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(e field of graph theory is broadly growing and playing a remarkable role in cheminformatics, mainly in chemistry and
mathematics in developing different chemical structures and their physicochemical properties. Mathematical chemistry provides
a platform to study these physicochemical properties with the help of topological indices (TIs). A topological index (TI) is a
function that connects a numeric number to each molecular graph. Zagreb indices (ZIs) are the most studied TIs. In this paper, we
establish general expressions to calculate the connection-based multiplicative ZIs, namely, first multiplicative ZIs, second
multiplicative ZIs, third multiplicative ZIs, and fourth multiplicative ZIs, of two renowned dendrimer nanostars. (e defined
expressions just depend on the step of growth of these dendrimers. Moreover, we have compared our calculated for both type of
dendrimers with each other.

1. Introduction

TIs are the numerical numbers which are linked with dif-
ferent chemical structures of molecular graphs and predict
the structural, toxicological, biological, and physicochemical
properties of the existing chemical compounds. A graph in
which the vertices represent atoms while the edges corre-
spond to the covalent bonds between atoms is known as a
molecular graph. TIs are extensively used in the study of
quantitative structure-activity relationships and quantitative
structure-property relationships [38]. Many researchers
have worked on TIs [1, 18, 25]. TIs are classified into three
distinct TIs, namely, degree-based TI, distance-based TI, and
polynomial-based TI. A distance-based TI is a TI which is
based on the distance between the vertices. In 1947, Wiener
[39] developed the innovative conception of degree-based
TI. Furthermore, Dankelmann et al. calculated the sharp
upper bounds of graphs by utilizing these distance-based TIs
in a very comprehensive way. Moreover, for the diameter
δ ≥ 2, Mazorodze et al. [33] computed the sharp upper
bounds of graphs by using the Gutman index which is also a

distance-based TI. Furthermore, Fang et al. [15] discussed
the topological properties of Sierpinski network along with
its applications.

A degree-based TI is concerned with the degree of a
vertex. Degree-based TI is further categorized into two
subclasses named as degree and connection-based TIs.
Gutman and Trinajstić [22] put forward the innovative idea
of the well-known TI named as first Zagreb index (FZI).
(ey used FZI to calculate the π−electron energy of the
alternant hydrocarbon. Furthermore, second ZI was pro-
posed by Gutman et al. [21] in 1975. (e innovative idea of
third ZI was proposed by Furtula and Gutman [17]. (ese
first and second ZIs have been studied widely in distinct
areas (see [2, 5, 6]). Chu et al. [10] calculated the sharp
bounds of ZIs on connected graphs. Gharibi et al. [19] also
worked on ZIs and investigated Zagreb polynomials of
nanocone and nanotubes. Nikolic et al. [34] initiated
modified ZIs in 2003. Hao [23] compared the ZIs and
modified ZIs and discussed important results related to these
indices in 2011. Furthermore, Dhanalakshmi et al. [12]
introduced some modified and multiplicative ZIs (MZIs) on
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graph operators. Das et al. [11] in 2013 used MZIs to
compute the upper bounds for some particular graphs. Fang
et al. [14] computed ZIs of the hierarchical hypercube
networks. Formore details, we refer the readers to [9, 26, 36].

Recently, the idea of connection number (CN) has been
instilled into the minds of researchers. CN is a number of
those of vertices which are at distance 2 from a certain
vertex. Ali and Trinajstić [4] investigated the modification of
first ZI. In 2019, Tang et al. [37] developed some Zagreb
connection indices (ZCIs). Furthermore, Ali et al. [3]
computed modified ZCIs of T-sum graphs. Recently, In
2020, Liu et al. [32] gave Zagreb connection numbers of
molecular graphs based on operations. Cao et al. [8] made
use of ZCIs to calculate both exact and upper bounds of
some product related graphs. Furthermore, Javaid et al. [28]
initiated novel connection-based ZIs of different wheel re-
lated graphs. Haoer et al. [24] investigated the multiplicative
leap ZIs.

A dendrimer is an artificially synthesized molecular
structure made up of monomers (branched units). Den-
drimer nanostars are highly branched nanostructures and
are considered as the basic element in nanotechnology. (e
major three architectural parts of dendrimer nanostars are
end groups, branches, and cores. Nowadays, dendrimer
nanostars are rapidly gaining considerable attention from
researchers due to their special chemical and physical
characteristics and a broad range of applicability in distinct
fields of bioscience, including drug delivery, immunology,
and the advancement of antimicrobials, antivirals, and
vaccines [29, 31]. Siddiqui et al. [35] introduced Zagreb
polynomial of some nanostars in 2016. Furthermore,
Bokhary et al. [7] discussed some molecular topological
properties of dendrimers. In 2019, Fatima et al. [16] pro-
posed ZCIs of two dendrimer nanostars in a very logical way.
For more details about dendrimers, the readers are referred
to [13, 30].

In this paper, we rewrite some already introduced
connection-based MZIs. Further, we establish the general
expressions to calculate the MZCIs of two well-known
dendrimer nanostars in a very logical and comprehensive
way.(e proposed expressions only depend upon the step of
growth of these dendrimers.

(is paper is organized as follows. Section 1 presents
some important definitions which are obligatory to un-
derstand the concept of our paper. In Section 2, we establish
the general expression to find the connection-based MZIs of
first type of dendrimer nanostar. Section 3 holds the general
expression to calculate connection-basedMZIs of the second
type of dendrimer nanostar. Section 4 draws the conclusions.

2. Preliminaries

In this section, we define some basic definitions which are
useful for the further evaluations.

Definition 1 (see [22]). Let ζ � (M(ζ),N(ζ)) be a graph,
whereM(ζ) and N(ζ) represent the set of vertices and edges,
respectively. (en, the first Zagreb index (FZI) can be given
as

􏽢Z1(ζ) � 􏽘
x∈M(ζ)

􏽥dζ(x)􏼐 􏼑
2
. (1)

(is equation can be rewritten as
􏽢Z1(ζ) � 􏽘

xy∈N(ζ)

􏽥dζ(x) + 􏽥dζ(y)􏼐 􏼑,
(2)

where 􏽥dζ(x) and 􏽥dζ(y) denote the degree of the vertices x

and y, respectively.

Definition 2 (see [21]). For graph ζ, the second Zagreb index
(SZI) can be given as

􏽢Z2(ζ) � 􏽘
xy∈N(ζ)

􏽥dζ(x) × 􏽥dζ(y)􏼐 􏼑,
(3)

where 􏽥dζ(x) and 􏽥dζ(y) denote the degree of the vertices x

and y, respectively.

Definition 3 (see [4]). For a graph ζ, the first Zagreb con-
nection index (FZCI) and second Zagreb connection index
(SZCI) can be given as

(1) 􏽢ZC1(ζ) � 􏽐x∈M(ζ)( 􏽥ηζ(x))2

(2) 􏽢ZC2(ζ) � 􏽐xy∈N(ζ)( 􏽥ηζ(x) × 􏽥ηζ(y)),
where 􏽥ηζ(x) and 􏽥ηζ(y) denote the connection
number of the vertices x and y, respectively.

Definition 4 (see [4]). For a graph ζ, the modified first
Zagreb connection index can be given as

􏽢ZC
∗
1(ζ) � 􏽘

x∈M(ζ)

􏽥ηζ(x) + ηζ(x)􏼐 􏼑.
(4)

Definition 5 (see [20]). For a graph ζ, the first multiplicative
Zagreb index (FMZI) and second Zagreb index (SMZI) can
be given as

(1) 􏽢Z
M

1 (ζ) � 􏽑xy∈N(ζ)(
􏽥dζ(x) + 􏽥dζ(y))

(2) 􏽢Z
M

2 (ζ) � 􏽑xy∈N(ζ)(
􏽥dζ(x) × 􏽥dζ(y))

Definition 6 (see [27]). For a graph ζ, connection-based
MZIs can be defined as

(1) 􏽢Z
M

1 C(ζ) � 􏽑x∈M(ζ)( 􏽥ηζ(x))2 (first MZCI)
(2) 􏽢Z

M

2 C(ζ) � 􏽑xy∈N(ζ)( 􏽥ηζ(x) × 􏽥ηζ(y)) (second MZCI)
(3) 􏽢Z

M

3 C(ζ) � 􏽑x∈M(ζ)(
􏽥dζ(x) × 􏽥ηζ(x)) (third MZCI)

(4) 􏽢Z
M

4 C(ζ) � 􏽑xy∈N(ζ)( 􏽥ηζ(x) + 􏽥ηζ(y)) (fourth MZCI)

Now, before moving towards our main results of this
article, first we rewrite the connection-based MZIs given in
Definition 6.

Definition 7. For a graph ζ, the first MZCI can be rewritten
as
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􏽢Z
M

1 C(ζ) � 􏽙

0≤α≤􏽢n−2

α2􏽨 􏽩
Cα(ζ)

, (5)

where Cα(ζ) is the total number of vertices in ζ with
connection number α.

(e second MZCI can be rewritten as

􏽢Z
M

2 C(ζ) � 􏽙

0≤α≤β≤􏽢n−2

[α × β]
C(α,β)(ζ)

,
(6)

where C(α,β)(ζ) is the total number of edges in ζ with
connection numbers (α, β).

Similarly, the third MZCI can be given as

􏽢Z
M

3 C(ζ) � 􏽙

0≤c≤α≤􏽢n−2

[c × α]
C′

(c,α) (ζ) , (7)

whereC ′(c,α)(ζ) is the total number of vertices with degree c

and CN α.
(e fourth MZCI can be written as

􏽢Z
M

4 C(ζ) � 􏽙

0≤α≤β≤􏽢n−2

[α + β]
C(α,β)(ζ)

.
(8)

3. MZCIs of First Type of Dendrimer Nanostar

In this section, we establish the general expressions to
calculate the MZCIs of first type of dendrimer nanostar.
First, we provide the construction of the dendrimer nanostar
of the first type, i.e., D1[ 􏽢m], by labeling the vertices with
degrees and CNs. (e skeletal formulas of D1[ 􏽢m] along with
connection number for 􏽢m � 1, 2, 3 are shown in Figures 1–3.

(e skeletal formulas of dendrimer nanostar D1[ 􏽢m]

along with degrees are shown in Figures 4–6.
Before presenting the main results our paper, we first

classify the hexagons of D1[ 􏽢m] with the help the degrees of
the vertices into terminal hexagon, initial hexagon, and
λ−hexagon.

(i) Terminal Hexagon. A hexagon in which the degree
of exactly five vertices is two is said to be terminal
hexagon.

(ii) Initial Hexagon. A hexagon which is in the center of
D1[ 􏽢m] is said to be initial hexagon.

(iii) λ-Hexagon. A hexagon which is neither initial nor
terminal is said to be λ-hexagon.

All the remaining vertices which do not lie in any of the
above mentioned hexagons are said to be μ-type vertices. By
(r, s)−type edges, we mean the edge joining the vertices with
CNs r and s.

Theorem 1. Let ζ � D1[ 􏽢m] be a molecular graph for
􏽢m � 1, 2, 3. ;en, first MZCI and third MZCI of ζ are given
below:

(1) 􏽢Z
M

1 (ζ) � (64)κ(489776025600)κ− 2

(2) 􏽢Z
M

3 (ζ) � (64)κ(7255941120)(κ− 2)

where κ � 2􏽢m+1.

Proof.

(1) First, we find the total number of terminal hexagons,
initial hexagons, and λ-hexagons. By simple obser-
vation, we have

total number of terminal hexagons � 2􏽢m+1
,

total number of initial hexagons � 1.
(9)

(e total number of λ−hexagons in ζ for
􏽢m � 1, 2, 3, · · · is 0, 4, 12, 28, . . ., respectively. (e nth

term of the sequence is 2􏽢m+1 − 4. (us,

total number of λ − hexagons � 2􏽢m+1
− 4. (10)

(e total number of μ− type vertices in ζ for 􏽢m �

1, 2, 3, · · · is 4, 12, 28, . . ., respectively. (e nth term of
the sequence is 2 × 2􏽢m+1 − 4. (us,

total number of μ − vertices � 2 × 2􏽢m+1
− 4. (11)

Now, we find the number of vertices having CN 2 in
ζ, i.e., C2(ζ). One can observe easily that all those
vertices which have CN 2 are present only in ter-
minal hexagons and no vertices exist having CN 2 in
central and λ−hexagons. Every terminal hexagon has
exactly 3 vertices with CN 2, and the total number of
terminal hexagons in ζ is 2􏽢m+1. (us, C2(ζ) must be
equal to 3 times the number of terminal hexagons in
ζ. Mathematically, we have

C2(ζ) � 3 × 2􏽢m+1
. (12)

Now, we find the number of vertices having CN 3 in
ζ, i.e., C3(ζ). In Table 1, we have calculated the total
number of vertices with CN 3 in ζ.
(e total number of vertices with CN 3 in ζ is the
sum of the number of vertices with CN 3 in terminal
hexagon, initial hexagon, and λ−hexagon of ζ. So,
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Figure 1: D1[1] along with the connection of each vertex.
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C3(ζ) � 2 × 2􏽢m+1
+ 5 2􏽢m+1

− 4􏼒 􏼓 + 6

� 2 × 2􏽢m+1
+ 5 2􏽢m+1

􏼒 􏼓 − 20 + 6

� 7 × 2􏽢m+1
− 14.

(13)

Next, we calculate the total number of vertices with
CN 4 in ζ, i.e.,C4(ζ). Table 2 shows the total number
of vertices with CN 4 in ζ.
On can easily observe that half of the μ-type vertices
have CN 4 while the other half has CN 5. We know
that the total number of μ-type vertices is
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Figure 2: D1[2] along with the connection of each vertex.
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Figure 3: D1[1] along with the degree of each vertex.
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2 × 2􏽢m+1 − 4.(us, the number of vertices having CN
4 must be 2􏽢m+1 − 2. (e total number of vertices with
CN 4 in ζ is the sum of the number of vertices with
CN 4 in terminal hexagon, initial hexagon,
λ−hexagon, and μ−type vertices of ζ. So,

C4(ζ) � 2􏽢m+1
+ 0 + 2􏽢m+1

− 4􏼒 􏼓 + 2􏽢m+1
− 2􏼒 􏼓

� 3 × 2􏽢m+1
− 6.

(14)

Finally, we calculate C5(ζ). So,

C5(ζ) � 2􏽢m+1
− 2. (15)

By using equation (5), we have

􏽢Z
M

1 C(ζ) � 􏽙

0≤α≤􏽢n−2

α2􏽨 􏽩
Cα(ζ)

� 22􏽨 􏽩
C2(ζ)

× 32􏽨 􏽩
C3(ζ)

× 42􏽨 􏽩
C4(ζ)

× 52􏽨 􏽩
C5(ζ)

� 22􏽨 􏽩
3×2􏽢m+1

× 32􏽨 􏽩
7×2(􏽢m+1)−14

× 42􏽨 􏽩
3×2(􏽢m+1)− 6

× 52􏽨 􏽩
2􏽢m+1−2

� (64)
κ

×(489776025600)
κ−2

,

(16)

where κ � 2􏽢m+1.
(2) Firstly, we calculate number of vertices with degree 2

and CN 2, i.e.,C(2,2)
′ (ζ). (e number of vertices with

degree 2 and CN 2 in terminal hexagon, initial
hexagon, and λ-type hexagon is given in Table 3.

(us, we have

C(2,2)
′ (ζ) � 3 × 2􏽢m+1

. (17)

Now, we calculate the number of vertices with degree
2 and CN 3 in ζ.(e number of vertices with degree 2
and CN 3 in terminal hexagon, initial hexagon, and
λ-type hexagon is given in Table 4.

(us, C(2,3)
′ (ζ) will be

C(2,3)
′ (ζ) � 2 × 2􏽢m+1

+ 4 2􏽢m+1
− 4􏼒 􏼓 + 4

� 6 × 2􏽢m+1
− 12.

(18)

We notice that the number of vertices with degree 2 and
CN 4 is present only in half of the μ−type vertices of ζ. (us,
C(2,4)
′(ζ) will be

C(2,4)
′ (ζ) � 2􏽢m+1

. (19)

Now, we calculate the number of vertices with degree 3
and CN 3 in ζ. (e number of vertices with degree 3 and CN
3 in terminal hexagon, initial hexagon, and λ-type hexagon is
given in Table 5.

(us, C(3,3)
′ (ζ) will be

C(3,3)
′ (ζ) � 2 + 2􏽢m+1

− 4

� 2􏽢m+1
− 2.

(20)

Similarly,

C(3,5)
′ (ζ) � 2􏽢m+1

− 2. (21)

(e number of vertices with degree 3 and CN 4 in
terminal hexagon, initial hexagon, and λ-type hexagon is
given in Table 6.

(us, C(3,4)
′ (ζ) will be

C(3,4)
′ (ζ) � 2􏽢m+1

+ 2􏽢m+1
− 4 + 4

� 2 × 2􏽢m+1
− 4.

(22)

By substituting all the values ofC(α,β)
′ (ζ) in equation (7),

we have

􏽢Z
M

3 C(ζ) � 􏽙

0≤c≤α≤ 􏽢m−2

[α × β]
C(α,β)
′ (ζ)

� [4]
C(2,2)
′ (ζ)

×[6]
C(2,3)
′ (ζ)

×[8]
C(2,4)
′ (ζ)

×[9]
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′ (ζ)

×[12]
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′ (ζ)

×[20]
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� [4]
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×[6]
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×[8]
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Figure 4: D1[2] along with the degree of each vertex.
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Figure 5: D1[2] along with the degree of each vertex.
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Figure 6: D1[3] along with the degree of each vertex.
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where κ � 2􏽢m+1. □

Theorem 2. Let ζ � D1[ 􏽢m] be a molecular graph for
􏽢m � 1, 2, 3. ;en, second MZCI and fourth MZCI of ζ are
given below

(1) 􏽢Z
M

2 C(ζ) � (576)κ(1990656000)(κ− 2)(81)(2κ− 5),

(2) 􏽢Z
M

4 C(ζ) � (400)κ(12252303)(κ− 2)(36)2κ− 5,

where κ � 2􏽢m+1.

Proof.

(1) First, we calculate C2,2(ζ), i.e., (2,2)-type edges in ζ.
One can easily observe that graph ζ has (2, 2)−type
edges only in terminal hexagon. (ere are exactly
two (2,2)-type and (2,3)-type edges in every terminal
hexagon of ζ. Hence, C2,2(ζ) must be equal to

C(2,2)(ζ) � 2 × 2􏽢m+1
,

C(2,3)(ζ) � 2 × 2􏽢m+1
.

(24)

Next, the total number of (3,3)-type edges is dis-
played in Table 7.

(e total number of (3,3)-type edges in ζ is the sum
of the (3,3)-type edges in terminal hexagon, initial
hexagon, λ−hexagon of ζ. So,

C(3,3)(ζ) � 4 × 2􏽢m+1
− 10. (25)

Now, we calculate C(3,4)(ζ). (e total number of
(3,4)-type edges in every terminal hexagon, initial
hexagon, and λ−hexagons of ζ is displayed in
Table 8.
(e total number of (3, 4)−type edges which do not
exist in any of the hexagon of ζ is equal to the
number of μ−type vertices with CN 4.(us,C(3,4)(ζ)

will be

C(3,4)(ζ) � 2 × 2􏽢m+1
+ 2 2􏽢m+1

− 4􏼒 􏼓 + 2􏽢m+1
− 2􏼒 􏼓

� 5 × 2􏽢m+1
− 10.

(26)

Finally, we calculate C(4,5)(ζ). We observe that
(4, 5)−type edges in ζ are equal to 3 times the
number of μ−type vertices of ζ with CN 5. (us, we
have

Table 1: Total number of vertices with CN 3 in ζ.

Types of
hexagons

Number of vertices with CN 3 in
hexagon (x)

Total number of hexagons
(y)

Total number of vertices with CN 3 in hexagons
(x × y)

Terminal 2 2􏽢m+1 2 × 2􏽢m+1

Initial 6 1 6
λ 5 2􏽢m+1 − 4 5(2􏽢m+1 − 4)

μ-type 0 0 0

Table 2: Total number of vertices with CN 4 in ζ.

Types of
hexagons

Number of vertices with CN 4 in
hexagon (x)

Total number of hexagons
(y)

Total number of vertices with CN 4 in hexagons
(x × y)

Terminal 1 2􏽢m+1 2􏽢m+1

Initial 0 1 0
λ 1 2􏽢m+1 − 4 2􏽢m+1 − 4

Table 3: Total number of vertices with degree 2 and CN 2 in ζ.

Types of
hexagons

Number of vertices with degree 2 and CN 2
in hexagon (x)

Total number of
hexagons (y)

Total number of vertices with degree 2 and CN 2 in
hexagons (x × y)

Terminal 3 2􏽢m+1 3 × 2􏽢m+1

Initial 0 1 0
λ 0 2􏽢m+1 − 4 0

Table 4: Total number of vertices with degree 2 and CN 3 in ζ.

Types of
hexagons

Number of vertices with degree 2 and CN 3
in hexagon (x)

Total number of
hexagons (y)

Total number of vertices with degree 2 and CN 3 in
hexagons (x × y)

Terminal 2 2􏽢m+1 2 × 2􏽢m+1

Initial 4 1 4
λ 4 2􏽢m+1 − 4 4(2􏽢m+1 − 4)
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C(4,5)(ζ) � 3 2􏽢m+1
− 2􏼒 􏼓. (27) By using equation (6), we have

􏽢Z
M

2 C(ζ) � 􏽙

0≤α≤ β≤􏽢n−2

[α × β]
C(α,β)(ζ)

� [4]
C(2,2)(ζ)

×[6]
C(2,3)(ζ)

×[9]
C(3,3)(ζ)

×[12]
C(3,4)(ζ)

×[20]
C(4,5)(ζ)

� [4]
2×2􏽢m+1

×[6]
2×2􏽢m+1

×[9]
4×2􏽢m+1−10

×[12]
5×2􏽢m+1−10

×[20]
3 2􏽢m+1− 2􏼐 􏼑

� [4]
2κ

×[6]
2κ

×[9]
4κ−10

×[12]
5κ−10

×[20]
3κ−6

� (576)
κ
(1990656000)

(κ− 2)
(81)

(2κ− 5)
,

(28)

where κ � 2􏽢m+1. (2) Now, we drive the second formula. By substituting
all the values of C(α,β)(ζ) in equation (8), we have

􏽢Z
M

4 C(ζ) � 􏽙

0≤α≤ β≤ 􏽢m−2

[α + β]
C(α,β)(ζ)

� [4]
C(2,2)(ζ)

×[5]
C(2,3)(ζ)

×[6]
C(3,3)(ζ)

×[7]
C(3,4)(ζ)

×[9]
C(4,5)(ζ)

� [4]
2×2􏽢m+1

×[5]
2×2􏽢m+1

×[6]
4×2􏽢m+1− 10

×[7]
5×2􏽢m+1− 10

×[9]
3 2􏽢m+1− 2􏼐 􏼑

� (400)
κ
(12252303)

(κ− 2)
(36)

2κ− 5
.

(29)

□
4. MZCIs of Second Type of
Dendrimer Nanostar

In this section, we calculate themultiplicative ZCIs of second
type of dendrimer nanostars. First, we provide the con-
struction of the dendrimer nanostar of the second type, i.e.,
D2[ 􏽢m], by labeling the vertices with degrees and CNs. (e
skeletal formulas of D2[ 􏽢m] along with connection number
for 􏽢m � 1, 2, 3 are shown in Figures 7–9.

(e skeletal formulas of dendrimer nanostar D2[ 􏽢m] along
with degrees of each vertex are shown in Figures 10–12.

Before stating our main results about the second type of
dendrimers, we classify hexagons and pentagons of D2[m],
for m � 1, 2, 3, with the help of degrees of the vertices, into
the following:

(1) Terminal Pentagon. A pentagon which has three
adjacent vertices of degree 1.

(2) Non-Terminal Pentagon. A pentagon which is not
terminal is said to be non-terminal pentagon.

(3) η−Hexagon. A hexagon which has exactly two ver-
tices of degree 3.

Table 5: Total number of vertices with degree 3 and CN 3 in ζ.

Types of
hexagons

Number of vertices with degree 3 and CN 3
in hexagon (x)

Total number of
hexagons (y)

Total number of vertices with degree 3 and CN 3 in
hexagons (x × y)

Terminal 0 2􏽢m+1 0
Initial 2 1 2
λ 1 2􏽢m+1 − 4 2􏽢m+1 − 4

Table 6: Total number of vertices with degree 3 and CN 4 in ζ.

Types of
hexagons

Number of vertices with degree 3 and CN 4
in hexagon (x)

Total number of
hexagons (y)

Total number of vertices with degree 3 and CN 4 in
hexagons (x × y)

Terminal 1 2􏽢m+1 2􏽢m+1

Initial 0 1 0
λ 1 2􏽢m+1 − 4 (2􏽢m+1 − 4)
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(4) ϕ−Hexagon. A hexagon which has exactly three
vertices of degree 3.

(5) ϑ−Hexagon. A hexagon which has exactly four
vertices of degree 3.

(6) ψ−Hexagon. A hexagon which has exactly six vertices
of degree 3.

All those vertices which do not lie in any type of pen-
tagon or hexagon are said to be μ−type vertices.

Theorem 3. Let ζ � N2[ 􏽢m] be a molecular graph of order 􏽢n.
;en, the first and third MZCIs of a molecular graph ζ are
given as

(1) 􏽢Z
M

1 (ζ) � (4)4κ− 1(16)6κ− 7(16815125390625)κ− 1

(36)5κ− 6

(2) 􏽢Z
M

3 (ζ) � (16)κ(2)2κ− 1(5015306502144)κ− 1(15)9κ− 10

(18)5(2κ− 3),
where κ � 2􏽢m.

Proof. First, we find the total number of hexagons and
pentagons.(e total number of pentagons and hexagons of a
graph ζ is depicted in Table 9.

(e vertices which do not exist in any of the above-
defined hexagon is said to be μ−type vertices. (e total
number of μ−type vertices is 2􏽢m+1 − 1.

(1) After simple calculation, the total number of vertices
with CNs 2, 3, 4, 5, and 6, from Figure 9, is

C2(ζ) � 4 × 2􏽢m
− 1,

C3(ζ) � 8 2􏽢m
− 1􏼒 􏼓,

C4(ζ) � 6 × 2􏽢m
− 7,

C5(ζ) � 4 2􏽢m
− 1􏼒 􏼓,

C6(ζ) � 5 × 2􏽢m
− 6.

(30)

By putting the above values in equation (5), we
have

􏽢Z
M

1 (ζ) � (4)
4κ−1

(16)
6κ−7

(16815125390625)
κ−1

(36)
5κ− 6

.

(31)

(2) Now, we find C(c,α)
′(ζ). From Figures 9 and 12, we

have

C(1,2)
′ (ζ) � 2􏽢m+1

− 1􏼒 􏼓,

C(2,2)
′ (ζ) � 2 × 2􏽢m

,

C(2,3)
′ (ζ) � 8 2􏽢m

− 1􏼒 􏼓,

C(3,4)
′ (ζ) � 6 2􏽢m

− 1􏼒 􏼓,

C(3,5)
′ (ζ) � 9 × 2􏽢m

− 10,

C(3,6)
′ (ζ) � 5 2 × 2􏽢m

− 3􏼒 􏼓.

(32)

By putting above values in equation (7), we have

􏽢Z
M

3 (ζ) � (16)
κ
(2)

2κ−1
(5015306502144)

κ−1
(15)

9κ−10
(18)

5(2κ−3)
. (33)

□

Table 7: (e total number of (3,3)-type edges in hexagons of ζ.

Types of
hexagons

Number of (3,3)-type edges in hexagon
(x)

Total number of hexagons
(y)

Total number of (3,3)-type edges in hexagons
(x × y)

Terminal 0 2􏽢m+1 0
Initial 6 1 6
λ 4 2􏽢m+1 − 4 4(2􏽢m+1 − 4)

Table 8: (e total number of (3,4)-type edges in hexagons of ζ.

Types of
hexagons

Number of (3,4)-type edges in hexagon
(x)

Total number of hexagons
(y)

Total number of (3,4)-type edges in hexagons
(x × y)

Terminal 2 2􏽢m+1 2 × 2􏽢m+1

Initial 0 1 0
λ 2 2􏽢m+1 − 4 2(2􏽢m+1 − 4)

Table 9: Types of pentagons and hexagons.

Types of pentagons and
hexagons Total number of pentagons in ζ

Terminal pentagon 1
Non-terminal pentagon 2􏽢m − 1
η−hexagon 2􏽢m

ϕ−hexagon 2(2􏽢m− 1 − 1)

ϑ−hexagon 2(2􏽢m − 1)

ψ−hexagon 2􏽢m − 1
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Theorem 4. Let ζ � N2[ 􏽢m] be a molecular graph of order 􏽢n.
;en, second and fourth MZCIs of a molecular graph ζ are
given as

(1) 􏽢Z
M

2 (ζ) � (148)κ(8)2κ − 1(9)3κ− 4(24)5κ− 8(180)4(κ− 1)

(11520)2(κ− 1)(30)6(κ− 1)

(2) 􏽢Z
M

4 (ζ) � (100)κ(6)2κ− 1(6)3κ− 4(10)5κ−

8(344534954841)κ− 1(37748736)κ− 1,
where κ � 2􏽢m.

Proof. (1) Again from Figure 9, we have

C(2,2)(ζ) � 2􏽢m
,

C(2,3)(ζ) � 2􏽢m+1
,

C(2,4)(ζ) � 2􏽢m+1
− 1,

C(3,3)(ζ) � 3 × 2􏽢m
− 4,

C(3,4)(ζ) � 4 2􏽢m
− 1􏼒 􏼓,

C(3,5)(ζ) � 4 2􏽢m
− 1􏼒 􏼓,

C(4,4)(ζ) � 2 2􏽢m
− 1􏼒 􏼓,

C(4,5)(ζ) � 2 2􏽢m
− 1􏼒 􏼓,

C(6,6)(ζ) � 2 2􏽢m
− 1􏼒 􏼓,

C(4,6)(ζ) � 5 × 2􏽢m
− 8,

C(5,6)(ζ) � 6 2􏽢m
− 1􏼒 􏼓.

(34)
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Figure 7: D2[1] along with the CN of each vertex.
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Figure 9: D2[3] along with the CN of each vertex.
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Figure 11: D2[2] along with the degree of each vertex.
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Figure 12: D2[3] along with the degree of each vertex.
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By putting above values in equation (6), we have

􏽢Z
M

2 (ζ) � (148)
κ
(8)

2κ−1
(9)

(3κ− 4)
(24)

5κ− 8
(180)

4(κ−1)
(11520)

2(κ−1)
(30)

6(κ−1)
. (35)

(2) By putting all the values of C(α,β) in equation (8), we
have the following expression:

􏽢Z
M

4 (ζ) � (100)
κ
(6)

2κ− 1
(6)

3κ− 4
(10)

5κ− 8
(344534954841)

κ− 1
(37748736)

κ− 1
. (36)

□
5. Comparison Analysis

In this section, to check the validity and superiority, we
compare our calculated values for both the dendrimers with
each other. Table 10 shows the comparison between the
proposed results of dendrimers.

From Table 10, it can be seen that D1[m] has the largest
value for 􏽢Z

M

2 (ζ) while D2[m] has the greatest value of 􏽢Z
M

2 (ζ).

6. Conclusions

Dendrimers are highly branched organic macromolecules
with successive layers or generations of branch units sur-
rounding a central core and are considered as key molecules
in nanotechnology. In this research article, we have estab-
lished the general expressions to find the connection-based
MZIs, namely, first multiplicative Zagreb connection index,
second multiplicative Zagreb connection index, third mul-
tiplicative Zagreb connection index, and fourth multipli-
cative Zagreb connection index of two well-known
dendrimer nanostars. (ese calculated general expressions
just depend upon the step of growth of these dendrimers.
Moreover, to check the authenticity, we have also compared
the calculated result for both types of dendrimers. In future,
we are interested in extending our work for other types of
dendrimers which are poly(propyl) ether imine dendrimer
and polypropylenimine octamin dendrimer.
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