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In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient
method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the
solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms

have been obtained under some mild conditions.

1. Introduction

Let H be a real Hilbert space and S € H be a nonempty closed
convex subset. Let f: H — H be an operator. In this work,
we investigate the following variational inequality problem
(VIPs):

ﬁndapointuiE €S, s.t.(f(ui),x —u"y>0,VxeS. (1)

Denote by Sol (S, f) the solution set of (1). The VIPs is an
important tool to study various problems in the domain of
mechanics, optimization, transportation, fixed point, eco-
nomics equilibrium, contract problems in elasticity, and
other branches of mathematics, see [1-17]. Therefore, VIPs
have received much attention by many scholars, see [18-30].
There are a variety of methods to solve the VIPs, such as
regularization method and projection method [31-39]. In
this work, we focus on projection method.

As we all know that the gradient projection algorithm is
the simplest and oldest method ([40, 41]), the method is
defined as follows:

W = Ps(uk - yf(uk)), (2)

where Pg: H — S is the metric projection and y is some
positive number.

In order to obtain a convergent result, this algorithm
requires that the operator f is strongly monotone. In order
to avoid the strong monotonicity hypothesis, Korpelevich
[42] proposed the extragradient algorithm which is stated as
follows:

o = (- pf(u)),
SR Ps(uk _ yf(xk)),

where y € (0, (1/L)) and operator f is monotone and
Lipschitz continuous in H.

Note that the algorithm (3) calculates two projections on
S in each iteration. If the set S is more complicated, there will
be a lot of calculations. In order to overcome this difficulty,
Censor et al. [43] constructed a half space with sub-
differentiation and proposed subgradient extragradient
method which is defined by

(3)
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)]
T* ={z € H|<uk—yf(uk)—xk,z—xk>£0}, (4)

ukt = PTk(uk - yf(xk)).

Recently, Dong et al. [44] improved the algorithm (4)
with self-adaptive stepsize which generates a sequence {u*}
by the following form:

X = Pg(uf =y F(uY)),

| 176 - 1) <o -] voe .,
T ={z € HG* = f(u) - .2 — ) <0},

| 7! = P (u = a0y (1)),

where Ck = (k= x5,k (uF, xR e Wk, K92 and x4k,
xF) = (U = %) — R (F k) = f(x9).

Weak convergence of Algorithm (5) has been obtained.
Motivated and inspired by the above work, in this paper, we
continue to investigate iterative algorithms for solving the
monotone variational inequality in Hilbert spaces. We
construct two modified subgradient extragradient algo-
rithms for finding the solution of the monotone variational
inequality. Our algorithms combine self-adaptive technique
and inertial method. Under some mild conditions, we prove
that the proposed algorithms converge strongly to a solution
of the monotone variational inequality.

The organizational structure of this paper is as follows. In
Section 2, we present some definitions and preliminary
results, which will be used in further analysis of the proposed
algorithms. In Section 3, we proposed two modified sub-
gradient extragradient algorithms and prove strong con-
vergence theorems.

(5)

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert

space H. Use “—” and “ — ” to denote weak and strong

convergence, respectively. Let {xk} be a sequence in H. We

use w,, (x¥) to denote the set of all weak cluster points of
k .
{x*}, ie,

ww(xk) :{xT: El{xk"} C {xk} such that X —x"asi — oo}.
(6)
For Yu,v € H, and A € R, the following results hold

o+ w7 < ull® + 2w, u + v, (7)

e+ (1= v = Aull® + (1 = D)l

8
(1 =M= v~ 8)

Definition 1. Let f: H — H be an operator. Recall that the
operator f is said to be

(i) Monotone if
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{fw)-f)u-v)=0, Vu,veH. 9)

(ii) Strongly monotone if there exists y >0 s.t.

)= fOu=-vyzylu-v|*, Yu,veH. (10)

(iii) L-Lipschitz continuous if there exists L>0 s.t.

If () = fOI<Lllw—vll, Vu,veH. (11)
If L<1, f is said to be L-contractive.
Let C be a nonempty closed convex subset of a real

Hilbert space H. For any x € H, there exists a unique point
P.(x) € C such that

”x—PC(x)"SIIy—xII, Vy eC. (12)
It is well known that P, satisfies [45]
(x = Pc(x), y = Pc(x)) <0, (13)

le=Pel +ly - Pe o <l -y (19

for all x € H and y € C.

Lemma 1 (see [46]). Let {bk} be a real number sequence.
Suppose that there exists a subsequence {b*n} of {b*} such that
bkn <bFn*l for all m € N. Define the sequence {y(k)} as
follows:

y (k) = max{n € Nk, <n<k,b" <b""}, (15)
for each k >k,. Then, the following inequality holds:
0<bt <’ ™, (16)

for each k > k. Further, for all k >k, the sequence {y (k)} is
nondecreasing and

Jim y (k) = +oo. (17)

Lemma 2 (see [33]). Suppose that the sequence {8k} of real
numbers is nonnegative and there exists k, € N such that

§ < (1-95)8 +911, (18)

for each k >k, where the sequences {y*} and {I*} satisfy the
following conditions:

¥} < 0,0,
. ko
klﬂ»nooy B 0,
© (19)
2V =0,
k=1
limsup I* <0.
k—00

Then, lim,__,8" = 0.
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3. Main Result

In this section, we present our main results.

Let S be a nonempty closed convex subset of a real
Hilbert space H. Suppose that the following three conditions
are satisfied:

(C1): the set Sol(S, f) is not empty;
(C2): the operate f is monotone;
(C3): the operate f is L-Lipschitz continuous.

Let 0,p € (0,1),7 € (0,2), and y° > 0 be four constants.
Let {65], {2} € (0,1),and 1} < [a,b] € (0,1) be three
sequences, satisfying

(e8]
5 6 = oo,
n=1
lim 6" =0, (20)
k—00
& = o(@k).
Next, we introduce an iterative algorithm for solving (1).

Lemma 3. If x* = v or « (V& x¥)
xk € Sol (S, ).

=0 in Algorithm 1, then

Proof. Since f is L-Lipschitz continuous, we obtain

[ ) = - = )
2| -] - "Ilf ()

2| - —y"Lll "— "|| =(1—Y"L)llvk—x"|l’
[ ) =] -+ - )
<[ -+ v"Ilf ()

<[ -l - || eyt -

(21)

It follows that

/P =< el )< ()] -
(22)
Consequently, v = x*&x (vF, x*) = 0. Furthermore, if
vk = xk or k(v5, xK) = 0, we have
& = P(x* = yF £ (xY). (23)
Combining (13) and (23), we get
yf( ) X x—z>>0 Vz €S, (24)
which implies that
f(x*),z-x"y20, vzes. (25)

This completes the proof. O

3

Lemma 4. The sequence {y*},-, generated by Algorithm 1 is
monotonically decreasing, and y* <min{y°, (¢/L)} for each
k>o.

Proof. Obviously, by the definition of {y**!}, we have {y*} is
a monotonically decreasing sequence. Then, y* >}°,V¥n> 0.
Since f is Lipschitz continuous, we have

|7 () = £ ()] s 2 =), (26)

In the case of f(uk) #f(xk) we have

bl .
GEEIK

Obviously, the lower bound of {y*} is min{y°, (¢/L)}.

This completes the proof. O

Lemma 5. Let {(k} be the sequence generated by Algorithm 1.
Then, we have

Kk 1-o0

> (28)
1+0

Proof. Combining Lemma 4 and Cauchy-Schwartz in-
equality, we have

OF = x5 (1K) = (F =k 2 (F(F) = ()
== R - £

2| ) - )
o -yl
:(1 - ykL Hvk - xku2
>(1-0 Hv -x Nz
(29)

Since f is monotone and Lipschitz continuous, then we
obtain

J(* 2

2

=[ = () - A1)
=S - T
=208 () - £

B T L
(1)) -
<(1+ 02)"vk - xk||2.
From (29) and (30), we have
e AT K( k,xk)>> 1-0 1)

2 = 2
(5 e



This completes the proof. O

Lemma 6. Let u* € Sol(S, f). Then,

[ = < - II(k

—T(2—T) "Kv,x "

TC K vk xk)"

Proof. From (13

Htk - uiuz < | PTk(Vk - T(kykf(xk)) - Pput
< -t T(kykf( )
e

ARG

) and Algorithm 1, we have

‘2

B Tckykf(xk) _ uf;"z

k ¥

o R |

S E OV - At ()

e

2

—(R T(kykf(xk))

L T i e

(33)
It follows that
e N e I T I e B
- ZT{kyk<tk —u, f(xk)>>
or equivalently
=200y -, ().
(35)
x* € Candu* € Sol (S, f) that

2 2
Tl -+

k 2 k
¢ -] < -

We deduce from

(f (u*), x¥ —u*y >0. Tt follows from the monotonicity of
operator f that { f (x*) — f (u*), x* — u*) > 0. Then, {f (x¥),
xF—ut)y>0. It equates that (f(xK),tk—u*) > (f(xF),
5 — x*Y. Thus,

—ZT(kyk(f(xk), *—uty< - ZT(kyk(f(xk), £* — x5y, (36)

On the other hand, combining t* € T and Algorithm 1,
we obtain

(K(vk,xk),tk

This implies that

—xk>£yk<f(xk),tk—xk>. (37)
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—ZT(k)/k<f< ) *F—uty< —21¢ <K(Vk xk),tk - xFy.
(38)
Hence, we obtain
—ZTCkyk<f(xk),tk Ne - 27(k<1<(vk,xk),tk - x5y
< - ZT(k(K(vk,xk), AP\
+ ZTCk<K(vk, xk), VR,
(39)

Now, we calculate —ZTCk<K(vk,xk),vk - x*y and
ZT(k(K(vk, xF), vk — £k separately. From the definition of

{Ck} we get
—21( (x(vk xk), F_xby = —21((k)2"1<(vk, xk)nz. (40)

Meanwhile,

Foty = @ A

”v — ¢ —T{Kv X "

27( <K(Vk xk),

(41)
This implies that
—uty < = 2n(¢) ()

o = 2@ T
ST R I U S T e |

—T(2—T)({k ”K vk u

_ZTCkyk <f(xk)’ £

(42)
So, we get
[ = < - || - ()]
—T(Z—T) ||KV,X "
This completes the proof. O

Theorem 1. The sequence {u*} generated by Algorithm 1
converges strongly to u* € Sol(S, f).

Proof. We divide the proof into four claims.

Claim 1. We prove the boundedness of the sequences
{t*} and {t*}. Indeed, from Algorithm 1 and Lemma 6,

we get

W =1 - 0 - A - ]
”(1—ek—/\k)(v"—u*)+/\k(t"—u*)—9"u*“
< (1= 68 =A%) (o - )+ A (e - )| + 6|
< (1= 6 Yo - A = ]+ 64
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Initialization. Choose u°, u!' € H arbitrarily. . k= e
Step 1. Choose p¥ s.t. 0< p* <p*, where p* = {mln{p, (/" —u ")}’ ! }"i gﬁb_‘
Calculate v = uf + pk (uf — /< 1) ps otherwise
Step 2. Calculate x* = Pg (vF — y* £ (v9)),
min{yk (O'”Ltk - xk||/||f(uk) - f(xk)”)} iff(uk) if(xk)
where, y** ' ’ ’
otherwise
Step 3. Construct the half space Tk as follows T = {z € H|[{V* — y* £ (vF) — %k, z — xK) <0}
Calculate t* = Py (v — (YR (x
where (¥ = ((F - x* K(Vk xk))/llx(vk x)?)
and x (K, xF) = % — XK -k (f (VF) - f(xk))
Step 4. Compute u**! = (1 — 6 — \F)k 4 AK¢k
If x* = ¥, then stop and x* € Sol (S, f). Otherwise, set k: =k + 1 and return to step 1.
ALGORITHM 1: Strong convergence algorithm with contractive technique.
K\l k% K| k% K|k % k| % For Vk >k,, we have
S(l—@)“v —u"—/\”v u||+/\Hv u||+0||u || 0
K k ¥ ¥
=(1—6 )"v -u ||+6k||u || |ukJrl —uiHSmax{“uk—ui",M}. (49)

(44)
Combining Algorithm 1 and (44), we obtain
o =] = (= ) =]+ |
(- ) -
<(1-6) | -] + (1 - 6)
- |+ 6
(1 -] 6 )
(45)
where
¢ = Gk)%"uk | (46)

Taking into account e = o (6*) and the definition of p¥,
we get
lim ck =0.

k—00

(47)

Then, the sequence {¢*} is bounded. Let M =
supgs; (¢F + [[u])). We obtain from (45) that

’uk“ - uiu s "u -u ” + M
< max{"uk - ui“,M}. (49
Sk ”2:”(1 9k ok QkAk
=[1-6")(" -u 9’%"(
<(1- 6] - *” — 2N -
S(l Gk)z"vk—u“ 26/1<v -
:(1 Gk)zuvk —u ” —20FAR Gk -

It follows that the sequence {t*} is bounded. Therefore,
the sequence {t*} is bounded.

Claim 2. We prove that the following holds:

'uk+1 —u*||2< 1- ¢ 2" k ¢H2 EPYLY-
< tk uk+1 ui> +20k<u¢ uk+1 ui>.
(50)
Set zK = (1= M)Wk + A5k, Then, vF — 25 = AF (vF — £0).
Therefore,

! :(1 -6 —/\k)vk + AR = 2k gk
=(1—6k)zk—9k(vk—zk) (51)
=(1-0)" - A (v - 1),

From Lemma 6, we have
ol e
which implies that
[~ < (1A A s o -]
(53)
By (7), (51), and (53), we get
*H
Gkui"z
k k+1 ui> _ 29k<ui’uk+l _ u¢> (54)
k k+1 ui) _ 20k<u$’uk+l _ ui)

k k+1
U

—uty 26k< —ut U - u*y.
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Claim 3. By (8) and Algorithm 1, we obtain

“vk B uiuz :”uk +pk(uk _uk—l) _ u:t"Z

:”(1 +pk)(uk _u;t) _Pk(uk—1 _ui)uz

= (1 + pk)”uk - ui'lz —pk”ukfl - ui”z + pk(l +pk)||uk - uk71"2 (55)
<(Ue P = [t 2
o et IRV (T I T SRR T
Using Lemma (8) and (52), we get
=1 65 AR (F )+ 25— ) 1 65
<(1- 6 M)k — w25 - *j] + 0|
<(1-6 Aok — w4 6|
+Ak<||”k"f||2"'vk - (V) ) (56)
-7(2 - T)((k)z'lx(v Xk “ )
< (1 - Gk)“ k_ ui"2 + Gk“ i||2 —xlk"v -t =1 K(Vk xk)”
K@= (@) (4 ) )
From (55) and (56), we get
S u¢"2 < (1 _ gk)"uk +pk k k—l i”z + 6k||ui||2
_)Lk"vk -1 K(Vk xk)” “Ar2 - T)((k)zux(vk,xk)uz
< (-t e (- ) (-] - o]
O P R 2 =
—)Lk"vk -1k K W x “ “Ar2 - T) )2||K(vk,xk)||
R R (R (T I e
+ Zpk(l _ Ok " k k—1“2 + gk"ui"2
_)Lk"vk -1 ;c(vk xk)u Az - T)((k)zux(vk,xk)"z.
Claim 4. Next, we will consider two different cases to Case 1. There exists an NeN st

rove the strong convergence of the sequence k! — w1 < luk — u¥|)?, Vi > N. Obviously, the limit
i)lluk —u¥|? } of the sequence {Iluk —uf IIZ} exists which implies that
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limk_mlluk” —uk| = 0. In (57), taking the limit as
k — 00, we deduce

Jim [« )] =0, (59)
kli—rvnoo ”vk —tk - T(kx(vk,xk)"2 =0. (59)

On the other hand, we have

L I U G B St
(60)
So, we have lim;__ . [[v* - t*| = 0.
Combining Lemma 3 and (58), we obtain
lim [[v* - x| = 0. (61)

k—00

Now, we show that w, (u%) < Sol (S, f). Choose
p* € wy, (uF). It implies that there exists a subsequence
{u"} of {t*} which converges weakly to p*. Therefore,
v%—p*. Due to limkéoollvk — x| =0, we obtain
x"—p* € &. By Algorithm 1, we have
(xk—vk+ykf(vk),u—xk>20, Yu € C. (62)
Since f is monotone, we have
0< (xk —Vu- xk> + yk(f(vk),u - xk>

:<xk —Fu —xk> +yk<f(vk),u - vk>

+y<f( )v —x) (63)
<(xF -y u—x>+y<f(u),u—vk>
+y<f( )v —x)

Taking the limit in (63) as k — o0, we get

(fwhu-p)=0, YueC, (64)
which 1mp11es that w,, (u¥) € Sol (S, f).

Set bk = |[u* — u*||* for all k> 0. By (65) for q = u*, we
obtain

00 (1) -l 2 -

+2( - g u"" - D).
(65)

We deduce from Algorithm 1 that

[ <ol = (- o]+ o1 -]
S N T |
# 20— g o -

7
<l =+t -]
# 20 g o -
<bF+ 3ka||uk - uk*", (66)
where
Kospflé Lo} o
By virtue of (65) and (66), we have
P < (1- 64" + 6, (68)
where
o = o1 o) g - -2 -]
||uk+1 _ q" £ 2(—quFt - q>].
(69)
So, we get
limsup{ — g, U - qy = sup (uk)< —qu* —q)<0.
k=1 utew,
(70)

From (70), we deduce that g € Py, )(0) Combln—
ing the property of projection, l1mkHOO||vk —tk)? =

and  lim, _ (p*/6F)|uk — k-1 = we have
limsup,,,0*<0. By Lemma 2, we  obtain
bk = |ukF — u*||> — 0(k — 00). Therefore, the se-
quence {uf} converges strongly to u’.

Case 2. There exists a subsequence {b"} ¢ {bk} ~ s.t.

bkl < bk *1 for Vi>0. From Lemma 2, we can deduce
b <™

b < pr (71)

for each szo, where y (k) = max {ne NIE <n<
k,b" <b™'}. Further, the sequence {y(k)}k>k

nondecreasing (i.e., lim,_,y (k) =00). Let bk =
lu* — u*|*. By (71) and Claim 3 for g = u*, we obtain

o]~ g oy
+7(2- T)((y(k))zud(v"(k),x”(k))” ]
<p" (1 - @) (Hr® 1)

4201 = @O | ® — @1 4 gr P P,

(72)

We deduce from the definition of b* that



B4 b = ur® q"2 -t - ‘1“2
(S EAY)

(=l +J )

R (R )
(73)
Combining (72) and (73), we have

UG [”Vyac) — 0 gy ®) zﬂ("))"z
+r@=0(¢) Ja(w @ )]

<p"®(1- ") [“uy(k) IO “("uy(k) _ qu _“u}’(k)—l _ q”)]

£ 2001 - @O ® — O 1 g

(74)

Similarly, we have p?® (1 — " W)y ®— r®-1 — o,

It follows that
ww(uy(k)) c Sol (S, f),

lim "ty(k) _ uy<k>||2 — lim ”ty(m _ vy(k)Hz -0,

k—00 k—00

(75)

and

prio+ o (1 _ ey(k))by(k) +o'®
[3 ( GY(k) (k ” y(k) _ uv(k)*ln

_ Z)Ly(k)”vy(k) _ ty(k)“”uy(k)ﬂ _ q“ +2{-q, SO+ _ P.
(76)

Since b*® < by(k)“ and 0"® >0, from (76), we have

pr® < 3K(1 ey(k) 'uy(k) _ u}/(k)—lu

Y(k) |

=Wy gyt y(0+1

—D-
(77)

—q|'+2(—q,u

|

S ui" =||9kg(vk)

=[#(9(+) ) +(1
<0o(#) -u+(1

<&a() - o(v
< Qkp"vk -

)+ o) -]
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Since g € Pgy(s 1) (0) and w,, (w®) ¢ Sol(S f), we have
limsup__o,(~q, u? @ — q) = sup,__ o (~q,u* ~ g) <O0.
By (75), (77), and (p?® /6" ®)[|ur® — yy -1 — 0, we get

limsup b*® <2 sup (uY(k))< - qu’ —g)<0. (78)

k—00 qew,,

It follows from (76) that

limsup b’ ®*! <0
k—00 (79)
or lim »'®* <o
—>00

Hence, lim,__, b* = 0. Therefore, the sequence {u*}
converges strongly to u*. This completes the proof.

Suppose that g: H — H is a p-contractive operator.
Next, we propose an iterative algorithm with viscosity
item. O

Theorem 2. The sequence {u*} generated by Algorithm 1
converges strongly to u* = Pgys 1, g (u?).

Proof. We divide the proof into 4 claims.

Claim 1. We prove the boundedness of the sequences
{g(¥)}, {x*} and {tk} From Algorithm 1, we get

e N T G By
SWf—“W+PWf—“hW (0)
= [ - w'] + “ﬂU o
From Algorithm 1, we obtain (pk/Hk Yuk-

uk~1| — 0, (k — 00). Then, M, >0 s.t.
k
p—k"uk—uk_l"le, Vk > 0. (81)
o

By Algorithm 1 and (81), we have

+(1 - Gk)tk —ui“

) )
) -]

+(1-0)]¢ -

ui“ + Gk”g(ui) - u¢|| +(1 - Hk)"vk - ui"
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Initialization. Choose u°,u! € H arb1trar11y
Step 1. Choosep st 0<p <p*, where p* =
Calculate v* = uF +p (uk - k 1)

Step 2. Calculate x* = Pg (v* Ty f(vk
mm{yk (allu - X ||/||fu kall)} iff uf # fx*
k

{ in{p, (sk/||uk—uk71||)} if uf #4571
p

otherwise

where p+
otherwise

Step 3. Construc)': the half space T* as follows T = {z € H|{v* — y* fvk — xk,z — xFy <0},

Calculate th = P (vk YK £ (x5)),

where( = (OF = XK k(W xk))/IIK(vk X))
and k (vK, xF) = (v, xk) YECF (VF) = f(9)).
Step 4. Compute u*! = 6kg(vk) + (1 65tk

If x* = ¥, then stop and x* € Sol (S, f). Otherwise, set k: =k + 1 and return to step 1.

ALGORITHM 2: Strong convergence algorithm with viscosity term.

< 1—(1—p)0k |vk—u$'|+6k"g(ui)—u*“

|uk +pk(uk —uk_l) —ui" + Hk"g(ui) —ui“
== 0= o)
|

From (81) and (82), we have

k+1

u

It is obvious that the sequence {u*} is bounded. Fur-

]

< (1 -(1 —p)Gk)”uk - ui" +(1 —(1 —p)Gk)Gle + Gk”g(ui) - ui" < (1 -(1 —p)@k)"uk - ui”

-1+ (- 0 [ o) ]

(1 -1 —p)Gk)M1 +||g(ui) —uiH
1-p

+(1-p)d

Ilg ~u]

(1 et -] 1 e

< 1—(1—p)0k |uk—ui'|+(l—(1—p)6k Okp " k_ k71||+6k||g(ui)—ui“.

smax<| ”uk B u*"’Ml +||~‘13(_”:)) - “1” } <. gmax<| ”uk _ ui"’Ml +||~‘15(_”;) -

thermore, the sequences {g(v*)},{x*} and {tk} are

bounded.

u

i

Claim 2. From (7) and Algorithm 1, we have

(82)

(83)
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+ 29k(g(ui) —uf M — Uy < Gk”g(vk H 1 6k Ht -u ”2
+265Cq () -, — uty < 6|k - ¢" (1= 69| - u:;” +204(g(u) - it - iy
= (1 -(1 —p)Gk)“vk - u*"z + ZHk(g(ui) —ut - u®y. (84)

Claim 3. By (8) and (55), we obtain

Jn_uwzzw%g k_uﬁ 1 M i wr

<ofo(s) o' (- - o) ]

(85)
<6a(+) il} +(1- )] - *||2<9k||9 ) = (-0 -]
_<1—9k ” - T{k;c(vk " T(2 T) )2||K(vk,xk)||2.
From (85) and (55), we obtain
Uk - ui"2 < Gk"g(vk) - ui"2 +(1 - Gk)"uk - ui"z
o (o ==t =)
+2 1- 0 “ u* 1" 1 0 )"( tk) 7 K(Vk xk)"
ey ot
<@a(v) ]+ - || +(1- k(lluk—u*||2—|| )
+2(1—0k)pk”u —u* 1" 1 Ok " -1 K(Vk xk)” (l Gk 7(2 - T) ” ” .
(86)
This implies that
1—6k " k_ T( K e ” 1 Gk T(2- T) )2||K(vk,xk)"2
(1-6) (|| T I T R T e | (87)
< “uk - ui"z - ui" + Ok”g(vk) - ui”Z.
. . . lim “K W xk)“ =0,
Claim 4. According to Claim 3, we can see that there are k—00
two possible cases. (88)

lim “vk —tk - T(kx(vk,xk)" =0.
Case 1. There exists an N €N, s.t. [Juft! —u#|? k—0c0
< |tk — u*||* for Vk > N. Tt follows that lim,__[lu* —

u*|| exists. From (86) and hmk_,ooﬂ =0, we have Note that
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“vk - tk”2 < “vk - T{kx(vk, xk)” +||Tka(vk,xk)".

(89)
So,
Jim |- #] = (50)
Similarly, we can obtain
w,, (1) < Sol (S, f). (91)
Set b* = ||k — g||* for all k>0. By (84) for g = u*, we
get
2
P <(1- (- )| -] (92)
+ 20k<g(ui) —ut M Uy,
It follows from (66) and (92) that
B < (1-(1 - ) )bt + 6, (93)
where
& = 3K(1 -(1 —p)@k)pk”uk - uk”” (04)
+ 26k(g(q) -q Ukt - Q.
Then,
limsup(g (q) - g, 4" - ) = limsup
k>1 utew, (95)

(uk)(g(q) -q, ut - qy <0.

Hence, we deduce g € Pgy (s 1) (0). Combining the
property of projection, lim;,__ [vF —t5|* =0 and
lim,_ (pk/Hk)IIuk — 11| =0, we have limsup;
8°<0. By Lemma 2, we obtain bF = [[u — uf|?
— 0(k — 00). Therefore, the sequence {u*}
converges strongly to ut,

Case 2. There exists a subsequence {b*} ¢ {bk}k;l; ,s.t.
bki <bk*! for each i>0. From Lemma 1, we deduce

that
by(k) < by(k)+1,
bk < pr 41 (96)
for all kz%o, where y(k) = max{n € NI%O <

n<k,b" <b"™'}. Therefore, the sequence {y (k)} o i
nondecreasing (i.e., lim,__,y (k) = 00). By (96) and

Claim 3 for g = u*, we obtain

(1-0'0) “(Vy(k) — ) T((Y(k))K(VY(k),xy(k))”z

+(1-0©)r@ = n( ) e O, 2O

11

<[ur® g < [+ 0o - g
+(1 _ ey(k))py(k)(by(k) _ by(k)fl) + 2(1 _ ey(k))py(k)
"uy(k) _ uy(k)—lu{

(97)
From (73) and (97), we get
(1 _ 9y<k>)”(vy<k> _ ty(k)) _ T(V“‘)K(VV("), xy(k))nz
(1= D)@ (D) (P, 2 )
< "uy(k) _ u:tHZ _"uy(km _ u:tnz + 9y<k>"g(vy<k>) _ ui"z
N 2(1 _ gy(k))py(k)"uy(k) _ uy<n>—1"2 +(1 _ ey(k))Py(k)
o) (o o ~f)

(98)

Using Claim 1 and (98), we have
lim, (1 —6"®)pr®|r® _yy®-1) = o Therefore,

w, (' ™) < Sol (s, f),
b O - i [0 o,
k—00 k—00
b}’(k)ﬂ < (1 g _p)ey(k))by(k) 13K
(1 -1 _p)g}'(k))py(k)"uy(k) 3 uy(kylH

+20"9¢g(q) - """ - g).
(99)

Since bY®) <pr®+1 and k) >0, we receive
0 <3K(1-(1 _p)ey(k))py(k)”uy(k) B uy(k)—lu
+ 26)’(’0 <g(q) -g u)’(k)+1 _ q>

Note that g € Py, (s 5 (0) and w, (u'®) ¢ Sol (S, f). By
the property of projection, we have

(100)

) uy(k)+1 uy(k))

limsup<{g(q) — g -qy = sup (
k—00 utew, (101)
(g(q) - q.u* - g) <0.

Since (1 - Gy(k))p”(k)llu”(k) - w1 — 0, we deduce
. £
limsupa, ) <2 sup (xy(k))<g(q) -qu —q)<0. (102)
k—00 urew,,

So, limsup,__,,b?®*' <0 orlim,__, b?®*! = 0. Hence,

lim;__,,b* = 0 which implies that the sequence {u*} con-
verges strongly to u*. This completes the proof. O
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