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In this paper, we explored the impact of thermally radiative MHD flow of Williamson nanofluid over a stretchy plate. (e
flow in a stretchy plate is saturated via Darcy–Forchheimer relation. Cattaneo–Christov heat-mass flux theory is adopted to
frame the energy and nanoparticle concentration equations. Additionally, the mass transfer analysis is made by activation
energy and binary chemical reaction. Activation energy is invoked through the modified Arrhenius function. (e intention
of the current investigation is to enhance the heat transfer rate in industrial processes. (e non-Newtonian nanofluids have
more prominent thermal characteristics compared to ordinary working fluids. (e governing models are altered into ODE
models, and these models are numerically solved by applying the MATLAB bvp4c algorithm. (e graphical and tabular
interpretations have scrutinized the impact of sundry distinct parameters. (e fluid speed escalates for enhancing the
Richardson number, and it falls off for higher values of the Weissenberg number. It is noticed that the fluid temperature
declines for higher values of the Brownian motion parameter and it grows for larger values of the thermophoresis parameter.
(e activation energy enriches the heat transfer gradient and suppresses the local Sherwood number. Additionally, the more
significant heat transfer gradient occurs in heat-absorbing nonradiative viscous nanofluid and a smaller heat transfer
gradient occurs in heat-generating radiative Williamson nanofluid. Also, we noticed that a higher heat transfer gradient
appears in the Fourier model than in the Catteneo–Christov model. In addition, the comparative results are confirmed and
reached an outstanding accord.

1. Introduction

Cooling and heating procedures are essential in many in-
dustries, and fluids make this process. (e effectual cooling
techniques are essential for cooling a higher thermal system
in a short time. However, ordinary fluids such as ethylene
glycol, engine oil, and water have poor thermal conductivity
and do not fulfill the demand for powerful heat transfer

cooling agents. Considering the needs of modern industry,
including microelectronics, chemical production, and power
generation plants, we need to establish a new type of fluids
that will be efficient in cooling thermal systems. Nanofluid is
a fluid consisting of nanoparticles (nanosized particles) such
as oxides, nitrides, carbides, and metals stably and uniformly
suspended in a base fluid. (ese fluids overcome the diffi-
culty of the base fluids and act as an agent of efficient cooling.
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(e nanofluid flow on a stretchy sheet was reported by Khan
and Pop [1]. (ey noticed that the fluid temperature grows
when the quantity of thermophoresis parameter is greater.
Kuznetsov and Nield [2] addressed the natural convective
flow of nanofluid on a plate.(ey noted that the heat transfer
rate becomes less in the presence of the Brownian motion
parameter. Goyal and Bhargava [3] derived the numerical
solution of viscoelastic nanofluid on a sheet under velocity
slip condition. (eir outcomes clearly show that the ther-
mophoresis parameter leads to deceleration in the fluid
temperature. (e Titania nanofluid flow in a cylindrical
annulus was illustrated by Mebarek-Oudina [4]. (e
problem of bioconvective flow of MHD tangent hyperbolic
nanofluid subject to Newtonian heating was solved by Shafiq
et al. [5]. (ey detected that the nanoparticle concentration
suppresses when rising the thermophoresis parameter.
Mabood et al. [6] illustrate the consequence of MHD flow of
hybrid nanofluid on a wedge with thermal radiation. (ey
proved that the fluid velocity uplifts when enriching the
magnetic field parameter.

In nature, heat transference occurs due to the tem-
perature difference between one body to another body or
within the same body. In the past, the heat transfer phe-
nomenon was mostly addressed by using “Fourier’s law of
heat conduction.” However, this law is not sufficient to
express the fundamental characteristic of heat transfer.
(at is, each part of the entire object having an initial
disturbance. In general, there is no material satisfying this
property. To overcome this complication, Cattaneo [7]
incorporated the thermal relaxation in Fourier’s theory
which implements the heat transport is identical to the
propagation of thermal waves with normal speed. Christov
[8] upgraded the Cattaneo model by recommending the
thermal relaxation time with upper convected Oldroyd’s
derivatives for the frame-invariant formation. (e time-
dependent flow of nanofluid with Cattaneo–Christov
double diffusion was examined by Ahmad et al. [9]. (ey
noticed that the thermal relaxation parameter declines the
fluid temperature. Reddy and Kumar [10] delivered the
impact of Cattaneo–Christov heat flux of micropolar fluid
on carbon nanotubes. (e 2D incompressible flow of heat-
generating/-absorbing Oldroyd-B fluid with Cattaneo–
Christov heat flux on an uneven stretching sheet was
portrayed by Ibrahim and Gadisa [11].(ey proved that the
heat flux relaxation time parameter leads to thinning the
thermal boundary layer thickness. Kumar et al. [12] ana-
lyzed the significance of Cattaneo–Christov flow on a cone.
(ey detected that the smaller heat transfer gradient oc-
curred in the wedge than the cone for varying the thermal
relaxation time parameter. Some recent developments on
this concept are collected in [13–19].

(e convective fluid flows on a porous medium play a
vital role in many science and engineering systems. Some
examples are crude oil production, heat exchanger layouts,
groundwater systems, grain amassing, nuclear waste dis-
posal, warm insurance outlining, fossil fuels beds, and
many others. Darcy developed a semiempirical equation
that uses in low porosity and low-velocity conditions.(ese
empirical equations were not sufficient for a larger

Reynolds number. In this situation, Forchheimer [20] was
developed a new model named as the Darcy–Forchheimer
model, which includes the square velocity term in the
Darcian model. Pal and Mondal [21] derived the numerical
solution of MHD fluid flow on Darcy–Forchheimer porous
medium. (ey discovered that the mass transfer gradient
accelerates for more availability of local inertia parameters.
(e dual solution of forced convective stagnation-point
flow on a Darcy–Forchheimer porous medium over a
shrinking sheet was derived by Bakar et al. [22]. (ey
achieved that the fluid temperature declines in the first
solution and enhances the second solution when raising the
porosity parameter. Meraj et al. [23] inspected the Dar-
cy–Forchheimer flow of Maxwell fluid with Cattaneo–
Christov heat flux theory. (ey acknowledged that the
thermal boundary layer thickness becomes high for a larger
quantity of the porosity parameter. (e Dar-
cy–Forchheimer flow of H2O-based CNTs on rotating disk
was studied by Hayat et al. [24]. (ey found that the fluid
velocity is a nonincreasing function of the porosity pa-
rameter. Latest improvements for these concepts are col-
lected in [25–35].

In recent decades, many researchers are willing to study
the chemical reactions and activation energy because they
have more industrial applications. Few applications are fog
formation, fibrous insulation, thermal oil recovery, cooling
of nuclear reactors, etc. (e mixed convective flow of
Carreau nanofluid flow with activation energy was illus-
trated by Javed et al. [36]. Zaib et al. [37] explored the
consequences of a binary chemical reaction and activation
energy of a nonlinear radiative flow of Casson nanofluid on a
Darcy–Brinkman porous medium. (ey detected that the
thickening of the solutal boundary layer thickness when
raising the activation energy parameter. (e impact of ac-
tivation energy of an electrically conducting Carreau
nanofluid flow in a stagnation point was discussed by Hsiao
[38]. Time-dependent MHD natural convective flow with
Arrhenius activation energy was analyzed by Maleque [39].
He noticed that the activation energy is enhancing the
nanofluid concentration. Mabood et al. [40] portray the
outcomes of Arrhenius activation energy effect on micro-
polar fluid on a thin needle. (ey concluded that the
Sherwood number decelerates for upsurging values of the
activation energy parameter. (e results of Arrhenius ac-
tivation energy of a tangent hyperbolic fluid was revealed by
Kumar et al. [41]. A variety of studies on this direction was
found in [42–45].

(e primary objective of this paper is to portray the 2D
Darcy–Forchheimer radiative flow of Williamson nanofluid
with subject to activation energy and heat absorption. (e
thermophoresis and Brownian motion effects are taking into
account. (e energy and mass equation models are con-
structed via Cattaneo–Christov heat-mass flux theory. (e
Darcy–Forhemmier flow of radiative Williamson nanofluid
with activation energy and Cattaneo–Christov dual flux was
not examined yet. So, we fill this gap and will give a sig-
nificant contribution to the existing investigations. Gener-
ally, Williamson nanofluid has a wide range of usages in
biological engineering; especially, it is used for computing
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the heat and mass transmission through the vessels in blood
and hemodialysis, see [46]. (e impact of pertinent pa-
rameters of the governing model of velocity, temperature
and nanofluid concentration, local skin friction, local
Nusselt number, and local Sherwood number are examined
in terms of tables, charts, and figures.

2. Mathematical Formulation

We exhibit the steady mixed convective flow of 2D Wil-
liamson nanofluid on a Darcy–Forchheimer porousmedium
over a stretchy sheet. Let x− axis is considered in the flow
direction and y− is perpendicular to the flow. (e uniform

magnetic effect B0 is applied in the y− direction and the
induced magnetic effect excluded becomes a small quantity
of Reynolds number. (e fluid temperature and nanofluid
concentration nearby the boundary is Tw and Cw which is
larger than the ambient fluid temperature T∞ and con-
centration C∞, respectively. (e Cattaneo–Christov model
replaced Fourier’s heat conduction law.(e consequences of
activation energy and binary chemical reaction are con-
sidered for our study. In addition, the fluid is heat con-
sumption/generating. Under the above considerations, the
governing flow problems are (see [47])
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All symbols are defined in the nomenclature part. With the boundary conditions,

aty � 0: u � Uw(x) � ax, v � − Vw, T � Tw, DB

zC

zy
+
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zy
� 0,

asy⟶∞: u⟶ 0, T⟶ T∞, C⟶ C∞.

(3)
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(e corresponding ODE’s are
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2
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2
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All parameters are defined in the nomenclature part. (e corresponding boundary conditions are

AtΨ � 0: f(Ψ) � fw, f′(Ψ) � 1, θ(Ψ) � 1, Nbϕ′(Ψ) + Ntθ′(Ψ) � 0,

AsΨ⟶∞: f′(Ψ)⟶ 0, θ(Ψ)⟶ 0, ϕ(Ψ)⟶ 0.
(8)

(e dimensionless form of wall shear stress, heat, and
mass flux are expressed as
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3. Numerical Solutions

(e ODE models (5)–(7) with associative conditions (8) are
numerically solved by implementing MATLAB bvp4c

procedure. In this regard, first, we change the 2rd and 3rd
order ODE into a system of first-order ODE.

Let f � y1, f′ � y2, f″ � y3, θ � y4, θ′ � y5, ϕ �

y6, andϕ′ � y7.
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(e system of first-order ODEs is as follows:
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under the boundary conditions,

y1(0) � fw,

y2(0) − 1 � 0,

y2(∞) � 0,

y4(0) − 1 � 0,

y4(∞) � 0,

Nby7(0) + Nty5(0) � 0,

y6(∞) � 0.

(11)

(e numerical procedure needs initial calculation with
tolerance 10− 6.

4. Results and Discussion

(is section scrutinises the consequences of pertinent
parameters on velocity, temperature, nanofluid concen-
tration, skin friction coefficient, local Nusselt number,
and local Sherwood number with a fixed quantity of
Prandtl and Schmidt numbers. Table 1 provides the
comparison of our numerical results and Mustafa et al.
[47] results. We achieved that our results are exactly
matched with Mustafa’s results. (e estimation of We, λ,
Fr, M, Ri, and Nr on skin friction coefficient, local Nusselt
number, and local Sherwood number was presented in
Table 2. We noticed that the surface shear stress accel-
erates when enhancing the We and Ri values, and it de-
celerates for heightening the quantity of λ, Fr, M, and Nr

values. (e heat transfer gradient grows when growing the
values of Ri, and it diminishes when upgrading the We, λ,
Fr, M, and Nr values. Quite the opposite results are
attained in the local Sherwood number. Table 3 describes
the impact of Hg, R, ΓT, Nb, and Nt on local Nusselt
number. It is detected that the heat transfer gradient
upturns when upturning the values of R, ΓT, and Nb. On
the contrary, it decimates for enhancing the quantity of

Hg and Nt. (e variations of local Sherwood number for
different values of σ∗∗, E, n, ΓC, Nb, Nt, and δ were il-
lustrated in Table 4. We found that the mass transfer
gradients decelerate for the small quantity of σ∗∗, and after
that, it enriches for higher magnitudes. (e LSN develops
when developing the values of n, Nb, and δ, and the
opposite trend was obtained for the more presence of E,
ΓC, and Nt.

Figures 1(a) and 1(b) explain the impact of We and M on
DFF and NDFF in velocity profile. We found that the fluid
velocity decelerates for rising the values of We andM.
Physically, a higher Weissenberg number leads to enriching
the fluid relaxation time, and this causes to slow down the
motion of the fluid particles. (e higher magnitude of the
magnetic field parameter develops the fluid resistance and
this causes to suppress the motion of the fluid particles. Also,
we have seen that higher momentum boundary layer
thickness occurs in NDFF compared to the DFF. (e
changes of fluid velocity for diverse values of λ and Fr on
WNF and VNF were presented in Figures 2(a) and 2(b). We
noticed that the fluid velocity reduces when enriching the λ
and Fr values. (e thickness of the momentum boundary
layer is lessened inWNF compared to VNF. Figures 3(a) and
3(b) show the variations of velocity profile for disparate
values of fw and Ri. We achieved that the fluid velocity
declines when escalating the fw values, and it grows when
increasing the Ri values. Also, we have seen that the higher
momentum boundary layer thickness occurs in NDFF
compared to the DFF. (e temperature distribution for
diverse quantity offw andHg was illustrated in Figures 4(a)
and 4(b). We detected that the fluid temperature diminishes
when heightening the fw values and upturns for developing
the Hg values. (e larger values of the heat generation
parameter enhance the fluid thermal state and this leads to
enhance the fluid temperature. (e thicken boundary layer
occurs in DFF and radiation compared to NDFF and
without radiation, respectively. Figures 5(a) and 5(b) depict
the Nt and Nb consequences of temperature distribution.
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Table 1: Comparison of local Nusselt number when We � λ � Fr � R � ΓT � Hg � ΓC � 0, M � Nr � 0.5, Sc � 5, and δ � 1 by Mustafa
et al. [47].

Pr Nt E σ∗∗ n Ri
Nu/

���
Re

√

[47] Present
2.0 0.5 1.0 1.0 0.5 0.5 0.706605 0.706604
4.0 0.935952 0.935955
7.0 1.132787 1.132788
10.0 1.257476 1.257482
5.0 0.1 1.0 1.0 0.5 0.5 1.426267 1.426269

0.5 1.013939 1.013938
0.7 0.846943 0.846928
1.0 0.649940 0.649939

5.0 0.5 0.0 1.0 0.5 0.5 0.941201 0.941209
1.0 1.013939 1.013943
2.0 1.064551 1.064563
4.0 1.114549 1.114191

5.0 0.5 1.0 0.0 0.5 0.5 1.145304 1.145301
1.0 1.013939 1.013938
2.0 0.926282 0.926281
5.0 0.798671 0.798669

5.0 0.5 1.0 2.0 –1.0 0.5 1.030805 1.030804
–0.5 0.999470 0.999468
0.0 0.964286 0.964285
1.0 0.886830 0.886830

10.0 0.5 1.0 2.0 0.5 0.0 1.032281 1.032280
0.5 1.056704 1.056706
3.0 1.154539 1.154538
5.0 1.215937 1.215938

Table 2: Numerically obtained values of skin friction coefficient, local Nusselt number, and local Sherwood number for various values of
We, λ, Fr, M, Ri, andNr.

We λ Fr M Ri Nr 1/2Cf
���
Re

√
Nu/

���
Re

√
Sh/

���
Re

√

0.0 0.2 0.4 0.5 0.6 0.5 –1.369910 1.736070 –1.041642
0.1 –1.336353 1.731626 –1.038976
0.2 –1.299006 1.726528 –1.035917
0.3 –1.255948 1.720440 –1.032264
0.2 0.0 0.4 0.5 0.6 0.5 –1.150084 1.740831 –1.044499

0.3 –1.332147 1.722392 –1.033435
0.6 –1.426504 1.710895 –1.026537
1.0 –1.542193 1.697346 –1.018407

0.2 0.2 0.0 0.5 0.6 0.5 –1.209294 1.733884 –1.040331
0.4 –1.299007 1.726528 –1.035917
0.8 –1.382682 1.719806 –1.031884
1.2 –1.461128 1.713616 –1.028170

0.2 0.2 0.4 0.0 0.6 0.5 –1.035442 1.763066 –1.057839
0.6 –1.332153 1.722392 –1.033435
1.4 –1.569535 1.694225 –1.016535
2.0 –1.722549 1.677325 –1.006395

0.2 0.2 0.4 0.5 0.0 0.5 –1.523325 1.699901 –1.019940
0.4 –1.372881 1.718112 –1.030867
0.7 –1.262365 1.730588 –1.038353
1.0 –1.151000 1.743301 –1.045981

0.2 0.2 0.4 0.5 0.6 0.0 –1.289661 1.733515 –1.040109
0.3 –1.295106 1.729398 –1.037639
0.7 –1.303165 1.723548 –1.034129
1.0 –1.309932 1.718840 –1.031304
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Table 3: Numerically obtained values of local Nusselt number for the various values of Hg, R, ΓT, Nb, andNt.

Hg R ΓT Nb Nt Nu/
���
Re

√

− 0.5 0.5 0.1 0.5 0.5 1.726528
− 0.3 1.542341
0.0 1.205077
0.3 0.871873
0.5 0.349241
− 0.5 0.0 0.1 0.5 0.5 1.438110

0.3 1.619396
0.6 1.776956
1.0 1.962378

− 0.5 0.5 0.0 0.5 0.5 1.701132
0.1 1.726528
0.2 1.753300
0.3 1.775803

− 0.5 0.5 0.1 0.5 0.5 1.726528
1.0 1.730099
1.5 1.731254
2.0 1.731825

− 0.5 0.5 0.1 0.5 0.0 1.833704
0.5 1.726528
1.0 1.627784
1.5 1.537369

Table 4: Numerically obtained values of the local Sherwood number for various values of σ∗∗, E, n, ΓC, Nb, Nt, and δ.

σ∗∗ E n ΓC Nb Nt δ Sh
���
Re

√

0.0 1.0 0.5 0.1 0.5 0.5 1.0 –1.031660
0.7 –1.034681
1.3 –1.031771
2.0 –1.027447
1.0 0.0 0.5 0.1 0.5 0.5 1.0 –1.028634

1.0 –1.033423
2.0 –1.034617
3.0 –1.033993

1.0 1.0 –1.0 0.1 0.5 0.5 1.0 –1.036196
–0.5 –1.035629
0.0 –1.034736
0.5 –1.033423
1.0 –1.026188

1.0 1.0 0.5 0.0 0.5 0.5 1.0 –0.776036
0.1 –1.033423
0.2 –1.053241
0.3 –1.029591

1.0 1.0 0.5 0.1 0.5 0.5 1.0 –1.033423
1.0 –0.517626
1.5 –0.345282
2.0 –0.259035

1.0 1.0 0.5 0.1 0.5 0.1 1.0 –0.216786
0.5 –1.033423
1.0 –1.949590
1.5 –2.763326

1.0 1.0 0.5 0.1 0.5 0.5 0.0 –1.035867
1.0 –1.033423
2.0 –1.031309
3.0 –1.029459
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We exposed that the fluid temperature develops for in-
creasing the Nt values and the opposite trend was obtained
for Nb values. Also, we noticed that the reaction rate leads to
suppressing of the thermal boundary layer thickness. (e
effects of Hg andR on temperature distribution were plotted
in Figures 6(a) and 6(b). We noted that the fluid temperature
raises for rising the Hg and R values. In addition, we found
the larger thermal boundary layer thickness attains in the
FHF model compared to the CCHF model. Figures 7(a) and
7(b) portray the consequences of fw and Nt for nanofluid

concentration profile. We concluded that the nanofluid
concentration enhances near the plate and falling-off away
from the plate.(e Nt values lead to enriching the nanofluid
concentration boundary layer thickness. (e nanofluid
concentration distribution for different values of Nb and ΓC
were shown in Figures 8(a) and 8(b). (ese figures clearly
show that the nanofluid concentration is an increasing
behavior for ΓC and quite the opposite occurs for Nb values.
Also, we noticed that the reaction rate leads to suppressing of
the nanofluid concentration boundary layer thickness.
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(e skin friction coefficient on WNF and VNF on
DFPM and NDFPM with fw � − 0.4 and fw � 0.4 was
plotted in Figures 9(a) and 9(b). We proved that the larger
surface shear stress (− 0.707201) occur in NDFF of WNF
with injection case and smaller surface shear stress
(− 1.36991) occur in DFF of VNF with the suction case.
Figures 10(a) and 10(b) provide the skin friction coeffi-
cient on WNF and VNF on a DFPM and NDFPM with
Ri � 0.0 and Ri � 1.0. We concluded that the larger surface
shear stress (− 0.875878) occur in the DFF of WNF with

the presence of Ri and smaller surface shear stress
(− 1.61002) occur in the DFF of VNF with the absence of
Ri. (e local Nusselt number on WNF and VNF with
R � 0.0, R � 1.0, Hg � − 0.4, and Hg � 0.4 with the CC
model and the FF model was plotted in Figures 11(a) and
11(b) and Figures 12(a) and 12(b). In the CC model, the
larger heat transfer gradient (1.97227) occurs in heat-
absorbing radiative viscous nanofluid, and a smaller heat
transfer gradient (0.718399) occurs in a heat-generating
radiative viscous nanofluid. In the FF model, the larger
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heat transfer gradient (3.2986) occurs in heat-absorbing
nonradiative viscous nanofluid, and a smaller heat
transfer gradient (0.646887) occurs in heat-generating
radiative Williamson nanofluid. Figures 13(a) and 13(b)
provide the local Sherwood number on various

combinations of E and n of a CC, FF flow of WNF and
VNF.(e larger mass transfer gradient (− 1.0171) occurs in
FF without activation energy, and a smaller mass
transfer gradient (− 1.03809) occurs in the CC model with
n � − 0.5.
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5. Conclusions

(is analysis clearly shows the consequences of thermal
radiation of a Darcy–Forchheimer flow of Williamson
nanofluid on a stretchy plate with a magnetic field. (e
energy and nanoparticle concentration equations were
framed with Catteneo–Christov heat-mass flux theory.
Additionally, the mass transfer analysis is made by activation
energy and binary chemical reaction. (e governing PDE
problems were converted into ODE problems by applying
suitable variables, and these equations were solved using
MATLAB bvp4c algorithm. (e salient outcomes of the
current analysis are outlined as below:

(i) (e fluid velocity decelerates when enhancing the
Williamson fluid, magnetic field, and porosity

parameters, and it accelerates by increasing the
Richardson number.

(ii) (e fluid temperature accelerates when strength-
ening the heat generation/absorption radiation and
thermophoresis parameters, and it declines when
increasing the Brownian motion parameter.

(iii) (e fluid concentration suppresses when increasing
the Brownian motion parameter, and it enhances
when escalating the thermophoresis and mass re-
laxation time parameters.

(iv) (e smaller SFC occurs in the non-Dar-
cy–Forchheimer flow of Williamson nanofluid.

(v) (e larger heat transfer gradient exists in viscous
nanofluid without radiation.
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(vi) (e larger Sherwood number attains in the Fourier
mass flux model without activation energy.

(e skin friction coefficient on WNF and VNF on a
DFPM and NDFPM with Ri � 0.0 and Ri � 1.0 was plotted
in Figures.

Nomenclature

a: Constant
B0: Magnetic field strength
C: Fluid concentration
Cb: Drag coefficient
Cp: Specific heat(Jkg− 1K− 1)

Cw: Wall concentration
C∞: Ambient fluid concentration
DB: Mass diffusivity
DT: Thermophoretic diffusion coefficient
E � (Ea/κT∞): Nondimensional activation energy
Ea: Activation energy
Fr � (Cb/

��
k2

􏽰
): Forchheimer number

f′: Nondimensional velocity
fw � (Vw/

��
a]

√
): Suction/injection parameter

g: Acceleration due to gravity
Grx � ((gβ(1 − C∞)

(Tw − T∞)x3)/]2):
Local Grashof number

Hg � (Q/ρfCpa): Heat generation/
absorption parameter

k: Thermal conductive
k1: Permeability of porousmedium
k∗: Mean absorption coefficient
kr: Reaction rate
M � (σB2

0/ρfa): Hartmann number
n: Fitted rate
Nb � (τDBC∞/]): Brownian diffusion parameter
Nr � ((ρp − ρf∞

)C∞/
(ρf∞

β(1 − C∞)

(Tw − T∞))):

Buoyancy ratio parameter

Nt � (τDT(Tw − T∞)/
T∞]):

Thermophoresis parameter

Pr � (]/α): Prandtl number
Q: Heat generation/

absorption coefficient
R � (4σ∗T3

∞/kk∗): Thermal radiation
Rex � (Uwx/]): Local Reynolds number
Ri � (Grx/Re2x
� (gβ(1 − C∞)

(Tw − T∞))/a2x):

Richardson number

Sc � (]/DB): Schmith number
T: Fluid temperature(K)

T∞: Ambient temperature(K)

Tw: Wall temperature(K)

u and v: Velocity components(ms− 1)

Uw: Stretching surface velocity(ms− 1)

We � (Γx
�����
2a3/]

√
): Weissenberg number

x andy: Direction coordinates (m)

Greek symbols
α: (ermal diffusivity (m2 s− 1)

β: (ermal expansion coefficient

δ � ((Tw − T∞)/
T∞):

Temperature difference parameter

Γ: Williamson parameter
ΓT � (aλT): (ermal relaxation parameter
ΓC � (aλC): Solute relaxation parameter
λ � (]/k2a): Local porosity parameter
λC: Relaxation time of mass flux
λT: Relaxation time of heat flux
]: Kinematic viscosity (m2s− 1)

ϕ: Nondimensional nanofluid
concentration

ρf: Fluid density (kgm− 3)

σ: Electrical conductivity
σ∗: Stefan Boltzmann constant (Wm− 2K− 4)

σ∗∗ � (k2
r/a): Dimensionless reaction rate

τ: (e ratio of effective heat capacity of the
nanoparticle material and heat capacity
of the fluid

θ: Nondimensional temperature
Abbreviations
AC: Activation energy
CCHF: Cattaneo − Christov heat flux
DF (F): Darcy − Forchheimer (flow)

FHF: Fourier heat fluxmodel
HA: Heat absorption
HG: Heat generation
NAC: Nonactivation energy
NDF (F): Non − Darcy − Forchheimer (flow)

NDFPM: Non − Darcy − Forchheimer porousmedium
NFR: Negative fitted rate
NRVNF: Nonradiative viscous nanofluid
NRWNF: NonradiativeWilliamson nanofluid
PFR: Positive fitted rate
RVNF: Radiative viscous nanofluid
RWNF: RadiativeWilliamson nanofluid
VNF: Viscous nanofluid
WNF: Williamson nanofluid.
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