
Research Article
The Vertex-Edge Resolvability of Some Wheel-Related Graphs

Bao-Hua Xing,1 Sunny Kumar Sharma ,2 Vijay Kumar Bhat ,2 Hassan Raza,3

and Jia-Bao Liu 4

1School of Mathematics and Physics, Anqing Normal University, Anqing 246133, China
2School of Mathematics, Faculty of Sciences, Shri Mata Vaishno Devi University, Katra 182320, Jammu and Kashmir, India
3Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
4School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

Correspondence should be addressed to Vijay Kumar Bhat; vijaykumarbhat2000@yahoo.com

Received 22 May 2021; Accepted 27 June 2021; Published 14 July 2021

Academic Editor: Ali Ahmad

Copyright © 2021 Bao-Hua Xing et al.+is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A vertex w ∈ V(H) distinguishes (or resolves) two elements (edges or vertices) a, z ∈ V(H)∪E(H) if d(w, a)≠ d(w, z). A set Wm

of vertices in a nontrivial connected graph H is said to be a mixed resolving set for H if every two different elements (edges and
vertices) of H are distinguished by at least one vertex of Wm. +e mixed resolving set with minimum cardinality in H is called the
mixed metric dimension (vertex-edge resolvability) of H and denoted by m dim(H). +e aim of this research is to determine the
mixed metric dimension of some wheel graph subdivisions. We specifically analyze and compare the mixed metric, edge metric,
and metric dimensions of the graphs obtained after the wheel graphs’ spoke, cycle, and barycentric subdivisions. We also prove
that the mixed resolving sets for some of these graphs are independent.

1. Introduction

Suppose H � (V, E) is a nontrivial, simple, and connected
graph, where E represents a set of edges and V represents a
set of vertices. +e distance between two vertices a and w in
an undirected graph H, denoted by d(a, w), is the length of a
shortest a − w path in H. In [1], Kelenc et al. introduced the
concept of mixed metric dimension in graphs. +is di-
mension of graph H is the mixture of metric and edge metric
dimensions.

A vertex w ∈ V is said to resolve two vertices v1 and v2 in
H if d(w, v1)≠d(w, v2). Let w be a vertex and
W � v1, v2, v3, . . . , vp  be an ordered subset of vertices in
H. +emetric coordinate (or metric representation) r(w|W)

of w with respect to W is the p-tuple
(d(w, v1), d(w, v2), d(w, v3), . . . , d(w, vp)). +en, W is said
to be a resolving set (or metric generator) for H if for every
pair of vertices v1, v2 ∈ V with v1 ≠ v2, we have
r(v1|W)≠ r(v2|W). A resolving set with minimum cardi-
nality is called the metric basis of H, and the cardinality of
the metric basis set is the metric dimension dim(H) of H.

Slater introduced the idea of metric dimension in [2],
where the metric generators were referred to as locating sets
due to some relation with the problem of uniquely recog-
nizing the location of intruders in networks. Harary and
Melter, on the contrary, independently proposed the same
concept of the metric dimension of a graph in [3], where
metric generators were referred to as resolving sets. Several
works on the applications and theoretical properties of this
invariant have also been published. Metric dimension has
various significant applications in computer science,
mathematics, social sciences, chemical sciences, etc. [4–14].
+ere also exist some other variations of metric dimension
in the literature: independent resolving sets [15], local metric
dimension [16], solid metric dimension [11], fault-tolerant
metric dimension [17], and so on.

+e distance between an edge e � ax and a vertex w is
defined as d(e, w) � d(ax, w) � min d(a, w), d(x, w){ }. A
vertex w ∈ V is said to resolve two edges e1 and e2 in H if
d(w, e1)≠d(w, e2). Let e be an edge and WE �

v1, v2, v3, . . . , vp  be an ordered subset of vertices in H. +e
edge metric codes rE(e|WE) of e with respect to WE are the
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p-tuple (d(e, v1), d(e, v2), d(e, v3), . . . , d(e, vp)). +en, WE

is said to be an edge resolving set for H if for every pair of
edges e1, e2 ∈ E with e1 ≠ e2, we have rE(e1|WE)

≠ rE(e2|WE). An edge resolving set with minimum cardi-
nality is called an edge metric basis for H, and the cardinality
of this edge metric basis set is the edge metric dimension
edim(H) of H.

For a connected graph H, we see that every vertex of H is
uniquely recognized by a resolving set W of H, and every
edge ofH is uniquely recognized by an edge resolving setWE

of H; the natural question is as follows: whether every re-
solving set W is also an edge resolving set WE for H and vice
versa? Kelenc et al. in [18] proved that there exist some
families of graphs for which the resolving set W is also an
edge resolving set WE, but in general, this is not true for
every graph H. Similarly, for every graph H, the edge re-
solving set is not necessarily a resolving set for H.

Let us define a set of elements as V∪E, i.e., each element
is an edge or a vertex. A vertex w ∈ V is said to resolve two
elements a and z from V∪E if d(w, a)≠ d(w, z). Let a be an
element and Wm � v1, v2, v3, . . . , vp  be an ordered subset
of vertices in H. +emixedmetric codes rm(a|Wm) of a with
respect to Wm are the p-tuple (d(a, v1), d(a, v2),

d(a, v3), . . . , d(a, vp)). +en, Wm is said to be a mixed re-
solving set for H if for every pair of distinct elements
a1, a2 ∈ V∪E, we have rm(a1|Wm)≠ rm(a2|Wm). A mixed
resolving set with minimum cardinality is called a mixed
metric basis for H, and the cardinality of this mixed metric
basis set is the mixed metric dimension mdim(H) of H. By
the definition of themixedmetric dimension, it is clear that a
mixed resolving set is both edge resolving set and a resolving
set, so we have

mdim(H)≥max edim(H), dim(H){ }. (1)

+ere are several studies [1, 19, 20] related to the mixed
metric dimension of various graphs, for instance, cycle
graphs, antiprism graphs, prism graphs, and convex poly-
topes, but there are many graphs for which the mixed metric
dimension has not been found yet, such as the graphs ob-
tained by some subdivisions of the wheel graph Wn,1. So, in
this paper, we will compute the mixed metric dimension of
the graphs obtained after the barycentric, spoke, and cycle
subdivisions of the wheel graph Wn,1.

2. Preliminaries

In this section, we give the definition of a wheel and its
related graphs, as well as recall some existing results on the
edge metric dimension, and the metric dimension of wheel-
related graphs.

2.1. Wheel Graph. A vertex u in an undirected graph G is
said to be the universal vertex if it is adjacent to all other
vertices of G. A wheel graph Wn,1 (n≥ 3) is a graph with n + 1
vertices obtained by joining a single universal vertex to all of
the vertices of a cycle graph Cn. Wn,1 has a vertex set V �

v, k1, k2, k3, . . . , kn  and an edge set E � vkj, kjkj+1

|1≤ j≤ n}, where all of the indices are taken to be modulo n.
+e edges kjkj+1 are called the cycle edges of Wn,1, and the
edges vkj are called as the spokes of the wheel graph.

We state that a family 5 of nontrivial connected graphs
has bounded mixed metric dimension if there exists a
constant L> 0 for every graph H of 5 such that
mdim(H)≤L; otherwise, 5 has an unbounded mixed metric
dimension. If all of the graphs in 5 have the same mixed
metric dimension, then 5 is referred to as a family with a
constant mixed metric dimension. Cycles Cn and paths Pn

for n≥ 3 are the graph families with a constant mixed metric
dimension.

2.2. Independent Mixed Resolving Set. A set Wm of vertices
from H is said to be an independent mixed resolving set for
H if Wm is an independent as well as mixed resolving set.

Let WSSn,1, WCSn,1, and WBSn,1 be the graphs obtained
from the wheel graphWn,1 after spoke, cycle, and barycentric
subdivisions of Wn,1, respectively. Recently, the metric and
edge metric dimension for these three wheel-related graphs
have been computed, and in [21], Raza and Bataineh made a
comparison between the metric dimension and the edge
metric dimension for these wheel-related graphs. +e edge
metric dimension and the metric dimension for these three
graphs are as follows.

Proposition 1 (see [21]). edim(WSSn,1) � n − 1, for n≥ 6.

Proposition 2 (see [21]). For n≥ 6, we have

edim WCSn,1  � edim WBSn,1 

�

4h if n � 6h or n � 6h + 1,

4h + 1 if n � 6h + 2,

4h + 2 if n � 6h + 3 or n � 6h + 4,

4h + 3 if n � 6h + 5.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

Proposition 3 (see [22]). dim(WSSn,1) � ⌊2n + 2/5⌋, for
n≥ 6.

Proposition 4 (see [23, 22]). For n≥ 6, we have

dim WCSn,1  � dim WBSn,1  �

4h if n � 6h or n � 6h + 1,

4h + 1 if n � 6h + 2,

4h + 2 if n � 6h + 3 or n � 6h + 4,

4h + 3 if n � 6h + 5.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)
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+is article is organized as follows: in Section 3, we will
study the mixed metric dimension of the spoke subdivision of
the wheel graph WSSn,1. In Sections 4 and 5, we will study the
mixed metric dimension of the cycle and barycentric subdi-
vision of thewheel graph, i.e.,WCSn,1 andWBSn,1, respectively.
We also give the comparative analysis for the mixed metric,
edge metric, andmetric dimension of the graphs obtained after
the spoke, cycle, and barycentric subdivisions of the wheel
graph. In Section 6, we conclude the obtained results.

3. Mixed Metric Dimension of the Spoke
Subdivision of Wn,1

In this section, we determine the mixed metric dimension of
the spoke subdivision of a wheel graph.

3.1. Spoke SubdivisionofWn,1. Suppose Wn,1 is a wheel graph
with the vertex set V(Wn,1) � k1, k2, k3, . . . , kn, v  having a
single universal vertex v. Now, each central spoke vkj of Wn,1

is subdivided with a new vertex lj. +e resulting graph so
obtained is known as the spoke subdivision wheel graph
(SSWG) and is denoted by WSSn,1. SSWG has 3n edges,
E(Wn,1) � vlj, ljkj, kjkj+1|1≤ j≤ n , and 2n + 1 vertices,
V(Wn,1) � v, lj, kj|1≤ j≤ n , where all indices are taken to
be modulo n (see Figure 1). In this section, we obtain the
mixed metric dimension of SSWG WSSn,1.

Theorem 1. mdim(WSSn,1) � n, for n≥ 6.

Proof. To prove that mdim(WSSn,1)≤ n, we construct a
mixed resolving set for WSSn,1. Suppose
Wm � k1, k2, k3, . . . , kn ⊆V(WSSn,1) having n cycle vertices
from WSSn,1. We claim that Wm is a mixed resolving set for
WSSn,1. Now, we can give mixed codes to each of the vertex
and edge of WSSn,1 with respect to Wm.

+e sets of mixed metric codes for the vertices
v, lj, kj|1≤ j≤ n  of WSSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
n−times

⎧⎨

⎩

⎫⎬

⎭,

B � rm lj|Wm  � 3, 3, . . . , 3, 2, 1
jth

, 2, 3, . . . , 3, 3⎛⎝ ⎞⎠|1≤ j≤ n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

C � rm kj|Wm  � 4, 4, . . . , 4, 3, 2, 1, 0
jth

, 1, 2, 3, 4, . . . , 4, 4⎛⎜⎝ ⎞⎟⎠|1≤ j≤ n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(4)

Next, the sets of mixed metric codes for the edges
vlj, ljkj, kjkj+1|1≤ j≤ n  of WSSn,1 are as follows:

D � rm vlj|Wm  � 2, 2, . . . , 2, 1
jth

, 2, . . . , 2, 2⎛⎝ ⎞⎠|1≤ j≤ n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

E � rm ljkj|Wm  � 3, 3, . . . , 3, 2, 1, 0
jth

, 1, 2, 3, . . . , 3, 3⎛⎜⎝ ⎞⎟⎠|1≤ j≤ n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

F � rm kjkj+1|Wm  � 4, 4, . . . , 4, 3, 2, 1, 0
jth

, 0, 1, 2, 3, 4, . . . , 4, 4⎛⎜⎝ ⎞⎟⎠|1≤ j≤ n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(5)

From these sets of mixed codes for WSSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and A∩B∩
C∩D∩E∩F � ∅, implying Wm to be a mixed resolving set
for WSSn,1, i.e., mdim(WSSn,1)≤ n. Conversely, suppose, on
the contrary, that there exists a mixed resolving set
Wm⊆WSSn,1 such that |Wm|< n. +en, we have the following
cases to be considered:

Case (i): v ∉Wm. In this case, we further have two
subcases:

Subcase (i): if Wm ⊂ k1, k2, k3, . . . , kn , then there
exists at least one vertex kj such that kj ∉Wm. +en,
for an edge vlj and the vertex v, we have
rm(vlj|Wm) � rm(v|Wm) � (2, 2, 2, . . . , 2), a contra-
diction.+erefore, the set Wm is not a mixed resolving
set for WSSn,1.
Subcase (ii): if Wm⊈ k1, k2, k3, . . . , kn , then at least
one vertex li belongs to the set Wm. +en, there exists
one kj ∉Wm, and the corresponding vertex lj ∉Wm.
+en, for an edge vlj and the vertex v, we have
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rm(vlj|Wm) � rm(v|Wm), a contradiction. +erefore,
again, in this case, the set Wm is not a mixed resolving
set for WSSn,1.

Case (ii): v ∈Wm. In this case, we have two subcases:

Subcase (i): if Wm ⊂ k1, k2, k3, . . . , kn ∪ v{ }, then
there exists at least one vertex kj such that kj ∉Wm.
+en, clearly, for an edge vlj and the vertex v, we have
rm(vlj|Wm) � rm(v|Wm), a contradiction. +erefore,
the set Wm is not a mixed resolving set for WSSn,1.
Subcase (ii): if at least one lj must belong to the set
Wm, then there exists at least one vertex kj ∉Wm, and
the corresponding vertex lj ∉Wm. +en, for an edge
vlj and a vertex v, we have rm(vlj|Wm) � rm(v|Wm), a
contradiction. +erefore, again, in this case, the set
Wm is not a mixed resolving set forWSSn,1.+us, in all
the cases, we have |Wm|≥ n, implying mdim(WSSn,1)

� n, which completes the proof of the theorem. □ □

Remark 1. For the spoke subdivision wheel graph
H � WSSn,1, we find that dim(WSSn,1)< edim(WSSn,1)<
mdim(WSSn,1) (using Propositions 1 and 3 and+eorem 1).
+e comparison between these three dimensions ofWSSn,1 is
clearly shown in Figure 2, and the value of each dimension
depends on the number of vertices n in WSSn,1.

4. Mixed Metric Dimension of the Cycle
Subdivision of Wn,1

In this section, we determine the mixed metric dimension of
the cycle subdivision of a wheel graph.

4.1. Cycle Subdivision ofWn,1. Suppose Wn,1 is a wheel graph
with the vertex set V(Wn,1) � k1, k2, k3, . . . , kn, v  having a
single universal vertex v. Now, each cycle edge kjkj+1 of Wn,1
is subdivided with a new vertex lj. +e resulting graph so
obtained is known as the cycle subdivision wheel graph
(CSWG) and is denoted by WCSn,1. CSWG has 3n edges,
E(WCSn,1) � vkj, kjlj, ljkj+1|1≤ j≤ n , and 2n + 1 vertices,
V(WCSn,1) � v, lj, kj|1≤ j≤ n , where all indices are taken
to be modulo n (see Figure 3). In this section, we obtain the
mixed metric dimension of CSWG WCSn,1.

Theorem 2. For n≥ 6, we have

mdim WCSn,1  �

4h if n � 6h,

4h + 1 if n � 6h + 1,

4h + 2 if n � 6h + 2,

4h + 2 if n � 6h + 3,

4h + 3 if n � 6h + 4,

4h + 4 if n � 6h + 5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Proof. To prove this, we first generate the mixed resolving
sets for all the cases, obtaining the upper bounds depending
on the positive integer n. +en, in the end, we show that the
lower bound (or reverse inequality) is the same as the upper
bound to conclude the theorem.

Case (I): n ≡ 0(mod6). In this case, we have n � 6h,
where h≥ 2 and h ∈ N. Suppose an ordered subset
Wm � l1, l2, l4, l5, . . . , ln−2, ln−1  � l3i+1, l3i+2|0≤ i ≤ 2h

−1} of vertices in WCSn,1 with |Wm| � 4h. Next, we
claim that Wm is the mixed resolving set for WCSn,1.
Now, we can give mixed codes to every vertex and edge
of WCSn,1 with respect to Wm. +e sets of mixed metric
codes for the vertices u � v, lj, kj|1≤ j≤ n  of WCSn,1
are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
4h−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �
rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

k3

v
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l1
k1
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Figure 1: WSSn,1.
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rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 2, d l3i+1, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (7)

Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D � rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h − 1 

∪ rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, 2, . . . , 2(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h − 1 

∪ rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h − 1 ;

E � rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h − 1 

∪ rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h − 1 

∪ rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h − 1 ;

F � rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h − 1 

∪ rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h − 1 

∪ rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h − 1 .

(8)
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Figure 2: Comparison between dim(H), edim(H), and mdim(H).
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From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩C∩D∩E∩F � ∅, implying Wm to be a mixed
resolving set for WCSn,1, i.e., mdim(WCSn,1)≤ 4h.
Next, using equation (1) and Proposition 2, we find that
mdim(WCSn,1) � 4h, in this case.
Case (II): n ≡ 1(mod6). In this case, we have
n � 6h + 1, where h≥ 2 and h ∈ N. Suppose an ordered

subset Wm � l1, l2, l4, l5, . . . , ln−3, ln−2, ln  � l3i+1, l3i+2

|0≤ i≤ 2h − 1}∪ ln  of vertices in WCSn,1 with
|Wm| � 4h + 1. Next, we claim that Wm is the mixed
resolving set for WCSn,1. Now, we can give mixed codes
to every vertex and edge of WCSn,1 with respect to Wm.
+e sets of mixed metric codes for the vertices
u � v, lj, kj|1≤ j≤ n  of WCSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
(4h+1)−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
;

B �
rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm k1|Wm(  � 1, 3, 3, . . . , 3√√√√√√√√
(4h−1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

k3

v

l2
k2

l1

k1

ln

kn
ln–1ln–2

ln–3

l4

l3
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Figure 3: WCSn,1.
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rm l1|Wm(  � 0, 2, 4, 4, 4, . . . , 4√√√√√√√√√√
(4h−2)−times

, 2⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 2, d l3i+1, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (9)

Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D �
rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vk1|Wm(  � 1, 2, 2, 2, . . . , 2√√√√√√√√√√
(4h−1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+1(  � 1, 2, . . . , 2( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

E �
rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm k1l1|Wm(  � 0, 2, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h−2)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

F �
rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm l1k2|Wm(  � 0, 1, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h−2)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(10)
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From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩C∩D∩E∩F � ∅, implying Wm to be a mixed
resolving set for WCSn,1, i.e., mdim(WCSn,1)≤ 4h + 1.
Case (III): n ≡ 2(mod6). In this case, we have
n � 6h + 2, where h≥ 2 and h ∈ N. Suppose an ordered
subset Wm � l1, l2, l4, l5, l7 . . . , ln−1, ln  � l3i+1, l3i+2|0

≤ i≤ 2h} of vertices in WCSn,1 with |Wm| � 4h + 2.
Next, we claim that Wm is the mixed resolving set for
WCSn,1. Now, we can give mixed codes to every vertex
and edge of WCSn,1 with respect to Wm. +e sets of
mixed metric codes for the vertices
u � v, lj, kj|1≤ j≤ n  of WCSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
(4h+2)−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �
rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm k1|Wm(  � 1, 3, 3, . . . , 3√√√√√√√√
(4h)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm l1|Wm(  � 0, 2, 4, 4, 4, . . . , 4√√√√√√√√√√
(4h−1)−times

, 2⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+2(  � 2, d l3i+2, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭.

(11)

Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D �
rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vk1|Wm(  � 1, 2, 2, 2, . . . , 2√√√√√√√√√√
(4h)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+1(  � 1, 2, . . . , 2( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪
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rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2( |

j ≡ 2(mod3)0≤ i≤ 2h
 ,

E �
rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1
 ∪

rm k1l1|Wm(  � 0, 2, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h−1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h
 ∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h
 ,

F �
rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1
 ∪

rm l1k2|Wm(  � 0, 1, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h−1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h
 ∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h
 . (12)

From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩C∩D∩E∩F � ∅, implying Wm to be a mixed
resolving set for WCSn,1, i.e., mdim(WCSn,1)≤ 4h + 2.
Case (IV): n ≡ 3(mod6). In this case, we have
n � 6h + 3, where h≥ 2 and h ∈ N. Suppose an ordered
subset Wm � l1, l2, l4, l5, l7 . . . , ln−2, ln−1  � l3i+1, l3i+2|

0≤ i≤ 2h} of vertices in WCSn,1 with |Wm| � 4h + 2.
Next, we claim that Wm is the mixed resolving set for
WCSn,1. Now, we can give mixed codes to every vertex
and edge of WCSn,1 with respect to Wm. +e sets of
mixed metric codes for the vertices
u � v, lj, kj|1≤ j≤ n  of WCSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
(4h+2)−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �
rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+2(  � 2, d l3i+2, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭.

(13)
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Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D � rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h 

∪ rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, 2, . . . , 2(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h 

∪ rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h ;

E � rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h 

∪ rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h 

∪ rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h ;

F � rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h 

∪ rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h .

∪ rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h ;

(14)

From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩C∩D∩E∩F � ∅, implying Wm to be a mixed
resolving set for WCSn,1, i.e., mdim(WCSn,1)≤ 4h + 2.
Next, using equation (1) and Proposition 2, we find that
mdim(WCSn,1) � 4h + 2, in this case.
Case (V): n ≡ 4(mod6). In this case, we have
n � 6h + 4, where h≥ 2 and h ∈ N. Suppose an ordered

subset Wm � l1, l2, l4, l5, . . . , ln−3, ln−2, ln  � l3i+1, l3i+2|

0≤ i≤ 2h}∪ ln  of vertices in WCSn,1 with
|Wm| � 4h + 3. Next, we claim that Wm is the mixed
resolving set for WCSn,1. Now, we can give mixed codes
to every vertex and edge of WCSn,1 with respect to Wm.
+e sets of mixed metric codes for the vertices
u � v, lj, kj|1≤ j≤ n  of WCSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
(4h+3)−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm k1|Wm(  � 1, 3, 3, . . . , 3√√√√√√√√
(4h+1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |j ≡ 1(mod3)1≤ i≤ 2h + 1 ∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,
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C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭

∪ rm l1|Wm(  � 0, 2, 4, 4, 4, . . . , 4√√√√√√√√√√
(4h)−times

, 2⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 2, d l3i+1, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭.

(15)

Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D �
rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vk1|Wm(  � 1, 2, 2, 2, . . . , 2√√√√√√√√√√
(4h+1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+1(  � 1, 2, . . . , 2( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭,

E �
rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm k1l1|Wm(  � 0, 2, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭,

F �
rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm l1k2|Wm(  � 0, 1, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭.

(16)
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From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩ C∩D ∩E∩F � ∅, implying Wm to be a
mixed resolving set for WCSn,1, i.e.,
mdim(WCSn,1)≤ 4h + 3.
Case (VI): n ≡ 5(mod6). In this case, we have
n � 6h + 5, where h≥ 1 and h ∈ N. Suppose an ordered

subset Wm � l1, l2, l4, l5, . . . , ln−1, ln  � l3i+1, l3i+2|

0≤ i≤ 2h + 1} of vertices inWCSn,1 with |Wm| � 4h + 4.
Next, we claim that Wm is the mixed resolving set for
WCSn,1. Now, we can give mixed codes to every vertex
and edge of WCSn,1 with respect to Wm. +e sets of
mixed metric codes for the vertices
u � v, lj, kj|1≤ j≤ n  of WCSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
(4h+4)−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �
rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm k1|Wm(  � 1, 3, 3, . . . , 3√√√√√√√√
(4h+2)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm l1|Wm(  � 0, 2, 4, 4, 4, . . . , 4√√√√√√√√√√
(4h+1)−times

, 2⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+2(  � 2, d l3i+2, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭.

(17)

Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D �
rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vk1|Wm(  � 1, 2, 2, 2, . . . , 2√√√√√√√√√√
(4h+2)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+1(  � 1, 2, . . . , 2( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭,

E �
rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪
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rm k1l1|Wm(  � 0, 2, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h+1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭,

F �
rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm l1k2|Wm(  � 0, 1, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h+1)−times

, 2⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭. (18)

From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩C∩D∩E∩F � ∅, implying Wm to be a mixed
resolving set for WCSn,1, i.e., mdim(WCSn,1)≤ 4h + 4.
Now, for the second, third, fifth, and sixth case, we
obtain their lower bounds as follows.

For the second case, suppose that Wm ⊂ V(WCSn,1)

with |Wm|< 4h + 1 is a mixed resolving set for WCSn,1.
We have the following two cases to be considered:

Subcase (i): if Wm⊈ k1, k2, k3, . . . , kn , then there must
exist a vertex lj such that lj ∈Wm. +en, there exists at
least one vertex li ∈Wm such that ki−1, ki+1 ∉Wm.
+en, for the corresponding edges vki−1 and vki+1, we
have rm(vki+1|Wm) � rm(vki−1|Wm), a contradiction.
+erefore, Wm is not a mixed resolving set for WCSn,1
in this case.

Subcase (ii): if Wm ⊂ k1, k2, k3, . . . , kn , then there
exist at least two vertices ki and kj such that
ki, kj ∉Wm. +en, for the edges vki and vkj, we have
rm(vki|Wm) � rm(vkj|Wm), a contradiction. +ere-
fore, Wm is not a mixed resolving set for WCSn,1 in this
case as well. +us, |Wm|≥ 4h + 1. +is completes the
proof for the second case.

For rest of the cases, the pattern is the same as that in
Case (II). □

5. Mixed Metric Dimension of the Barycentric
Subdivision of Wn,1

In this section, we determine the mixed metric dimension of
the barycentric subdivision of a wheel graph.

5.1. Barycentric Subdivision ofWn,1. Suppose Wn,1 is a wheel
graph with the vertex set V(Wn,1) � k1, k2, k3, . . . , kn, v 

having a single universal vertex v. Now, each of the edges
kjkj+1 and vkj (1≤ j≤ n) of Wn,1 is subdivided with a new
vertex. +e resulting graph so obtained is known as the
barycentric subdivision wheel graph (BSWG) and is denoted
by WBSn,1. BSWG has 4n edges, E(WBSn,1) � vlj, ljkj,

kjmj, mjkj+1|1≤ j≤ n}, and 3n + 1 vertices, V(WBSn,1) �

v, lj, kj, mj|1≤ j≤ n , where all indices are taken to be
modulo n (see Figure 4). In this section, we obtain the mixed
metric dimension of BSWG WBSn,1.

Theorem 3. For n≥ 6, we have

mdim WBSn,1  �

4h if n � 6h,

4h + 1 if n � 6h + 1,

4h + 2 if n � 6h + 2,

4h + 2 if n � 6h + 3,

4h + 3 if n � 6h + 4,

4h + 4 if n � 6h + 5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Proof. To prove this, we first generate the mixed resolving
sets for all the cases, obtaining the upper bounds depending
on the positive integer n. +en, in the end, we show that the
lower bound (or reverse inequality) is the same as the upper
bound to conclude the theorem.

Case (I): n ≡ 0(mod6). In this case, we have n � 6h,
where h≥ 2 and h ∈ N. Suppose an ordered subset
Wm � m1, m2, m4, m5, . . . , mn−2, mn−1  � m3i+1, m3i+2

|0≤ i≤ 2h − 1} of vertices in WBSn,1 with |Wm| � 4h.
Next, we claim that Wm is the mixed resolving set for
WBSn,1. Now, we can give mixed codes to every vertex
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and edge of WBSn,1 with respect to Wm. +e sets of
mixed metric codes for the vertices u � v, kj, lj,

mj|1≤ j≤ n} of WBSn,1 are as follows:

A � rm v|Wm(  � (3, 3, 3, . . . , 3)√√√√√√√√√√
4h−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �
rm kj|Wm  �

5, 5, 5, . . . , 5, d m3i+1, k3i+3(  � 3, d m3i+2, k3i+3(  � 1,

d m3i+4, k3i+3(  � 5, 5, . . . , 5
 |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm k1|Wm(  � 1, 3, 5, . . . , 5√√√√√√
(4h−3)−times

, 3⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  �
5, 5, 5, . . . , 5, d m3i+2, k3i+1(  � 3, d m3i+4, k3i+1(  � 1,

d m3i+5, k3i+1(  � 3, 5, . . . , 5
 |

j ≡ 1(mod3)1≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm kj|Wm  � 5, 5, 5, . . . , 5, d m3i+1, k3i+2(  � 1, d m3i+2, k3i+2(  � 1, 5, . . . , 5( |

j ≡ 2(mod3)0≤ i≤ 2h − 1
 ,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d m3i+2, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h − 1
 ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d m3i+1, l3i+1(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)0≤ i≤ 2h − 1
 ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d m3i+1, l3i+2(  � 2, d m3i+2, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h − 1
 ,

D �
rm mj|Wm  �

6, , 6, . . . , 6, d m3i+1, m3i+3(  � 4, d m3i+2, m3i+3(  � 2,

d m3i+4, m3i+3(  � 2, d m3i+5, m3i+3(  � 4, 6, . . . , 6
 |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm m1|Wm(  � 0, 2, 6, 6, . . . , 6√√√√√√√√
(4h−3)−times

, 4⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm mj|Wm  �
6, 6, 6, . . . , 6, d m3i+2, m3i+1(  � 4, d m3i+4, m3i+1(  � 0,

d m3i+5, m3i+1(  � 2, 6, . . . , 6
 |

j ≡ 1(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm lj|Wm  �
6, 6, 6, . . . , 6, d m3i+1, m3i+2(  � 2, d m3i+2, m3i+2(  � 0,

d m3i+4, m3i+2(  � 4, 6, . . . , 6
 |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(20)

k3

v

m2
k2

m1

l1
k1

mn

ln

kn
mn–1
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mn–2

ln–2m
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m4

l4
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l3 l2

k4

k

kn–1

kn–2

Figure 4: WBSn,1.
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Next, the sets of mixed metric codes for the edges
vlj, ljkj, kjmj, mjkj+1|1≤ j≤ n  of WBSn,1 are as
follows:

E �
rm vlj|Wm  � 3, 3, 3, . . . , 3, d m3i+2, vl3i+3(  � 2, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vlj|Wm  � 3, 3, 3, . . . , 3, d m3i+1, vl3i+1(  � 2, 3, . . . , 3( |

j ≡ 1(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vlj|Wm  � 3, 3, 3, . . . , 3, d m3i+1, vl3i+2(  � 2, d m3i+2, vl3i+2(  � 2, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭,

F �
rm ljkj|Wm  �

4, 4, 4, . . . , 4, d m3i+1, l3i+3k3i+3(  � 3, d m3i+2, l3i+3k3i+3(  � 1,

d m3i+4, l3i+3k3i+3(  � 3, 4, . . . , 4
 |

j ≡ 0(mod3) 0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm l1k1|Wm(  � 1, 3, 4, 4, . . . , 4√√√√√√√√
(4h−3)−times

, 3⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj|Wm  �
4, 4, 4, . . . , 4, d m3i+2, l3i+1k3i+1(  � 3, d m3i+4, l3i+1k3i+1(  � 1,

d m3i+5, l3i+1k3i+1(  � 3, 4, . . . , 4
 |

j ≡ 1(mod3)1≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm ljkj|Wm  � 4, 4, 4, . . . , 4, d m3i+1, l3i+2k3i+2(  � 1, d m3i+2, l3i+2l3i+2(  � 1, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭,

G �
rm kjmj|Wm  �

5, 5, 5, . . . , 5, d m3i+1, k3i+3m3i+3(  � 3, d m3i+2, k3i+3m3i+3(  � 1,

d m3i+4, k3i+3m3i+3(  � 2, d m3i+5, k3i+3m3i+3(  � 4, 5, . . . , 5
 |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm k1m1|Wm(  � 0, 2, 5, 5, . . . , 5√√√√√√√√
(4h−3)−times

, 3⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjmj|Wm  �
5, 5, 5, . . . , 5, d m3i+2, k3i+1m3i+1(  � 3, d m3i+4, k3i+1m3i+1(  � 0,

d m3i+5, k3i+1m3i+1(  � 2, 5, . . . , 5
 |

j ≡ 1(mod3)1≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm kjmj|Wm  �
5, 5, 5, . . . , 5, d m3i+1, k3i+2m3i+2(  � 1, d m3i+2, k3i+2m3i+2(  � 0,

d m3i+4, k3i+2m3i+2(  � 4, 5, . . . , 5
 |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

H �
rm mjkj+1|Wm  �

5, 5, 5, . . . , 5, d m3i+1, m3i+3k3i+4(  � 4, d m3i+2, m3i+3k3i+4(  � 2,

d m3i+4, m3i+3k3i+4(  � 1, d m3i+5, m3i+3k3i+4(  � 3, 5, . . . , 5
 |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm m1k2|Wm(  � 0, 1, 5, 5, . . . , 5√√√√√√√√
(4h−3)−times

, 4⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm mjkj+1|Wm  �
5, 5, 5, . . . , 5, d m3i+2, m3i+1k3i+2(  � 4, d m3i+4, m3i+1k3i+2(  � 0,

d m3i+5, m3i+1k3i+2(  � 1, 5, . . . , 5
 |

j ≡ 1(mod3)1≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm mjkj+1|Wm  �
5, 5, 5, . . . , 5, d m3i+1, m3i+2k3i+3(  � 2, d m3i+2, m3i+2k3i+3(  � 0,

d m3i+4, m3i+2k3i+3(  � 3, 5, . . . , 5
 |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(21)

Journal of Mathematics 15



From these sets of mixed codes for WBSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � |G| � |H| � n,
and A∩B∩C∩D∩E∩F∩G∩H � ∅, implying Wm

to be a mixed resolving set for WBSn,1, i.e., mdim
(WBSn,1)≤ 4h. Next, using equation (1) and Proposi-
tion 2, we find that mdim(WBSn,1) � 4h, in this case.

Like the first case, the rest of the proof is similar to that of
+eorem 2. □

Remark 2. For the cycle and barycentric subdivision wheel
graph, i.e., H � WCSn,1 and H � WBSn,1, we find that
dim(H) � edim(H) � mdim(H) when n � 6h and
n � 6h + 3. For the rest of the values of the positive integer n,
we have dim(H) � edim(H)<mdim(H) (using Proposi-
tions 2 and 4 and +eorems 2 and 3).

6. Conclusion

In this article, we have computed the mixed metric di-
mension for three families of graphs, namely, WBSn,1,
WCSn,1, and WSSn,1, obtained after the barycentric, cycle,
and spoke subdivisions of the wheel graphWn,1, respectively.
We also observed that the mixed resolving sets for WBSn,1
and WCSn,1 are independent. For WSSn,1, we found that
dim(WSSn,1)< edim(WSSn,1)<mdim(WSSn,1), and for H �

WBSn,1 and H � WCSn,1, we obtained the following relation:
dim(H) � edim(H)≤mdim(H) (partial answers to the
questions raised in [1, 18]).
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