; (t) = |—c;x; (t) +

0=—d,y;(t)

|+
(5)

The deviation functions S(f) =, 0 <  Hi < Xpps
t € oy, ar)keN, f,g: R* xR" — R" and o represent
noise intensity.

Remark 1. (t) enables the system to have both advanced
and deferred characteristics. System (4) is advanced when
oy <t <m; hence, 1, <t <oy, (4) is deferred. The DASs can
be approximately regarded as a mixed system because of the
strong dependence of the algebraic variables on the differ-
ential variables.

2.3. Preliminaries. The following eight hypotheses are
presented:

(A})
[£56e) = £ ()| s Ly = o],
|9, (51) = 9; (72)] < L3y = yals ©
| (x)) = b (3)| < Lo, - x,),
Ik (1) = ; ()| < Lily = 3,
where  x;,x, €R%y,y, €R',  L;>0,13>0,L3 >

0, L4>O and j=1,...,n It is worth notlng tflat

f]( ),g; (%), pj(*), and q; () are satisfied local Lip-
schitz conditions.

(A,) Forany j=1,2,...
(A;) There exists a
Wy — 0 <ok € N.

(Ay) m, = max1<l<n{c + pL? Z - Ibﬂl}.
(As5) m, = maxlsiSn{Lil Zj:l |a;z|}-

(Ag) a[m, —m; (1 + am,)exp{am,}] < 1.
(A;) 16m3a + a(8m? + 4m3)

(2 + 16mia)exp{8m? + 40?} < 1

L Y5 [Pl
|di| - L? Z?ﬂ |qji

)n)f]"gj)hj’kj (0) = O

constant « >0, satisfied

(AS)P = (7)

Remark 2. 1t is noticing that the DASs studied in this paper
are all index-1, if and only if

|| - Zl|qijk’j(yj )|>o. (8)
=

Based on the existence and uniqueness theorem of so-
lutions of differential equations and existing research results,
if (A,) and (A,) hold, the index-1 DASs in this research exist
unique solutions (x(t), y(t)), which are from any initial
value (x,, ¥)-

2.4. Properties

Definition 1. For any (ty,x,) € R* x
stants I >0, ¢ > 0, such that

R", there exist con-



% (£ t0> x0)|| < 1|0 lexp {5 (t — to)}. £ > £, > 0. (9)

Then, system (4) is globally exponentially stable.

Definition 2. System (5) is almost surely exponentially
stable, if for any t, € R, y, € R", there exist A>0,A >0,
such that

lu (Ol < Al|yo|lexp{-A(t —to)}, t>t,>0, (10)

holds a.e.

Definition 3. For any t, € R*, y, € R", system (5) satisfies
the mean-square exponentially stable; then, there exist
A>0,A>0, such that

E|lx(t:to, yo)|* < Alyollexp{-A(t — to)},  t=t,>0.

(11)

3. Main Results

The following lemma gives the relationship between the state
x(t) and the deviation function S(t) in system (4).

Lemma 1. Let (A)) — (Ag) hold, (?(t),7(t)) is the solu-
tion of system (4), and then

I (BENI <X (), (12)
holds for t € R, where

A =[1-am, — am, (1 + am,)exp{am,}]”". (13)

Proof. Fix te€ N, for any t € [, ap,,), for dynamic
equation, we obtain

I (@)l

<|% ()] + IZH;{ J;k
+§;Cijfj(7j (S))]
<[ % (m)l + g";{ J;k

+ Z ;L3 7, (5)|]
i=1

|:ai7i (s)+ ) by fi(%;(B(1)))
i1

|

|:ai|7i ()] + Y byLi[ % (B)|
i=1

oo}

(14)

For static equation,
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BAG

n

=12

1 i=1

(L il%iZP (0] + L Z|%;|Z|y (t>|>

i=1

—

(zpuh](x )+ zq,-,-kmu)))]
i=1

i=1

—

=§<L I <t>||+L?;iqij||||7i<t>|||>,

1 i=1

then
17 ()l < _#n?(t)n
|d1‘|_Li Zi:l ijl (16)
=o|[%; 0]
where
Ly,
= 17
ST (7

Combining (14) with (16), we obtain

Fons 2l [ ool

i=1

+ Z a,-jL}.|7j Mk (s))| +p i b,-jLﬂ?j (S)'jlds }
j=1 j=1

<17 (ol { [/ [0 oSt oo

n

* Zn:] i zlx (Wk(s))l] }

i=1 j=1

< (1+mya)| 7 (70)] + j; my 1% (5)lds.
k (18)
According to the Gronwall-Bellman formula, we can get
I% (Bl < (1 + am, )exp 0‘”"1”7(’%)"- (19)

In the same way, for t € [ay, ay,,), we obtain

||7(11k)||SII7(t)||+Z{J |: | %] + Zau i

% (m(9)] +Pibj,~L§|7j(s)|:|ds} (20)
=

IR (Ol + amy| 7 ()] + J m I (s)lds.
Hie
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Then, we have

1% ()] < 1% O + aom, | % ()]
+am,; (1+ amz)exp{aml}”? (nk)",

together with (19) and (21),

(21)

||7 (’7k)” < [[1 —am, —am,; (1+ (xmz)exp{aml}]*lH?(t)H]
=M= I,
(22)

where A = [1 — am, —am, (1 + amz)exp{ocml}]_l.

For any t € [ay, ay,,), because of the arbitrariness of ¢
and k, (9) is valid for all t € R*. O

Lemma 2. Let (A,) — (Ag) hold, (X (t), ¥ (t)) is the solu-
tion of system (5), and then

EIZ (B(#)I* <@EIX (I, (23)
holds for t € R*, where ® = 2(1 - w) Y, and
w=16mia+ oc(Smf + 4m§)(2 + 16m§0c)exp{8mf + 462}.

(24)

Proof. For any t € R, there exists k € N, such that
t € [ag, agyq), B(t) = 1y, and then

EIZ (1)I? <2E|2 ()| + 2El D “ EEAC]
i M

i=1

+L; Y a2 (ny)]
=1
2 4 5
+pLiby|2; (s)|]ds + oj |2 (s)‘dW(s)}|
Mk
2B ()l +8m, [ ELZ (9P
i

t
+ 8myaE| (n)|[* + 40” j EIZ ()P ds
e
= (2 + 8m2a2)E“%(’7k)"2
+(8m, +40%) Jt BIZ (5)IPds.
i

(25)

According to the Gronwall-Bellman formula to (25), we
can get

E|lZ DI < (2 + 8m2¢x2)E||5[(11k)”2 exp{Sm1 + 4m§}.
(26)

In the same way, from above, for any ¢ € [o, oy, ), we
have

Bl ()]

<2E|Z ()] + 82 j

t
E| (s)|ds
Mk

t
P BT () +40° | BIZx(o)lds
Mo
212 DI + 16m2a”E|T (1)}
t
+(8mj +40%) J E| (s)Ids
Mk

<2ENZ (DI + 16m50°E|X (n)||” + a8m] + 40%)
(2 + 16ma)exp{8m? + 40°|E|X ()|
= 21X (DI + 0| ()|
(27)
where
© = 16mya” + o 8m; +40%)(2 + 16mya )exp{8m; + 40°}.
(28)
From (27), it follows
E|Z ()| s2(1 - o) 'EIZ (1) = @EIZ (1), (29)

where @ =2(1 - w)™ L. O

3.1. System Stability. Next, the robustness of the deviation
term to the global exponential stability of system (4) is
discussed.

Theorem 1. Suppose that the conditions (A;) — (Ag) hold
and system (3) is globally exponentially stable, if
a<min(y/2, 7', 7?%), where " is the only positive solution
X to the transcendental equation

l eXp{—q(r] - 5()} +M

X exp{211 (m, +2m, + [1 - xm, — xm, (30)

(1 + sz)exp{fcml}]ilmz)} =1,

and 77 is the only positive solution X to this transcendental
equation

x [m2+m1(1+§m2)exp{?c ml}] =1, (31)
where 11> In(1)/¢> 0.
Proof. (% (t), 7 (1)) is the solution to (4), and (u(x), v(x))

is the solution to system (3), combined with lemma (3), for
any t >t, >0, for dynamic equation



6
[GEEAGIE ZJ [ Jui (s) - (s)| U||f] (u;(9))
i=1
(3 n)
+ ZI g (v - 9,7, (s)))|]
< ZJ [ai|ui(s) +?,(s)|
i=1
+ L Z|b,]|\u] (s) = % ()|
+L; Z|Cif”"j(5) -7 “”]d&
i=1
(32)
For static equation,
lv(t) =¥ (@)
1 n
L ; 0
P(s 8020
+15 Y lay v, ‘71(”0’
j=1
then
lv(t) -5 @)l
3yn
ijl 'pji R
< [(GEEAG] (34)
|| -Liyj=1" |
= pllu(t) - % (®)I.
The following can be obtained from (32) and (34):
lu(t) - % (Ol < Zj [au(5) - %5
i=1
+1L; Z’bu"”j (8) =% ()|
j=1
oL} Y [byu; () - % (s)|]ds
j=1
<y [ (-7 (1ds
+m, L e (s) = % ()| ds
< (m ) [ () - % (9)es
0 (35)

Y W ELCRESCA
< (my + mz)j Ju(s) - % (3)lds
oo [ (IF G+ ()]s
< myrm) [ () - 7 9l
+my(1+2) ]i I% (s)llds

t
< (m; +2m, + Am,) Jt lee(s) = % (s)lds

+m,(1+A) L [lze (s)|ds.
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Due to the characteristics of system (3), from (35), when
t<t,<0, then

lu(t) = % ()l < (my +2m, + Am,) J lu(s) — % (s)llds
+m,(1+1) Jt 1% o |exp{-k (s - t,)}ds

t
< (my +2m, + Am,) L llue (s) — % (s)||ds

1+A)
SO )
(36)

By the Gronwall-Bellman inequality to (36), for any
ty+ n<t<ty+2n, we have

hu() - % (o < 2D (1 ML

[ % ollexp{2n (m, +2m, + Am,)}.
(37)
Then

I O <l @l +lu(®) - X (D]
<fu @l

1+
mz( +A) ” Ollexp{Zn(m1+2m2+Am2)}.

(38)

For any ty-a+n<t<t,-
n-—a<st—1ty<2n—a, so

I% (O <% (t)|exp{~k (1 - @)}

a+2n, by (23), then

S DD (2 (my + 2m, + A}

k
28] %],
(39)
where
0 =1 exp{-k(n - a)} +M
k (40)
exp{277 (m, + 2m, + Am,)}.
Fix y = —In(8)/#, then

I (Ol < expf-ny}| % - (41)

System (4) has a unique solution that satisfies the fol-
lowing equation:

X (t:t0, ¥o)

(42)
=% (tyty + (m—1)n, X (ty + (m -

Dn; to, %))

where m is a positive integer; therefore, combining (41) and
(26), for all t<t, — a + mr, we have



Journal of Mathematics

1% (#: £, xo)|
=X (tty+(m =Dy, X (ty + (m=Dn;te, X))
[ (2o + m = Ds £, %

x (to + (m = 2))n; ty, ?0)

IN

exp —

exp{-ny}I X (ty + (m - 2)n,

< exp{-mny}| %],
(43)
From what has been discussed above, when
to—a+ (m—1)y<t<t,—a+msn, we have
-
X t't » X,
¥ st ) »

< exp{-y(t - to)}exp{y (n — 0)}|| %, |

when t, <t <t;, - a+ 7, the above equation is also true, so
system (4) achieved global exponential stability, which is
verified. O

Remark 3. Theorem 1 shows that the system remains
globally asymptotically stable when the length of the interval
of the deviation function (t) of the disturbed system is less
than the lower bound, that is, min (7/2, 7', .7%).

Theorem 2. Assuming that (A;)— (Ag) hold and
(X (1), ¥ (1)) is the solution of system (3) from (X, ¥ ) and
system (3) is globally exponentially stable, then system (5) is
mean-square  exponentially  stable  when  |o| <0/
V6, a < min (0/2, F'), where @ is the only positive solution
of equations as follows:

21 exp{-ko} +2[288m20 +6y ] ;zl

(45)
x exp{ [1zo(mf +2m2) + 288m’o + 65/2” -1

a is the only positive solution y of the transcendental
equation:
- — I
21 exp{—k(o -y )} + 2[96m§o(1 + @) +Ez]%
(46)
x exp{ [1zo(m§ +2m2) +288m’o + 65/2]} -1,

where o>1In(l)/¢>0,

D =16myy +y (8m] +45°)(2 + 16myy )exp{8m} + 45°}.
(47)

Proof. Fix X (t;ty, L) =
t>t, >0, and we have

X (t),u(t;ty, Xy) = u(t), for any

ENZ () —u @)l
n t n
=ElYy J |:cl-|£l’i (s) = u; ()] + Yyl £ ,( 2 (B(s))
i=1 7 to i=1
i @)+ Xbyle; 049) - g <s>)|]ds
i=1

+ jt o, (s)dW (s)?

ty

t t
<E| Jt m | (s) —u(s)|ds + L my | (my.) —u(s)|
‘o j 12 ()W ()

<6(t - to)m Ji EIZ (s) — u(s)lAds + 6(¢ — t)m’

0

|| Bl -uelds+30 | Bz ©re

t
<6(t - to)m j EIZ (s) - u()IPds + 12t — to)m}
ty

r EIZ (s) — u(s)IPds + 24 (t - to)m3 r E|Z (s)|ds
tO

ty

24(t - to)m J E| ()| ds+3m3j BN (5)|%ds

= 6t~ 1) (e + 2m2) j BIZ(5) - u(s)lds

+[24(t - tgm3 + 0%) | x Ji E|Z (s)I*ds
+24(t - to)m? J; E|Z ()| ds
<6(t - t,)(m? + 2m2) Ji EIZ (s) - u(s)|ds
+[24m] (t - £,) (1 + @) + 307 Ji EIZ (s)I*ds
[6(t —to)(m +2m3) + 48m; (t — o) (1 + @) + 60°]
J: ENZ () - u(s)IPds + [48m2 (¢ — 1) (1 + )

ro] L ()] @

when t, + a <t <t + 20, and by (48), then

(48)



ENZ (£) - u (@)
2
< [96m§o(1 +0)+ 602] TOI 12,17

X exp{ [120(171% + 2m§) +48m3 (t — 1)) (1 + @) + 602]},
(49)
for any t, + a <t <t; + 20, and from (31), we have

EINZ (D7 <2Ellu(®)” + 2EIZ (8) — u(®)]
< 21“&"0”2 exp{-k(t—ty)} +2 [96m§o(1 + @)+ 602]

2701”50”2 X exp{ [120(711% + 2m§) + 96m§o(1 + @)+ 602]}.
(50)
Therefore, for any t, —a +o0<t<t, —a+ 2o,

EIZ 0)IP < 20| Lo expl—k (0 - a)}
+2[96m30(1 + @) + 65°] 2701"&,0“2

X exp{lZo(m% + Zrné) +96m30(1 + @) + 602}
=2’
(51)

where

2
7 =2l exp{-k(o-a)} +2 [96m§o(1 + @)+ 602] TOZ

X exp{lZo(mf + 2m§) +96m50 (1 + @) + 602}.

(52)

Together with (45) and (46), when

a<minfo/2, 7'}, |0l <6//6, we have m<l. Fix
v = —(In(m)/0), and then

EIZ (1)]1* < expi-ov}| |- (53)

According to the uniqueness of the solution of system

(5),
X (t;tg, L)

(54)
= I (t;ty + (m=1)0, X (ty + (m = 1)o; £y, Xy))s

where m is a positive integer. Combined with (53) and (54),
for any t <t, — a + mo, we have
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E| (t;10, o))
= E”Sl"(t; ty + (m—1)o, L (t, + (m - 1)o;t,, Sl’o))”

IN

exp{—ov}”fl”(to + (m = 1)o; t,, S:Z”O)“Z
= exp{—ou}"ﬁl’(l‘0 +(m=2)o, X (ty + (m—2))o; t,, &"0)”2

IN

exp{—mov}"fl’ouz.
(55)

So, there exists positive integer m, such that when
ty—a+ (m—-1)o<t<t,— a+ mo,

E|Z (t;t,, xo)"2 < exp{-v(t —ty)}exp{v(o - oc)}“fl’ollz.
(56)

The proof is completed. O

Remark 4. Theorem 2 shows that as long as the deviation
function and noise intensity are within a certain range,
system (5) is exponentially mean-square stable on the
premise that system (3) is globally exponentially stable. The
range, which is |0|<3/V6,a <min(0/2, ') can also be
obtained by solving the transcendental equation in
MATLAB.

Remark 5. Although the research in this article is based on
the DASs, it is extremely dependent on the differential
variable in the processing process and deals with differ-
ential variables and algebraic variables separately. This
creates a situation where the index of the system eventually
decreases to zero. There are even differential algebraic
equations that cannot be reduced to differential equations.
Therefore, a method to solve the stability problem by di-
rectly using a differential algebraic form needs to be
developed.

Remark 6. Continuous Hopfield neural networks are usually
used to solve optimization problems. The objective function
is converted into a network energy function, and the variable
of the problem corresponds to the state of the network
neuron. In this way, the minimum point of the energy
function is transformed into the equilibrium point of the
system. When the CHNN model is used for optimization
calculations, only the final state of the network evolution is
needed, and there is no need to pay attention to the state
evolution trajectory in the process. That is to say, as long as
the step length of the time variable is long enough, there is no
need to care whether the state is close to a trajectory during
the numerical simulation.
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4. Example

In this part, two numerical examples are given to prove the
validity of the theorems.
4.1. System Description

Example 1. Consider the following two-dimensional case of
a DASs,

% = —x, (£) - 0.005 sin” (x; (B(£))) + 0.005 sin” (x, (B(£)))

~0.005 sin” (y, (B(£))) +0.005 sin® (y, (B (1)) + 1,
0 = —y, (t) = 0.2 sin* (x, (£)) + 0.3 sin’ (x, (1))
~0.2 sin® (y, (1)) + 0.3 sin” (y, (£)) + 1,

% = —x, (£) +0.005 sin” (x, (B(£))) + 0.005 sin® (x, (B(£)))

' % = —x, (1) - 0.005 sin® (x, (£)) + 0.005 sin” (x, (£))

~0.005 sin” (y; (t)) + 0.005 sin’ (y, (t)) + 1,
0 =—y, (t) = 0.2 sin® (x; (£)) + 0.3 sin’ (x, (£))
-0.2 sin” (y, () + 0.3 sin” (y, (1)) + 1,

% = —x, (£) +0.005 sin® (x, (£)) + 0.005 sin” (x, (1))

+0.005 sin” (y, (t)) +0.005 sin” (y, (t)) + 1,

0=-y,(t)+0.2 sin’ (%, () +0.3 sin’ (%, (1))

[ +0.2 sin” (y, (1)) + 0.3 sin® (y, () + L.
(58)

Based on a lot of the available conclusions, when

+0.005 sin® (y, (B(1))) +0.005 sin” (y, (B())) + 1,
0=-y,(t)+0.2 sin’ (%, (1) +03 sin’ (x, (1)

[ +0.2 sin” (y, (£)) + 0.3 sin® (y, (t)) + 1,
(57)

where {oy} = {xk/4},{n;} = {xk + 1/8},k € N and « € N.
When ¢t € [a, ay,,), fix argument function S(t) = 7.

Consider an undisturbed system,

I=1.2,¢=0.9, system (38) is globally exponentially stable.
Fix that #x>1=1In(1.2)/0.9=0.2026, and here
L!'=1?=1L} =L} = 1. Then,

n
m, = {Eiei)z{ci +le-2 Z 'bﬁ| } =1.01,
<i< =

(59)
n
m, = ?glzl)n({Lf Z |aﬁ' } = 1.01.
<i< e

Substituting the above data into (30) and (31) yields
x [0.01 + 1.01(1 +0.01x )exp 0.01x ] = 1, (60)

and

1.2 exp{-0.9(1 = %)} +0.01(1 +[1 - 0.01% - 1.01%

(1+0.01%)exp{1.01%}]™") 5

(61)

x exp{2(1.01+2x 0.01 +[1 - 0.01% — 1.01% (1 + 0.01%)exp{1.01%}]7'0.01)} = 1.
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x7(0)=-0.5,x3 (0)=0.5

2 T T T T T T T T T
1.5 i
s L L L L .
) ///,
3 e
w 7 . x107 The difference of two systems
s k
0.5 ¢ i
05| —— X7 (t)-x; (1)
o 00— x5 (0%, (1)
g == yf (O, ()
= 0@ " 1
é’ —+ » (t)')’z (t) ’
B D
0 .
-0.5
)_
-1 .
0 2 3 4 5
205 1 1 I I I ! I I I
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
t
— x{ () ==
- 1 J JE10

FIGURE 1: States (x,(f), ¥, (1)), (x,(t), ¥, (t)) of models (57) and (58) with consistent initial values x; = —0.5,x, = 0.5 of differential

variables.

By solving the above transcendental equation, we can get
J1'=0.5561 and .72 = 0.6778. According to Theorem 1,
when « < min (#/2, J1, .72), that is, < 0.5, then system (4)
is globally exponentially stable.

Example 2. Consider a one-dimensional DAS,

[ du(t)

T —1.1u(t) + 0.05 tanh (u(t)) + 0.05 tanh (v (t))

+1,

0 =—v(t) + 0.4 tanh («(¢)) + 0.6 tanh (v (t))

| +1.
(62)

According to the current conclusions, when
I=12,¢=1, system (62) is globally exponentially stable.

The deviation variable and stochastic disturbance are applied
to system (62) to obtain the following system:
dx (t) = [-1.1x(t) + 0.001 tanh (x(B(#)))
+0.099 tanh (y (1)) + 1]dt + ox (£)dW (¢),
0 = -y (t) + 0.4tanh (x (¢)) + 0.6tanh (y (¢)) + 1,

(63)

where S(t) =#;,0=0.3>In(l)/¢ =1In(1.2)/1 = 0.1823,¢ €
(o &i1), k € N, t € R*, W (t) compliance normal distri-
bution as W (t) ~ N (0,0 ).

2
my = max(ci +pL; Z |bji'> = 1.001,
=1

1<i<n

2
m, = {gzgg(Lll Z 'aﬁ|> =0.001.
<i< =

(64)

Substituting the above data into (27), the following
equation can be obtained:
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x7(0)=-1,x3 (0)=0.8

2 T T T T T T T T T
1.5+ B
1k e mmmmmmmmm——————--oooooooooon .
5 x107 The difference of two systems
S
5 05f i
>
3
2
g
3
0+ = B
2 .
05+ 0 1 2 3 4 5
t
—o— x7 (0-x; (1) == 1 O3, (V)
- x5 (0%, (1) —+ 73 (-3, (1)
-1 | | | | | | | |
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
t
— xi () b R0
-—-xO e ¥ ()

FIGURE 2: States (x, (), y; (1)), (x, (t), y, (¢)) of models (57) and (58) with consistent initial values x; = 0, x, = 0.8 of differential variables.

\ (u (0), v (0)) €{(0,1.55),(0.8,1.84),(1.6,1.94),(2.4,1.97),(3.2,1.98),(4.0,1.98)}
T T T T T T T T T

2.5 B

15 N 4

— u(t)
------ v (D)

FIGURE 3: States u(t) and v(¢) of model (36) with six groups of constant initial values.
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u (0)=1.00,v (0)=1.88
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u (0)=2.00,v (0)=1.96

2 2
1.8 1.8}
16 16}
1.4 14}
1.2 12}
1 1t
0.8 . 0.8 .
0 2 4 6 8 10 0 2 4 6 8 10
t t
— u(t) — u(t)
- (1) - (D)
3 u (0)=3.00,v (0)=1.98 . u (0)=4.00,v (0)=1.98
3.5 F
3
251
2 _________________________________________
15}
1+t
0.5 . 0.5 .
0 2 4 6 8 10 0 2 4 6 8 10
t t
— u() — u(t)

- ()

)

F1GURE 4: States u(t) and v(t) of model (62) with different consistent initial values alone.

2
2x 1.2 exp{-3x 0.3} + 2[288 % 0.001% X 0.3 + 6 ]

2x0.3x1.2
1

x exp{[12 x 0.3 x(1.001%

(65)

2
+2%0.001%) + 288 x 0.001° X 0.3 + 67 ” =1

Therefore, & = 0.0152, since |o| < @/+/6, then |g| < 0.0062.
Subjecting o to (30), we can obtain that
2exp-3(03-y)
5 ,10.3% 1.2
+2[96 x 0.001% x 0.3 +0.0062% | =———=
(66)
exp{12 x 0.3 x(1.1* + 2 x 0.001%)

+96 x 0.001% % 0.3 + 0.00622} =1

Then, it is easy to get F! = 0.0677, a < min(0/2, F1), so
a<0.0677.

4.2. Simulation Results. Figures 1 and 2 show the stability
characteristics of models (57) and (58) with different initial
values. A contrast diagram of the convergence difference
between the undisturbed and disturbed systems is given.

Figures 3 and 4 show the stability characteristics of
model (62) with different initial values. Figure 3 shows that
differential variables and algebraic variables converge to a
point starting from different initial values, and the initial
values of the algebraic variables are dependent on the dif-
ferential variables, which demonstrates the integrity of the
system. Figure 4 shows the stability of the system with
different initial values.

Figure 5 shows the stability of system (63) in the case of
deviations and SDs. A comparison of 9 groups of solutions is
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0 €{0.03,0.01,0.003},(x (0),y (0)) €{(0,1.55),(2.0,1.96),(4.0,1.98)}
4 T T T T

0.5 |

—— x (1) with 0= 0.03,x (0)=0,y
— y (t) with 0=0.03,x (0)=0,y
x (t) with 0= 0.01,x (0)=0,y
— y () with 0= 0.01,x (0)=0,y (0)=1.55
x (t) with 0= 0.003,x (0)=0,y (0)=1.55

)

)

)

0)=1.55

0)=1.55

0)=1.55
):

—~ o~

—— y (t) with 0= 0.003,x (0)=0,y (0)=1.55
. x (t) with 0 = 0.03,x (0)=2.0,y (0)=1.96
== y () with o= 0.03,x (0)=2.0, (0)=1.96
x (t) with 0= 0.01,x (0)=2.0,y (0)=1.96

-—-— y (t) with 6= 0.01,x (0)=2.0,y (0)=1.96
--— x (t) with ¢ =0.003,x (0)=2.0,y (0)=1.96
—— y (1) with o = 0.003,x (0)=2.0,y (0)=1.96
------ x (1) with 0 = 0.03,x (0)=4.0,y (0)=1.98
‘‘‘‘‘‘ y (t) with 0 = 0.03,x (0)=4.0,y (0)=1.98
x (1) with 0= 0.01,x (0)=4.0,y (0)=1.98
y (t) with 6 = 0.01,x (0)=4.0,y (0)=1.98
x (1) with 0= 0.003,x (0)=4.0,y (
y (t) with 0 = 0.003,x (0)=4.0,y (

0)=1.98
0)=1.98

FIGURE 5: States x(t) and y (t) of model (38) with nine groups of consistent initial values.

given in the figure. In this paper, it is assumed that o obeys a
normal distribution. This figure illustrates a simulation
based on the Euler method, and the step size is 0.005.

5. Conclusion

This article is dedicated to the study of the robustness of the
global exponential stability and mean-square exponential
stability of nonlinear DASs with DAs and SDs. This paper
describes DASs with DAs and SDs for the first time, and the
results provide the minimum upper bounds of the deviation
interval and noise intensity, which make the system stable.
This paper presents traditional Hopfield neural networks as
DASs, which have a certain practical significance for
enriching the theory of neural networks. Furthermore, this
article derives that the interfered system is still stable under a
certain degree of interference on the premise that the un-
disturbed system is stable. The analysis method is very novel,
and the system model considers a more general situation.
The conditions that ensure the DASs are index-1 are strong.

Whether this approach can be extended to systems with high
indices is a topic for future work. The synchronization and
multistability of such models will be explored.

Data Availability

The data used in the model simulation are generated by
computer according to the mathematical description in the
model based on the Euler method, with the step size of 0.005.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (no. 72071092) and open fund of
Hubei Key Laboratory of Metallurgical Industry Process
System Science (nos. Y201720 and Y202005).



14

References

[1] L.Huand X. Li, “Adaptive neural finite-time stabilisation for a
class of p-normal form nonlinear systems with unknown
virtual control coefficients,” International Journal of Control,
vol. 94, no. 5, pp. 1386-1401, 2019.

[2] Y.-Q. Han, S.-L. Zhu, D.-Y. Duan, L. Chu, P.-C. Xiong, and
S.-G. Yang, “Observer-based adaptive neural tracking control
for a class of stochastic nonlinear systems,” International
Journal of Control, vol. 94, no. 5, pp. 1344-1354, 2019.

[3] C. Wang, Y. Wu, F. wang, and Y. Zhao, “TABLF-based
adaptive control for uncertain nonlinear systems with time-
varying asymmetric full-state constraints,” International
Journal of Control, vol. 94, no. 5, pp. 1238-1246, 2019.

[4] Q. Quan and K.-Y. Cai, “Repetitive control for nonlinear
systems: an actuator-focussed design method,” International
Journal of Control, vol. 94, no. 5, pp. 1225-1237, 2021.

[5] X. Li, X. Lin, and Y. Zou, “Output feedback stabilization for
planar switched nonlinear systems with asymmetric output
constraints,” Nonlinear Analysis: Hybrid Systems, vol. 40,
p. 101005, 2021.

[6] S.Yan, W. Sun, and F. He, “Adaptive output feedback tracking
control for a class of nonlinearly parameterised uncertain
systems,” International Journal of Control, vol. 94, no. 5,
pp. 1174-1187, 2021.

[7] M. E. Koksal, “Commutativity of systems with their feedback
conjugates,” Transactions of the Institute of Measurement and
Control, vol. 41, no. 3, pp. 696-700, 2019.

[8] S. Dong, G. Chen, M. Liu, and Z.-G. Wu, “Robust adaptive
Hoo control for networked uncertain semi-Markov jump
nonlinear systems with input quantization,” Science China
Information Sciences, vol. 65, no. 8, pp. 1174-1187, 2022.

[9] H. Wu, S. Liu, C. Cheng, and C. Du, “Observer based direct

adaptive fuzzy second-order-like sliding mode control for

unknown nonlinear systems,” Proceedings of the Institution of

Mechanical Engineers-Part E: Journal of Process Mechanical

Engineering, vol. 235, no. 2, pp. 197-207, 2021.

L. Nisse and A. Bouaziz, “Existence and stability of the so-

lutions for systems of nonlinear fractional differential equa-

tions with deviating arguments,” Advances in Difference

Equations, vol. 2014, no. 1, pp. 1-10, 2014.

[11] Q. Xi and X. Liu, “Finite-time stability and controller design
for a class of hybrid dynamical systems with deviating ar-
gument,” Nonlinear Analysis: Hybrid Systems, vol. 39,
p. 100952, 2021.

[12] N. Durga and P. Muthukumar, “Optimal control of fractional
neutral stochastic differential equations with deviated argu-
ment governed by Poisson jumps and infinite delay,” Optimal
Control Applications and Methods, vol. 40, no. 5, pp. 880-899,
2019.

[13] W. Cheng, A. Wu, J.-E. Zhang, and B. Li, “Outer-synchro-
nization of fractional-order neural networks with deviating
argument via centralized and decentralized data-sampling
approaches,” Advances in Difference Equations, vol. 2019,
no. 1, 2019.

[14] J. Chen and X. Qin, “Monotone iterative method for two types
of integral boundary value problems of a nonlinear fractional
differential system with deviating arguments,” Journal of
Mathematics, vol. 2021, Article ID 6650811, 8 pages, 2021.

[15] Z. Y. Zhang, R. H. Feng, I. Jadlovska, and Q. M. Liu, “Os-
cillation criteria for third-Order nonlinear neutral dynamic
equations with mixed deviating arguments on time scales,”
Mathematics, vol. 94, no. 5, pp. 1238-1246, 2021.

[10

Journal of Mathematics

[16] Z. Dai, L. Xu, and S. S. Ge, “Attracting sets of discrete-time
Markovian jump delay systems with stochastic disturbances
via impulsive control,” Journal of the Franklin Institute,
vol. 357, no. 14, pp. 9781-9810, 2020.

[17] X. M. Zhang and H. N. Wu, “H,, boundary control for a class
of nonlinear stochastic parabolic distributed parameter sys-
tems,” International Journal of Robust and Nonlinear Control,
vol. 29, no. 14, pp. 4665-4680, 2019.

[18] C.-Y. Chen, W.-H. Gui, Z.-H. Guan, R.-L. Wang, and
S.-W. Zhou, “Adaptive neural control for a class of stochastic
nonlinear systems with unknown parameters, unknown
nonlinear functions and stochastic disturbances,” Neuro-
computing, vol. 226, no. 22, pp. 101-108, 2017.

[19] Y. Ren, W. Wang, W. Zhou, and M. Shen, “Stochastic in-
cremental Hy, control for discrete-time switched systems with
disturbance dependent noise,” Information Sciences, vol. 513,
pp. 519-535, 2020.

[20] J.-E. Zhang, “Robustness analysis of global exponential sta-
bility of nonlinear systems with deviating argument and
stochastic disturbance,” IEEE Access, vol. 5, pp. 13446-13454,
2017.

[21] K. N. Akpinar, S. Genc, and S. Karagol, “Chest X-ray ab-
normality detection based on SqueezeNet,” in Proceedings of
the 2020 International Conference on Electrical, Communi-
cation, and Computer Engineering (ICECCE), Istanbul, Tur-
key, June 2020.

[22] S. Genc, K. N. Akpinar, and S. Karagol, “Automated ab-
normality classification of chest radiographs using Mobile-
NetV2,” in Proceedings of the 2020 International Congress on
Human-Computer Interaction, Optimization and Robotic
Applications (HORA), Ankara, Turkey, June 2020.

[23] G. Koppe, H. Toutounji, P. Kirsch, S. Lis, and D. Durstewitz,
“Identifying nonlinear dynamical systems via generative re-
current neural networks with applications to fMRI,” PLoS
Computational Biology, vol. 15, no. 8, pp. e1007263-35, 2019.

[24] E. Yuksel, D. Soydaner, and H. Bahtiyar, “Nuclear binding
energy predictions using neural networks: application of the
multilayer perceptron,” International Journal of Modern
Physics E, vol. 30, no. 03, p. 2150017, 2021.

[25] S. Genc and S. Karagol, “Fuzzy logic application in DGA
methods to classify fault type in power transformer,” in
Proceedings of the 2020 International Congress on Human-
Computer Interaction, Optimization and Robotic Applications
(HORA), pp. 1-4, Ankara, Turkey, June 2020.

[26] E. Guney, S. Karag, and M. Demir, “A comparative real-time
speed control of PMSM with fuzzy logic and ANN based
vector controller,” Sirnak Universitesi Fen Bilimleri Dergisi,
vol. 1, no. 1, pp. 123-143, 2019.

[27] A. Kumar, Control of Nonlinear Differential Algebraic
Equation Systems with Applications to Chemical Processes,
CRC Press, Boca Raton, FL, USA, 1999.

[28] A. Gonzélez-Zumba, P. Ferndndez-de-Cordoba, J.-C. Cortés,
and V. Mehrmann, “Stability assessment of stochastic dif-
ferential-algebraic systems via Lyapunov exponents with an
application to power systems,” Mathematics, vol. 8, no. 9,
p. 1393, 2020.

[29] A. K. W. Navarro and V. S. Vassiliadis, “Computer algebra
systems coming of age: dynamic simulation and optimization
of DAE systems in Mathematica,” Computers ¢ Chemical
Engineering, vol. 62, no. 5, pp. 125-138, 2014.

[30] J. Aslund and E. Frisk, “An observer for non-linear differ-
ential-algebraic systems,” Automatica, vol. 42, no. 6,
pp. 959-965, 2006.



Journal of Mathematics

[31] Q.Lan, L. Sun, J. Liang et al., “Sampled-data stabilization of a

(32

(33

J

class of nonlinear differential algebraic systems via partial-
state and output feedback,” Journal of the Franklin Institute,
vol. 357, no. 8, pp. 4742-4758, 2020.

P. Di Franco, G. Scarciotti, and A. Astolfi, “Stability of
nonlinear differential-algebraic systems via additive identity,”
IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 4,
pp. 929-941, 2020.

B. Shi, H. Peng, X. Wang, W. Zhong, L. Gao, and J. Fottner, “A
symplectic indirect approach for a class of nonlinear optimal
control problems of differential-algebraic systems,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 31, no. 7,
pp. 2712-2736, 2021.

15



