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-ere are many approaches to deal with vagueness and ambiguity including soft sets and rough sets. Feng et al. initiated the
concept of possible hybridization of soft sets and rough sets. -ey introduced the concept of soft rough sets, in which pa-
rameterized subsets of a universe set serve as the building blocks for lower and upper approximations of a subset. Topological
notions play a vital role in rough sets and soft rough sets. So, the basic objectives of the current work are as follows: first, we find
answers to some very important questions, such as how to determine the probability that a subset of the universe is definable.
Some more similar questions are answered in rough sets and their extensions. Secondly, we enhance soft rough sets from
topological perspective and introduce topological soft rough sets. We explore some of their properties to improve existing
techniques. A comparison has been made with some existing studies to show that accuracy measure of proposed technique shows
an improvement. Proposed technique has been employed in decision-making problem for diagnosing heart failure. For this two
algorithms have been given.

1. Introduction

Mathematical modeling for the vagueness and uncertainty of
data has many differentmethods, for instance, rough set theory
[1], fuzzy set theory [2], soft set theory [3], and topology [4].
Pawlak [1] introduced the classical rough sets model in the
early eighties to study vagueness of data, which originate from
daily life situations. -e key of this methodology is an
equivalence relation which is constructed from the data of an
information system. In general, it is very difficult to find an
equivalence relation in such data. -erefore application of this
technique is very limited. -erefore authors relaxed the con-
dition of equivalence relation by some more general relations
such as similarity relations (reflexive and symmetric) [5, 6],
preorder relations (reflexive and transitive) [7], reflexive re-
lations [8], general binary relations [8–14], topological ap-
proaches [15, 16], and coverings [17–19].

Soft set theory is another mathematical model to deal
with uncertainty, when data is collected from real-life sit-
uations. -is concept was introduced by Molodtsove [3].
-is theory has applications in many fields, for instance,
game theory, operations research, integration of Riemann,
and measurement theory [3]. Recently, scientists and re-
searchers have shown their inclination to the idea of soft sets
to apply it in numerous areas. For more information about
this theory and its applications, we refer the reader to the
references (soft set theoretical concepts [20, 21], soft sets and
soft topological spaces [22–24], soft rough sets and their
applications [25–28], and medical applications of soft sets
and their extensions [29–35]).

In rough set theory [1], basic requirement is to have an
equivalence relation among the elements of the set under
consideration. But in daily life situations it is not easy to find
such an equivalence relation. Perhaps this limitation is
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associated with rough set theory due to the lack of pa-
rameterization tools. -e idea of soft rough sets was initiated
and studied by Feng et al. in [24] which are very useful in
intelligent systems. -e concept of the lower (resp., upper)
approximation of this theory is particularly useful to extract
knowledge hidden in an information system. Decision-
making has a crucial part in our daily life, and this method
produces the best alternate among dissimilar selections.
Chen et al. [34] proposed the choice values of objects in a soft
set and considered how to use this notion to address de-
cision-making problems. In [35], Roy and Maji generalized
this method for new decision-making problems. -ere are
several subsequent advances after Maji et al.’s work, such as
the uni-int decision-making using soft set theory [36]; Jha
et al.’s [37] neutrosophic soft set notion in decision-making
problems for stock trending analysis, and medical appli-
cations [38].

Feng et al. replaced the classes of the equivalence relation
by parameterizing subsets of a subset of the universe to
define its approximations. In fact, Feng et al. have succeeded
in proving that Pawlak’s rough set model is a specialization
of the soft rough set as shown by -eorem 4.4 and -eorem
4.5 in [24]. It is worth noting that the concept of full soft sets
deserves special attention for both theoretical and practical
reasons. -eoretically, some typical properties of Pawlak’s
rough sets hold for soft rough sets if and only if the un-
derlying soft set in the soft approximation space is full.
Pragmatically, it is justifiable to consider full soft sets in real-
life applications. In fact, if a soft set is not full, it means that
the available parameters are insufficient, and there exists at
least one object which cannot be described by any of the
parameters in the given soft set. With the help of soft rough
approximations, some equivalent characterizations of full
soft sets were given in [24]. In this paper, a new technique is
given to define lower and upper approximations of a set with
the help of topology generated by the given soft set; this is
known mathematically as the notion of topological soft
rough sets (TSR − sets).

-e main contribution in the existing work is to present
another model for soft rough sets without any restrictions
and satisfy the characteristics of Pawlak’s rough sets. In other
words, we propose a method for modifying soft rough sets
from a topological point of view, so a new link between soft
sets and general topology is proposed.

First, we discuss the concept of the topology of all de-
finable sets in rough set theory [1] and in soft rough sets [24].
Accordingly, we able to respond with the next very inter-
esting questions:

What is the probability that a subset of the universe U

may be a definable set?
What is the probability that the lower approximation of
a nonempty subset of U may be an empty set?
What is the probability that the upper approximation of
a proper subset of U may be U?

Secondly, a general topology is generated from the soft
set to modify and generalize soft rough sets proposed in [24].
-e suggested techniques extend the way for more

applications of the general topology in soft rough sets theory.
In fact, we use the image of parameters as a subbasis for a
unique topology generated by a soft set, denoted by TSR.
New generalized soft rough approximations, called “topo-
logical soft rough approximations” (briefly, TSR-approxi-
mations), are defined. It is shown that accuracy of proposed
technique is higher than soft rough sets, due to reduction of
boundary region. -e importance of proposed approxi-
mations is clear from the fact that these not only reduce the
boundary region but also satisfy basic properties similar to
rough sets. Several comparisons among the present method
and the preceding one [34] are obtained. Numerous ex-
amples are suggested to exemplify the relations between the
topological soft rough sets and soft rough sets.

Finally, some medical applications in the medical di-
agnosis of heart failure problems [39] are introduced. -ese
applications illustrate the importance of the suggested
methods in real-life problems. In fact, we apply a topological
reduction for data set comprising the effect of five indica-
tions for twenty patients with heart failure disease. Ac-
cordingly, we can identify the core factors of the heart failure
diagnosis. A comparison has been made between proposed
technique and some already existing in the literature which
shows the usefulness of proposed technique. Two algorithms
are given based on proposed technique. -e proposed al-
gorithms are tested on hypothetical data for the purpose of
comparison with already existing methods.

2. Basic Concepts

-e current section is devoted to present some elementary
definitions and consequences that are applied through paper
are mentioned.

2.1. Topological Space. A topology [4] of a set U is defined by
the collection τ of subsets of U which fulfills the following
three axioms:

(T1) ϕ, U ∈ τ.
(T2) A finite intersection of subsets of τ is a member in
τ.
(T3) An arbitrary union of subsets of τ is a member in τ.

We call a pair (U, τ) “topological space” or “space” and
the members of U “points” of τ, and the subsets of U that
belong to τ are said to be “open” sets and the complements of
the open sets are called “closed” sets in the space. -e
collection of all closed sets denotes τc.

An interior int(A) (resp., closurecl(A)) of a subset A is
given by a union of all open sets contained in A

(resp., intersection of all closed sets that containA),
formally:

int(A) � ∪ V ∈ τ : V⊆A{ },

cl(A) � ∩ Z ∈ τc
: A⊆Z􏼈 􏼉.

(1)

A class B⊆ τ is said to be a basis for τ if all nonempty
open subset of U can be represented as a union of subfamily
of B.
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Evidently, any topology can have numerous bases, but
the basis B generates a unique topology τ.

Each union of elements of B belongs to τ; therefore a
basis of τ entirely decides τ.

A family S⊆τ is said to be a subbasis for a topological
space (U, τ) if the collection of all finite intersections of S
represents a basis for (U, τ).

For any class S of subsets of U, S represents a subbasis for
a unique basis B which generates a unique topology τ on U

such that for each i ∈ I

B � ∩
i

Si : Si ∈ S􏼈 􏼉,

τ � ∪
i

Bi : Bi ∈ B􏼈 􏼉.
(2)

2.2. Pawlak Rough Set 0eory. -e current subsection
presents some elementary notions pertaining to rough sets
given by Pawlak [1].

Definition 1. [1] Consider U is a finite set called universe,
and R is an equivalence relation on U; we symbolize U/R to
represent the collection of all equivalence classes of R and
[s]R to symbolize an equivalence class in R that contains an
element s ∈ U. -en, the pair AR � (U, R) is said to be
Pawlak’s approximation space and for any L⊆U, we propose
the lower and upper approximation of L by
R(L) � s ∈ U: [s]R⊆L􏼈 􏼉 and R(L) � s ∈ U: [s]R ∩L≠ϕ􏼈 􏼉,
respectively. Moreover, L is called a rough set if
R(L)≠ R(L). Otherwise, it is an exact set.

Definition 2. [1] Consider AR � (U, R) is Pawlak approxi-
mation space and L⊆U. -erefore, the boundary, positive,
and negative regions and the accuracy of approximations of
L⊆U are given, respectively, by

BNDR(L) � R(L) − R(L),

POSR(L) � R(L),

NEGR(L) � U − R(L),

μR(L) �
R(L)

􏼌􏼌􏼌
􏼌􏼌􏼌

|R(L)|
, whereR (L)≠ ϕ.

(3)

Properties associated with rough sets can be seen in [1].
It is well known that the set of all definable subsets of the

approximation space (U, R) gives rise to a clopen topology
τc [8]. In this paper first, we will study how this topology is
obtained and why in this topology each open set is closed as
well.

As (U/R) � [s]R: s ∈ U􏼈 􏼉, now, for each A, B ∈ (U/R),
A∩B � ∅ and U � A∪B. -us (U/R) may act as a basis for
a τ topology on U.

Theorem 1. If the pair (U, R) is Pawlak approximation
space, then, τc � τ.

Proof. Let A ∈ τc. -en A is a definable set, so
A � A1 ∪A2 ∪ · · · ∪An, where A1, A2, . . . , An ∈ (U/R).
Hence A ∈ τ. -at is τc⊆τ. Conversely, every B ∈ τ is union
of some elements of (U/R), which are definable. Since union
of definable sets is again definable, B is definable.-is means
B ∈ τc. So τ⊆τc as required. □

-eorem 1 explains that topology of definable sets in any
Pawlak’s approximation space is produced by the elements
of the set (U/R). In this topology every open set is closed
because complement of any subset in the basis (U/R) of this
topology is the union of all remaining subsets.

Study of topology constructed by definable sets helps us
to answer some very interesting questions such as the
following:

What is the probability that a subset of U may be a
definable set?
What is the probability that a nonempty subset of U has
an empty lower approximation?
What is the probability that a proper nonempty subset
of U has upper approximation equal to U?

Answer to the first question is a bit simple and the
formula to find the probability that a subset of U may be a
definable set is given as follows:

P �
|τ|

2n , where |τ| is the cardinality of τ and n represents a number of elements inU. (4)

-us, the probability that a subset of the universe U is a
rough set is 1 − P.

Now, for the answer of the second question first the
following result must be considered.

Theorem 2. IfX is a subset ofU.0en R(X) is an empty set if
and only if X does not contain any nonempty element of τ.

Proof. Let R(X) � ∅. -en, by definition, there does not
exist any x ∈ X such that [x]R⊆X. -is implies [x]R⊈X, for
each x. -erefore, for each x ∈ X, [x]R⊈X. -at is, no el-
ement of τ is contained in X. Conversely, let there exist some
x ∈ X, with x ∈ Ux ∈ τ such that Ux⊆X. -is indicates
∪ x∈XUx⊆X. -en by definition R(X) � ∪ x∈XUx ≠∅,
which is a contradiction, and therefore, the subset X does
not contain any nonempty element of τ. □
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Now in any Pawlak approximation space, the probability
P∅ that lower approximation of a subset is an empty set can
be obtained by the following formula:

P∅ �
1 + N

τ
X

2n , whereN
τ
X represents a number of subsets of Uwhich does not

contain any nonempty element of τ and n is the number of elements inU.

(5)

To find the answer to the last question, we may have to
consider the following result.

Theorem 3. Let X be a nonempty subset of U. 0en R(X) �

U if and only if the subset X intersects with every nonempty
element of τ.

Proof. Let R(X) � U. -en, by definition, there does not
exist any x ∈ X such that [x]R ∩X � ∅. Since nonempty
elements of τ are union of some classes [x]R ∈ (U/R). As
x ∈ ⋃ [x]R � U,X intersects with every [x]R. Consequently,

it intersects with every nonempty element of τ. Conversely,
let there exist some nonempty Ux ∈ τ containing some
x ∈ U such that Ux ∩X � ∅. As Ux is the union of some
elements of U/R, there exists some class [x]R ∈ (U/R) such
that [x]R ∩X � ∅. So [x]R⊈R(X), which results in
R(X)≠U, a contradiction; hence, X intersects with every
nonempty element of τ. □

Further, in any Pawlak approximation space, the
probabilityPU that the upper approximation of a subset is U

may be obtained by the following formula:

PU �
N

τ
NX

2n , whereN
τ
NX is the number of subsets of Uwhich intersect with every

nonempty element of τ, and n represents the number of elements inU.

(6)

Example 1. Consider U � 1, 2, 3, 4{ } is a set and R represents
an equivalence relation on U, such that
(U/R) � 1{ }, 2, 3{ }, 4{ }{ }; then (U, R) represents Pawlak’s
approximation space. Now U/R can be a basis for a topology
τ on U. Let us write the topology τ generated by U/R as
follows: τ � ∅, U, 1{ }, 2, 3{ }, 4{ }, 1, 2, 3{ }, 1, 4{ }, 2, 3, 4{ }{ }.-e
only definable subsets of U are all elements of τ. Now

|τ| � Number of elements in τ � Number of definable subsets of U.

(7)

Total number of subsets of U � 24 � 16.
-us, the probability that a subset of U is definable is

given by

|τ|

24
�

8
16

� 0.5. (8)

Next ∅, 2{ }, 3{ } are the only subsets of U which do not
contain any nonempty element of τ. -erefore, their lower
approximation is empty.

P∅ �
N

τ
X

2n �
3
24

�
3
16

. (9)

Further the subsets 1, 2, 4{ }, 1, 3, 4{ }, 1, 2, 3, 4{ } are the
only subsets of U, which intersect with every nonempty
element of τ. -erefore their upper approximation is U and
then

PU �
N

τ
NX

2n �
3
24

�
3
16

. (10)

2.3. Soft Set 0eory and Soft Rough Sets

Definition 3 (see [3]). Consider U to be a set of items and E

to be a finite set of certain parameters in relative to the
objects in U. Parameters represent attributes or charac-
teristics of U objects. A “soft set” on U is the pair (F, A),
where A⊆E, P(U) symbolize the power set of U, and F

represents the map F: A⟶ P(A). On the other hand, a
soft set over U is a parameterized collection of subsets of U.
For e ∈ A, F(e) represents the set of e-approximate ele-
ments of a soft set (F, A). Note that, sometimes a soft set is
indicated by FA and expressed as a set of ordered pairs
FA � (e, F(e)): e ∈ A{ }.

Definition 4 (see [24]). Consider FA is a soft set on U. -us,
the pair As � (U, FA) is said to be a soft approximation
space. Established on a soft approximation space As, we give
the “soft As lower and soft As upper” approximations of
X⊆U, respectively, by

S(X) � u ∈ U : ∃e ∈ A, [u ∈ F(e)⊆X]{ },

S(X) � u ∈ U : ∃e ∈ A, [u ∈ F(e), F(e)∩X≠ ϕ]􏼈 􏼉.

(11)
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Generally, S(X) and S(X) refer to soft rough approxi-
mations of X⊆U with respect to As. Furthermore, the sets

POSAs
(X) � S(X),

NEGAs
(X) � U − S(X),

BNDAs
(X) � S(X) − S(X),

(12)

are named the soft “As positive, As negative, and As

boundary” regions of X⊆U, individually. Evidently, if
S(X) � S(X) � X, i.e., BNDAs

(X) � ϕ, then X⊆U is said to
be “soft As definable” or “soft As exact” set; or else X is called
a “soft As rough” set. Moreover there may be a subset which
has the same lower and upper approximations but is not
definable. Besides, we suggest the accuracy of approxima-
tions by

μAs
(X) �

S(X)
􏼌􏼌􏼌

􏼌􏼌􏼌

|S(X)|
, when S(X) ≠ϕ,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

Above definition gives a generalization of Pawlak rough
sets theory; naturally it may not satisfy some properties of
their properties.

Proposition 1 (see [24]). If FA is a soft set on U and As �

(U, FA) is a soft approximation space, then, for each X⊆U:

S(X) � ∪
e∈A

F(e) : F(e)⊆X{ },

S(X) � ∪
e∈A

F(e) : F(e)∩X≠ ϕ􏼈 􏼉.
(14)

Properties associated with soft rough sets can be gotten in
[34].

Definition 5 (see [24]). Suppose that FA is a soft set on U

and As � (U, FA) a soft approximation space. -en, FA is
said to be a “full soft set” if FA � ∪ e∈AF(e). It is clear that
if FA is a full soft set, then ∀x ∈ U,∃e ∈ A such that
x ∈ F(e).

Proposition 2 (see [24]). If FA is a full soft set on U and
As � (U, FA) is a soft approximation space, then, the sub-
sequent conditions are true:

(i) S(U) � S(U) � U

(ii) X⊆S(X), ∀X⊆U
(iii) S( x{ })≠ϕ, ∀x ∈ U

Now, we present and study the idea of the topology of all
definable sets generated by soft set FA. Moreover, we illustrate
the condition in which this topology is well defined. Now,
again, we can find the answers to the questions which are
related to the probability associated with subsets of a set in soft
rough sets.

-e following example illustrates that the condition “full
soft set” in Proposition 2 is necessary to achieve the
properties (i)-(iii).

Example 2. Consider As � (U, FA) to be a soft approxi-
mation space, such thatU � a, b, c, d{ }, and FA to be a soft set
on U where A � e1, e2, e3􏼈 􏼉 and FA � (e1, a{ }), (e2 b, c{ }),􏼈

(e3, a, b{ })}. -en, it is clear that FA is not full soft set and
thus we have S(U) � S(U) � a, b, c{ }≠U. Also, if X � d{ },
then S(X) � S(X) � ϕ≠X.

Theorem 4. If FA is a full soft set on U and As � (U, FA) is a
soft approximation space, then, the collection
τD � X⊆U: S(X) � S(X)􏼈 􏼉 is a quasi-discrete topology on
U.

Proof. Since FA is a soft set on U, by using the properties of
the soft approximations in [24], we get

(T1) S(U) � S(U) and S(ϕ) � S(ϕ). -erefore,
U, ϕ ∈ τD.
(T2) Let Xi: i ∈ I􏼈 􏼉 be a class of members in τD. -en,
∪ i∈IXi ∈ τD.
(T3) Let Xi: i � 1, 2, 3, . . . , n􏼈 􏼉 be a class of finite
members in τD. -en, ∩ n

i�1Xi ∈ τD. Now, we need to
prove that τD is a quasi-discrete as follows: Let X ∈ τD;
then S(X) � S(X). By taking the complement to both
sides, we obtain [S(X)]c � [S(X)]c and this implies
S(Xc) � S(Xc). -us, Xc ∈ τD.

Remark 1. According to Proposition 2, the condition “full
soft set” in the above theorem is necessary to construct the
topology τD. If the soft set is not full then U may not be a
definable set. Moreover there may be a subset which has
same lower and upper approximations but is not definable.

For any soft approximation space As � (U, FA), such
that FA be a full soft set, the probability of a subset of U is
proposed by

P � (|τD|/2n), where |τD| is the cardinality of τD and n

represents a number of elements in U.
-us, the probability that a subset of U is a rough set is

1 − P.
Now, for the answer of the second question, first the

following results must be considered.

Lemma 1. Suppose that FA is a full soft set on U. Hence, we
get

(1) ∀x ∈ U, ∃Bx ∈ τD such that x ∈ Bx and Bx is called
an open set containing x.

(2) ∀x ∈ U, ∃e ∈ A such that x ∈ F(e).
(3) ∀e ∈ A, ∃Bx ∈ τD such that F(e)⊆Bx.

Proof. -e proof of (1) is obvious and from the definition of
S and S (Definition 4), the proofs of (2) and (3) are
straightforward.

Now, for any soft approximation space As � (U, FA),
such that FA is a full soft set, the probability P∅ that lower
approximation of a subset is an empty set can be obtained by
the following formula:
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P∅ �
1 + ΛFA

∅
2n , whereΛFA

∅ is the number of subsets of Uwhich does not

contain any nonempty element of FA and n represents a number of elements inU.

(15)

In order to find the answer of the last question we may
have to consider the following. □

Theorem 5. Consider As � (U, FA) is a soft approximation
space such that FA is a full soft set and X is a subset ofU. 0us,
S(X) � U if and only if X intersects with every nonempty
element of τD.

Proof. Firstly, since FA is a full soft set, then, ∀e ∈ A,
∪ e∈AF(e) � U. Let S(X) � U; then S(X) � ∪ e∈AF(e) such
that F(e)∩X≠ϕ. -erefore, by Lemma 4, ∃Bx ∈ τD such
that F(e)⊆Bx and F(e)∩X≠ϕ. Accordingly, ∀Bx ∈ τD,
Bx ∩X≠ ϕ which means that X intersects with every

nonempty element of τD. Conversely, let ∃Bx ∈ τD such that
Bx ∩X � ϕ and S(X)≠U. -us ∃e ∈ A such that F(e)⊆Bx

and F(e)∩X � ϕ. Accordingly, S(X)≠U which is a
contradiction.

Note that if S(X) � U, then no need for X to intersect
with F(e), ∀e ∈ A in general as Example 3 illustrates.
Clearly, the subsets b, c{ } and b, c, d{ } do not intersect with
F(e1) � a{ } although their soft upper approximation is U.

Further in any soft approximation space, As � (U, FA),
such that FA is a full soft set; the probability PU that upper
approximation of a subset is U can be obtained by the
following formula:

PU �
ΛτD

X

2n , whereΛτD

X is the number of subsets of Uwhich intersect with

every nonempty element of τ and n is the number of elements inU.

(16)

-e next example explains the previous discussion. □

Example 3. Consider As � (U, FA) is a soft approximation
space, such that U � a, b, c, d{ } and FA is a full soft set on U,
where A � e1, e2, e3, e4􏼈 􏼉 and FA � (e1, a{ }), (e2, a, b{ }),􏼈

(e3, c{ }), (e4, b, d{ })}. -en, we obtain the topology of all soft
definable subsets by τD � U, ϕ, c{ }, a, b, d{ }􏼈 􏼉. -erefore,
|τD| �number of elements in τD � number of all definable
subsets of U. -us, the probability that a subset of U is
definable is given by P � (|τD|/2n) � (|τD|/2n) �

(4/24) � (4/16) � (1/4) � 0.25.
Now, the subsets b{ } and d{ } are the only subsets of U

that do not contain any nonempty element of FA. -erefore,
their lower approximation is empty.

Accordingly, P∅ � ((1 + ΛFA

∅ )/2n) � ((1 + 2)/24) �

(3/16). Further, the subsets b, c{ }, a, b, c{ }, a, c, d{ }, and
b, c, d{ } are the only subsets of U, which intersect with every
nonempty element of τD. -erefore, their upper approxi-
mation is U and accordingly
PU � (ΛτD

X /2n) � (4/24) � (4/16) � (1/4) � 0.25.

3. Topological Soft Rough Approximations of
Soft Rough Sets

-e current section is devoted to introduction of topological
soft rough approximations in view of topological structure.
Firstly, it will be seen that soft sets and topological spaces
have a very close relationship.-e concept of topological soft
rough approximations will be presented and their properties
will be studied. On the other hand, it will be shown that
accuracy of the proposed approach is better than existing

techniques. Besides, we will give answers to some important
questions about the probability in topological soft rough
sets.

Definition 6. Consider FA is a soft set on U and K � ∪F(e).
-us, we propose the following:

(i) SFA
� F(e): e ∈ A{ } may denote a subbasis;

(ii) BFA
� A∩B: (A, B) ∈ SFA

× SFA
􏽮 􏽯 may denote a

basis for the topology TSR defined as the following.

If FA is a soft set on U and K � ∪ F(e)∈SFA

F(e), then the
topology TSR can be defined on K with a basis BFA

. -at is,
TSR � ∪ B: B ∈ BFA

􏽮 􏽯. -is topology may be called topology
generated by FA and we call it “soft rough topology” (in
brief, SR topology).

Remark 2. -ere are three cases of a subbasis SFA
:

(i) If SFA
is a partition of U, then SFA

� BFA
and will be a

basis for a quasi-discrete (clopen) topology (in
which all open sets are closed).

(ii) If SFA
is a covering (not partition) of U, then

SFA
≠BFA

and BFA
will be a basis for a general

topology.
(iii) If SFA

is not a covering (not partition) of U, then
SFA
≠BFA

and BFA
will be a basis for a general to-

pology. -e following examples explain Remark 2.

Example 4. If As � (U, FA) is a soft approximation space,
such that U � a, b, c, d{ } and FA is a soft set on U where
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A � e1, e2, e3􏼈 􏼉 and FA � (e1, a, b{ }), (e2, c{ }), (e3, d{ })􏼈 􏼉,
then, we get that the subbasis of TSR is SFA

� c{ }, d{ }, a, b{ }{ }

and the basis is BFA
� c{ }, d{ }, a, b{ }{ }. Clearly, SFA

� BFA
.

Accordingly, the topology generated by BFA
is

TSR � U, ϕ, c{ }, d{ }, a, b{ }, c, d{ }, a, b, c{ }, a, b, d{ }􏼈 􏼉. (17)

Obviously, TSR is a quasi-discrete topology.

Example 5. Suppose that As � (U, FA) is a soft approxi-
mation space, such that U � a, b, c, d{ } and FA is a soft set on
U where A � e1, e2, e3􏼈 􏼉 and
FA � (e1, a, b{ }), (e2, a, c{ }), (e3, d{ })􏼈 􏼉. -en, the subbasis of
TSR is SFA

� d{ }, a, b{ }, a, c{ }{ } and the basis is
BFA

� a{ }, d{ }, a, b{ }, a, c{ }{ }. Evidently, SFA
≠BFA

. Accord-
ingly, the topology TSR generated by BFA

is

TSR � U, ϕ, a{ }, d{ }, a, b{ }, a, c{ }, a, d{ }, a, b, c{ }, a, b, d{ }, a, c, d{ }􏼈 􏼉.

(18)

Obviously, TSR is not a quasi-discrete topology.

Example 6. Consider As � (U, FA) is a soft approximation
space, such that U � a, b, c, d{ } and FA is a soft set on U

where A � e1, e2, e3􏼈 􏼉 and FA � (e1, a{ }), (e2, b, c{ }),􏼈

(e3, a, c{ })}. -en, the subbasis of TSR is SFA
� a{ },{

a, c{ }, b, c{ }} and the basis is BFA
� a{ }, c{ }, a, c{ }, b, c{ }{ }.

Undoubtedly, SFA
≠BFA

. Accordingly, the topology TSR
generated by BFA

is

TSR � U, ϕ, a{ }, c{ }, a, c{ }, b, c{ }, a, b, c{ }􏼈 􏼉. (19)

Obviously, TSR is not a quasi-discrete topology.

Definition 7. Consider As � (U, FA) is a soft approximation
space and TSR is the SR topology on U. -e triple ATSR

�

(U, FA, TSR) is said to be a “topological soft rough ap-
proximation space” (briefly, TSR approximation space).

Definition 8. Consider ATSR
� (U, FA, TSR) to be a TSR ap-

proximation space. -erefore, for each X⊆U we suggest the
topological soft rough approximations, “TSR lower” and
“TSR upper,” respectively, by

STSR
(X) � ∪ G ∈ TSR : G⊆X􏼈 􏼉,

STSR
(X) � ∩ H ∈ T

c
SR : X⊆H􏼈 􏼉.

(20)

Remark 3
(i) In general, STSR

(X) and STSR
(X) represent the in-

terior and closure of X associated with the topology
TSR, respectively.

(ii) If SFA
is a partition on U, then SFA

� BFA
� (U/R)

and hence STSR
(X) and STSR

(X) are identical with
Pawlak’s rough set approximations. -erefore, it
can be said that the proposed approach is equivalent
to Pawlak’s approach only in case SFA

is a partition
of U. Accordingly, we can say that Pawlak’s rough
set model is a specialization of proposed model.
Example 4 illustrated this fact.

(iii) If SFA
is not a partition on U, then SFA

≠BFA
≠ (U/R)

and hence STSR
(X) and STSR

(X) will be different
from Pawlak’s approximations as illustrated in
Example 7.

Example 7. Suppose that U � a, b, c, d{ } is a set of students
reading some languages. Let A � e1, e2, e3􏼈 􏼉 and
As � (U, FA) be a soft approximation space, where FA is a
soft set on U. Consider the next information system in Table
1.

-erefore, the equivalence classes are
(U/R) � b{ }, d{ }, a, c{ }{ }.

If we consider each attribute of the set
English, French,German􏼈 􏼉 represents a parameter as the
following: e1 �English, e2 �French and e3 �German, then,
we get the following:

-e soft set of U is
FA � (e1, a, c, d{ }), (e2, b, d{ }), (e3, a, c{ })􏼈 􏼉, where
A � e1, e2, e3􏼈 􏼉. -us, we get SFA

� a, c{ }, b, d{ }, a, c, d{ }{ } and
the basis is BFA

� d{ }, t a, c{ }n, q b, d{ }h, a,c,d{ }􏽮 􏽯 Accordingly,
the topology TSR generated by BFA

is

TSR � U, ϕ, d{ }, a, c{ }, b, d{ }, a, c, d{ }􏼈 􏼉, (21)

and the complement of TSR is

T
c
SR � U, ϕ, b{ }, a, c{ }, b, d{ }, a, b, c{ }􏼈 􏼉. (22)

Evidently, the TSR approximations of any subsets of U

differ than Pawlak’s rough approximations.

Definition 9. Suppose that ATSR
� (U, FA, TSR) is a TSR

approximation space. Hence, for every X⊆U, we express the
“TSR positive, TSR negative, and TSR boundary” regions and
the “TSR accuracy” of the TSR approximations, respectively,
by

POSTSR
(X) � STSR

(X),

NEGTSR
(X) � U − STSR

(X),

BNDTSR
(X) � STSR

(X) − STSR
(X),

μTSR
(X) �

STSR
(X)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

STSR
(X)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, if X≠ ϕ,

1, if X is aTSR − definable.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

Remark 4
(i) It is clear that 0≤ μTSR

(X)≤ 1, for any X⊆U.
(ii) If STSR

(X) � STSR
(X), then BNDTSR

(X) � ϕ and
μTSR

(X) � 1.-usX⊆U is said to be “TSR definable” or
“TSR exact” set; otherwise X is called a “TSR rough” set.

-e core objective of the following propositions is to
discuss the basic properties of TSR rough approximations
STSR

and STSR
.
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According to the characteristics of the interior and
closure, we can demonstrate the subsequent results, so we
omit the proof.

Proposition 3. If ATSR
� (U, FA, TSR) is a TSR approxima-

tion space and X, Y⊆U, then, the TSR lower and TSR upper
approximations operators satisfy the next properties:

(i) STSR
(∅) � STSR

(∅) � ∅.
(ii) STSR

(U) � STSR
(U) � U.

(iii) STSR
(X)⊆X⊆STSR

(X).
(iv) If X⊆Y, then STSR

(X)⊆STSR
(Y).

(v) If X⊆Y, then STSR
(X)⊆STSR

(Y).
(vi) STSR

(Xc) � (STSR
(X))c.

(vii) STSR
(X∩Y) � STSR

(X)∩ STSR
(Y).

(viii) STSR
(X∪Y) � STSR

(X)∪ STSR
(Y).

(ix) STSR
(X∩Y)⊆STSR

(X)∩ STSR
(Y).

(x) STSR
(X∪Y)⊇STSR

(X)∪ STSR
(Y).

(xi) If X ∈ TSR, then STSR
(X) � X.

(xii) If X ∈ (TSR)c, then STSR
(X) � X.

Proposition 4. If ATSR
� (U, FA, TSR) is a TSR approxima-

tion space and X⊆U, then:

(i) STSR
(STSR

(X)) � STSR
(X).

(ii) STSR
(STSR

(X)) � STSR
(X).

(iii) STSR
(X)⊆STSR

(STSR
(X)).

(iv) STSR
(STSR

(X))⊆STSR
(X).

Remark 5. -e inclusion relations in Proposition 4 may be
strict, as shown in Example 8.

Example 8. Suppose that FA is a soft set on U and As �

(U, FA) is a soft approximation space, where U � a, b, c, d{ }

and A � e1, e2, e3, e4, e5􏼈 􏼉 such that
FA � (e1, b{ }), (e2, a, b{ }), (e3, c, d{ }), (e4, a, c, d{ }),􏼈

(e5, a, b, c{ })}. -erefore, we get the following.
-e subbasis of TSR is SFA

� b{ }, t a, b{ }n, q􏼈

c, d{ }h, a,c,d{ } x, 7 a, b, c{ }}.
-e basis of TSR is BFA

� a{ }, t b{ }n, q c{ }h, a,b{ } x, 7􏽮

a, c{ }C, ; c, d{ }, a, c, d{ }, a, b, c{ }}.
Accordingly, we get

TSR � U, ϕ, a{ }, b{ }, c{ }, a, b{ }, b, c{ }, a, c{ }, c, d{ }, b, c, d{ }, a, c, d{ }, a, b, c{ }􏼈 􏼉. (24)

-e complement of TSR is

T
c
SR � U, ϕ, a{ }, b{ }, d{ }, a, b{ }, a, d{ }, b, d{ }, c, d{ }, b, c, d{ }, a, c, d{ }, a, b, d{ }􏼈 􏼉. (25)

-us, ATSR
� (U, S, TSR) is a TSR approximation space.

Now, let X � a, c{ } and Y � a, b, d{ }. -en, STSR
(X) � a, c{ }

and then STSR
(STSR

(X)) � a, c, d{ } , which means that
STSR

(X)≠ STSR
(STSR

(X)). Also, STSR
(Y) � a, b, d{ } and

STSR
(STSR

(Y)) � a, b{ }, which means that
STSR

(Y)≠ STSR
(STSR

(Y)).
-e following theorem establishes a relationship be-

tween approximations of a set in soft rough sets [24] and
topological soft rough sets.

Theorem 6. If ATSR
� (U, FA, TSR) is a TSR approximation

space and X⊆U, then:

(i) S(X)⊆STSR
(X).

(ii) STSR
(X)⊆S(X).

Proof: We shall verify only the first item and the other
likewise. Let x ∈ S(X); then ∃e ∈ A, such that x ∈ F(e)⊆X

and F(e) ∈ SFA
. Accordingly, F(e) ∈ TSR such that x ∈ F(e)

and F(e)⊆X; this implies F(e)⊆STSR
(X), and therefore,

x ∈ STSR
(X). Hence, S(X)⊆STSR

(X). □

Corollary 1. If ATSR
� (U, FA, TSR) is a TSR approximation

space and X⊆U, then:

(i) BNDTSR
(X)⊆BNDAs

(X)

(ii) μAs
(X)≤ μTSR

(X)

Corollary 2. If ATSR
� (U, FA, TSR) is a TSR approximation

space and X⊆U and if X is a soft exact set, then it is a TSR
exact set.

Remark 6
(1) According to the above results, it is easy to see that

boundary region in case of topological soft rough sets
is smaller than boundary for soft rough sets.

Table 1: -e tabular form for a soft set (F, A).

English French German
a Yes No Yes
b No Yes No
c Yes No Yes
d Yes Yes No
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-erefore accuracy has been improved in proposed
technique.

(2) In general reverse inclusions do not hold in case of
-eorem 6. Following example explains this.

Example 9 According to Example 8: Let X � b, c, d{ }. -us
S(X) � b, c, d{ } and S(X) � U; therefore BNDAs

(X) � a{ }

and μAs
(X) � (3/4). But, STSR

(X) � STSR
(X) � X and thus

BNDTSR
(X) � ϕ and μTSR

(X) � 1. Obviously, X is a TSR
exact (definable) set (according to our approach) although it
is a soft rough set.

Next we define some very important notions.

Definition 10. Consider ATSR
� (U, FA, TSR) is a TSR ap-

proximation space and X⊆U. -us, we describe the sub-
sequent four elementary sorts of TSR soft rough sets as
follows:

-e subset X represents

(i) a roughly TSR definable set if STSR
(X)≠ϕ and

STSR
(X)≠U,

(ii) an internally TSR indefinable set if STSR
(X) � ϕ and

STSR
(X)≠U,

(iii) an externally TSR indefinable set if STSR
(X)≠ϕ and

STSR
(X) � U,

(iv) a totally TSR indefinable set if STSR
(X) � ϕ and

STSR
(X) � U.

-e axiomatic significance of this classification is given
as follows:

(i) If the subset X is a roughly TSR definable set, then
we can identify for some members of U that they
belong to X, and for other members of U that they
belong to Xc, by using existing knowledge from the
TSR approximation space ATSR

.
(ii) If the subset X is an internally TSR indefinable set,

then we can identify about some members of U that
they belong to Xc, but we cannot identify for any
member of U that it belongs to X, by using ATSR

.
(iii) If the subset X is an externally TSR indefinable set,

then we can identify for some members of U that
they belong to X, but we cannot identify for any
member of U that it belongs to Xc, by using ATSR

.
(iv) If the subset X is a totally TSR indefinable set, then

we cannot identify for any member of U whether it
belongs to X or Xc, by using ATSR

.

Theorem 7. Consider ATSR
� (U, FA, TSR) to be a TSR ap-

proximation space and X⊆U. 0erefore, we have the
following.

(i) If the subsetX is a roughly TSR definable set, thenX is
roughly soft As definable.

(ii) If the subset X is an internally TSR definable set, then
X is internally soft As indefinable.

(iii) If the subset X is an externally TSR definable set, then
X is externally soft As indefinable.

(iv) If the subset X is a totally TSR indefinable set, then X

is totally soft As indefinable.

Proof. Only, the first statement will be proved and the other
statements can bemade by a similar way. (i) Suppose that the
subset X is a roughly soft As definable set; then STSR

(X)≠ϕ
and STSR

(X)≠U. -erefore, by using -eorem 6, S(X)≠ϕ
and S(X) ≠U and thus X represents a roughly soft As de-
finable set. □

Remark 7

(i) -eorem 7 shows that soft rough approximations of a
set given in [24] are different from TSR rough ap-
proximations proposed in this paper. Moreover, it
clarifies the significance of the proposed approach in
defining approximations of sets; for example, let X be
a totally softAs indefinable set.-en, we get S(X) � ϕ
and S(X) � U. -us, we are incapable of identifying
what are the elements of U that belong to X or Xc.
But, by using TSR rough approximations, it may be
STSR

(X)≠ ϕ and STSR
(X)≠U which means that X can

be roughly TSR definable set and accordingly we can
determine for some elements of U that they belong to
X, and meanwhile, for some elements of U, we can
identify that they belong to Xc, by using the existing
information from the TSR approximation space (to
illustrate this, see Examples 8 and Subsection 4.1).

(ii) -e inverse of-eorem 7 does not hold, generally, as
demonstrated in Example 9 and Subsection 4.1.

Now, once again, we can find the probability for different
types of subsets in topological soft rough sets. Firstly, to
answer the first question, we consider the following results.

Theorem 8. If FA is a soft set on U, ATSR
� (U, FA, TSR) is a

TSR approximation space, and X⊆U, then, the class τD �

X⊆U: STSR
(X) � STSR

(X)􏽮 􏽯 gives rise a topology on U.

Proof. According to Proposition 3, the proof is clear.
Note that τD represents a topology of all definable sets in

U. □

Lemma 2. If ATSR
� (U, FA, TSR) is a TSR approximation

space, then, τD⊆TSR.

Proof:. Let X ∈ τD; then STSR
(X) � STSR

(X) and this implies
STSR

(X) � X. Accordingly, X ∈ TSR. □

Lemma 3. Let ATSR
� (U, FA, TSR) be a TSR approximation

space and SFA
be a partition of U; then τD � TSR and SFA

is a
basis for τD.

Proof. Firstly, using Lemma 2, τD⊆TSR. Now, let X ∈ TSR
which is a quasi-discrete topology; then X is an open and
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closed subset. -erefore, STSR
(X) � STSR

(X) � X and this
implies X ∈ τD. Hence, TSR⊆τD.

-e subsequent example explains that the condition “SFA

is a partition of U” is necessary condition. □

Example 10. Consider Example 7; we get
τD � U, ϕ, a, c{ }, b, d{ }􏼈 􏼉 but TSR � U, ϕ, d{ }, t a, c{ }n, q􏼈

b, d{ }h, a,c,d{ } }. It is clear that TSR⊈τD.

Definition 11. Suppose that ATSR
� (U, FA, TSR) is a TSR

approximation space and τD is a topology of all definable sets
in U. -e probability PD that a subset of U is definable is
defined by

PD �
τD

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2n , (26)

where |τD| is the cardinality of τD and n represents a number
of elements of U.

-erefore, the probability that a subset is a rough set
X⊆U is 1 − PD.

Example 11

(1) Consider Example 4; we have TSR � τD. -us, the
probability PD that a subset of the universe set is
definable is given by

PD �
τD

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2n �
8
24

�
1
2

� 0.5. (27)

(2) Consider Example 5; we have
τD � U, ϕ, d{ }, t a, b, c{ }􏼈 􏼉. -erefore, the probability
PD that a subset of the universe set is definable is
given by

PD �
τD

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2n �
4
24

�
1
4

� 0.25. (28)

Secondly, to identify the probability that lower ap-
proximation of a nonempty subset of U may be an empty set,
we propose the next results.

Lemma 4. If ATSR
� (U, FA, TSR) is a TSR approximation

space, then, BFA
⊆TSR.

Proof. -e proof is straightforward. □

Theorem 9. Consider ATSR
� (U, FA, TSR) to be a

ATSR
� (U, FA, TSR) approximation space and X⊆U.

STSR
(X) � ϕ if and only if the subset X does not contain any

nonempty element of TSR.

Proof. Using Definition 8, the proof is clear. □

Theorem 10. Let ATSR
� (U, FA, TSR) be a

ATSR
� (U, FA, TSR) approximation space and X⊆U.

STSR
(X) � ϕ if and only if the proper subsets of X are not

element in BFA
.

Proof. Firstly, if STSR
(X) � ϕ then ∀G⊆X, G ∉ TSR, and this

implies ∀G⊆X, G ∉ BFA
. Conversely, let ∃G⊆X, G ∈ BFA

such that STSR
(X) � ϕ. -en, G ∈ TSR such that G⊆X and

this implies G⊆STSR
(X) which contradicts assumption

STSR
(X) � ϕ. Accordingly,X does not contain any nonempty

element of TSR. □

Definition 12. Suppose that ATSR
� (U, FA, TSR) is a TSR

approximation space. -e probabilityP∅ that the TSR lower
approximation of a subset of the universe set is an empty set
is defined by

P∅ �
1 + ΛTSR
∅

2n , whereΛTSR
∅ represents a number of subsets of Uwhich does not

contain any nonempty element of TSR and n is the number of elements inU.

(29)

-erefore, the probability that the TSR lower approxi-
mation of X⊆U is not an empty set is 1 − P∅.

Example 12

(1) Consider Example 4; obviously, the subsets a{ } and
b{ } are the only subsets which do not contain any
nonempty element of TSR. -us, the probability P∅
that the TSR lower approximation of a subset of the
universe set is an empty set is defined by

P∅ �
1 + ΛTSR
∅

2n �
1 + 2
24

�
3
16

� 0.19. (30)

(2) Consider Example 5; obviously, the subsets b{ }, c{ },
and b, c{ } are the only subsets which do not contain
any nonempty element of TSR. -erefore, the
probability Pϕ that the TSR lower approximation of
a subset of the universe set is an empty set is defined
by

Pϕ �
1 + ΛTSR
∅

2n �
1 + 3
24

�
4
16

� 0.25. (31)

In order to find the probability that TSR upper ap-
proximation of any subset is U, we may have to suggest the
subsequent result.
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Theorem 11. Consider ATSR
� (U, FA, TSR) is a TSR ap-

proximation space and X⊆U. S(X) � U if and only if the
subset X intersects with every element in TSR.

Proof. Obvious.

Now, for any TSR approximation space, the probability
PU that TSR upper approximation of a subset is U can be
obtained by the following formula:

PU �
ΛTSR

X

2n , whereΛTSR
X is the number of subsets of Uwhich intersect with

every nonempty element of TSR and n is the number of elements inU.

(32)

-e next example explains the above discussion. □

Example 13
(1) Consider Example 4; obviously, the subsets a, c, d{ }

and b, c, d{ } are the only subsets which intersect with
every nonempty element of TSR. -us, the proba-
bilityPU that TSR upper approximation of a subset is
U is defined by

PU �
ΛTSR

X

2n �
2
24

�
2
16

� 0.125. (33)

(2) Consider Example 5; obviously, the subsets
a, d{ }, a, b, d{ }, and a, c, d{ } are the only subsets
which intersect with every nonempty element of TSR.
-us, the probability PU that TSR upper approxi-
mation of a subset is U is defined by

PU �
ΛTSR

X

2n �
3
24

�
3
16

� 0.19. (34)

4. Medical Application in Heart Failure

In the current article, we illustrate the significance of the
suggested approach in decision-making problems for
medical applications. Consequently, we apply it to the issue
of heart failure. We have a data set with the results of five
symptoms for twenty patients divided into twelve males
(p3, p6, p8, p9, p11, . . . , p17, p19) and 8 females
(p1, p2, p4, p5, p7, p10, p18, p20). -e study was conducted at
Om El-Kora Cardiac Center, Hospital of Heart Diseases,
Tanta, Egypt. -is research involved twenty patients who

came to the hospital with various symptoms and underwent
a thorough history, physical examination, lab tests, resting
ECG, and conventional echo assessment. Finally, the di-
agnosis of heart failure was verified.

4.1.0e Experimental Results. -e experimental findings are
discussed in this subsection by adding a preparatory analysis
performed on five heart disease symptoms for twenty pa-
tients, according to-ivagar and Richard [40]. Table 2 shows
the data from the information system for twenty patients,
addressing the heart failure issue. -e columns reflect the
signs of heart failure diagnosis (where “Yes” indicates that
the patient has symptoms and “No” indicates that the patient
has none) [40], with condition attributes, such that e1 in-
dicates “the breathlessness,” e2 indicates “the orthopnea,” e3
indicates “the paroxysmal nocturnal dyspnea,” e4 indicates
“reduced exercise tolerance,” and e5 indicates “the ankle
swelling.” Attribute D indicates “decision of heart failure.”
For rows in Table 2, P � p1, p2, p3, . . . , p20􏼈 􏼉 represents the
set of twenty patients. -erefore, the set of all attributes is
A � e1, e2, e3, e4, e5􏼈 􏼉∪D which is represented by columns.

Here 1 and 0 denote “yes” and “no”, respectively.
We apply the suggested method in the set of female’s

patients only and the others similarly.
Accordingly, Table 3 represents the soft set of female’s

patients, where the set of female’s patients is
U � p1, p2, p4, p5, p7, p10, p18, p20􏼈 􏼉 and the set of attributes
is A � e1, e2, e3, e4, e5􏼈 􏼉.

Let (F, A) be a soft set over given by Table 3; the basis,
generated by (F, A), is given by

BFA
� p4􏼈 􏼉, p18􏼈 􏼉, p2, p20􏼈 􏼉, p4, p18􏼈 􏼉, p4, p20􏼈 􏼉, p18, p20􏼈 􏼉, p7, p18, p20􏼈 􏼉, p2, p4, p5, p20􏼈 􏼉, p2, p7, p18, p20􏼈 􏼉, p1, p4, p18, p20􏼈 􏼉􏼈 􏼉.

(35)

-erefore, the topology generated by this base is
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TSR � U, ϕ, p2􏼈 􏼉, p4􏼈 􏼉, p18􏼈 􏼉, p2, p4􏼈 􏼉, p2, p18􏼈 􏼉, p4, p7􏼈 􏼉, p4, p18􏼈 􏼉, p18, p20􏼈 􏼉, p1, p4, p18􏼈 􏼉, p2, p4, p7􏼈 􏼉, p2, p4, p18􏼈 􏼉,􏼈

p2, p18, p20􏼈 􏼉, p4, p7, p18􏼈 􏼉, p4, p18, p20􏼈 􏼉, p1, p2, p4, p18􏼈 􏼉, p1, p4, p7, p18􏼈 􏼉, p1, p4, p18, p20􏼈 􏼉, p2, p4, p5, p7􏼈 􏼉,

p2, p4, p18, p20􏼈 􏼉, p4, p7, p18, p20􏼈 􏼉, p1, p2, p4, p7, p18􏼈 􏼉, p1, p2, p4, p18, p20􏼈 􏼉, p1, p4, p7, p18, p20􏼈 􏼉, p2, p4, p5, p7, p18􏼈 􏼉,

p2, p4, p7, p18, p20􏼈 􏼉, p1, p2, p4, p5, p7, p18􏼈 􏼉, p1, p2, p4, p7, p18, p20􏼈 􏼉, p2, p4, p5, p7, p18, p20􏼈 􏼉, p1, p2, p4, p5, p7, p18, p20􏼈 􏼉􏼉.

(36)

-e complement of TSR is

T
c
SR � U, ϕ, p10􏼈 􏼉, p1, p10􏼈 􏼉, p5, p10􏼈 􏼉, p10, p20􏼈 􏼉, p1, p5, p10􏼈 􏼉, p1, p10, p20􏼈 􏼉, p2, p5, p10􏼈 􏼉, p5, p7, p10􏼈 􏼉, p5, p10, p20􏼈 􏼉,􏼈

p1, p5, p10􏼈 􏼉, p1, p5, p7, p10􏼈 􏼉, p1, p10, p18, p20􏼈 􏼉, p2, p5, p7, p10􏼈 􏼉, p2, p5, p10, p20􏼈 􏼉, p5, p7, p10, p20􏼈 􏼉,

p1, p2, p5, p7, p10􏼈 􏼉, p1, p2, p5, p10, p20􏼈 􏼉, p1, p5, p7, p10, p20􏼈 􏼉, p1, p4, p5, p7, p10􏼈 􏼉, p1, p5, p10, p18, p20􏼈 􏼉,

p2, p5, p7, p10, p20􏼈 􏼉, p1, p2, p4, p5, p7, p10􏼈 􏼉, p1, p2, p5, p10, p18, p20􏼈 􏼉, p1, p2, p5, p7, p10, p20􏼈 􏼉, p1, p4, p5, p7, p10, p20􏼈 􏼉,

p1, p5, p7, p10, p18, p20􏼈 􏼉, p1, p2, p4, p5, p7, p10, p20􏼈 􏼉, p1, p2, p5, p7, p10, p18, p20􏼈 􏼉, p1, p4, p5, p7, p10, p18, p20􏼈 􏼉􏼉.

(37)

Now, we introduce a comparison between the boundary
and the accuracy of the approximations using the proposed

approximations “TSR approximations” and the previous
ones in Table 4.

Table 2: Original medical information system.

U/A e1 e2 e3 e4 e5 D

p1 1 1 0 0 0 Yes
p2 0 0 0 1 1 No
p3 0 1 1 0 1 Yes
p4 1 1 1 1 0 Yes
p5 0 0 0 1 0 No
p6 0 0 0 1 1 No
p7 1 0 0 1 0 No
p8 1 0 0 1 0 No
p9 0 1 1 0 1 Yes
p10 0 0 0 0 0 No
p11 1 0 0 1 1 No
p12 0 1 1 0 1 No
p13 1 1 1 1 1 Yes
p14 1 0 1 0 0 Yes
p15 1 0 0 1 1 No
p16 0 0 0 1 1 No
p17 0 1 1 0 0 Yes
p18 1 1 1 0 1 Yes
p19 0 1 1 0 1 Yes
p20 1 1 0 1 1 Yes

Table 3: -e tabular form for female’s soft set (F, A).

U/A e1 e2 e3 e4 e5 D

p1 1 1 0 0 0 Yes
p2 0 0 0 1 1 No
p4 1 1 1 1 0 Yes
p5 0 0 0 1 0 No
p7 1 0 0 1 0 No
p10 0 0 0 0 0 No
p18 1 1 1 0 1 Yes
p20 0 1 1 0 1 Yes
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(1) Table 4 presents a comparison between the soft
rough sets [24] and topological soft rough sets.

(2) For a comparison with the method given in [26], we
have the following classes for each parameter:

For e1 classes are p1, p4, p7, p18􏼈 􏼉, p2, p5, p10, p20􏼈 􏼉

For e2 classes are p1, p4, p18, p20􏼈 􏼉, p2, p5, p7, p10􏼈 􏼉

For e3 classes are p4, p18, p20􏼈 􏼉, p1, p2, p5, p7, p10􏼈 􏼉

For e4 classes are p2, p4, p5, p7􏼈 􏼉, p1, p10, p18, p20􏼈 􏼉

For e5 classes are p2, p18, p20􏼈 􏼉, p1, , p4, p5, p7, p10􏼈 􏼉

Now, the intersection of all these classes is p1􏼈 􏼉, p2􏼈 􏼉,
p4􏼈 􏼉, p5􏼈 􏼉, p7􏼈 􏼉, p10􏼈 􏼉, p18􏼈 􏼉, p20􏼈 􏼉. -is means in-
tersection of all equivalence relations gives rise to
identity relation R � (p1, p1), (p2, p2),􏼈 (p4, p4),

(p5, p5), (p7, p7), (p10, p10), (p18, p18), (p20, p20)}.
-erefore, every subset will be definable in ap-
proximation space (U, R). -erefore, the method
discussed in [26] fails to produce distinct lower and
upper approximations in the given example.

(3) For a comparison with the method given in [25], we
have the map φ: U⟶ P(E) as the following
φ(p1) � e1, e2􏼈 􏼉, φ(p2) � e4, e5􏼈 􏼉, φ(p4) � e1, e2,􏼈

e3, e4}, φ(p5) � e4􏼈 􏼉, φ(p7) � e1, e4􏼈 􏼉, φ(p10) �,
φ(p18) � e1, e2, e3, e5􏼈 􏼉, φ(p20) � e2, e3, e5􏼈 􏼉. Clearly
these sets are distinct. -erefore, we define the ap-
proximation of any subset X of U as per the following:

Xφ � x ∈ X,φ(x)≠φ(y) for ally ∈ X
c

􏼈 􏼉,

Xφ x ∈ X,φ(x) � φ(y) for somey ∈ X􏼈 􏼉.
(38)

So, all subsets of U will be definable so this method also
fails to produce distinct lower and upper approximations in
the given example.

Decision-making is essential in the daily lives, and this
process yields the best alternative from a variety of options.
We give Algorithm 1 in table for a decision-making of an
information system in terms of the TSR approximations.

4.2. Reduction of Attributes. A very important purpose of
rough sets is the reduction of data by removing redundant
attributes in the information system. So, the present sub-
section is devoted for the reduction of an information system
in case of topological rough sets for the data given in Table 3.
We extend the notion of “nanotopology,” which has pro-
posed by-ivagar and Richard [40], to TSR approximations.

We shall apply the nanotopology of TSR approximations to
identify the key factors of “heart failure” using topological
reduction of attributes in information system of Table 3.

First, let us extend the definition of “nanotopology” into
“TSR nanotopology” using “TSR approximations.”

Definition 13. Consider ATSR
� (U, FA, TSR) is a TSR ap-

proximation space, and X⊆U. -erefore, the class NTSR
�

U, ϕ, STSR
(X), STSR

(X),BNDTSR
(X)􏽮 􏽯 is called “TSR nano-

topology” which represents a general topology generated by
the soft rough setX⊆U.-e basis of this topology is given the
class βTSR

� U, STSR
(X), BNDTSR

(X)􏽮 􏽯.

Definition 14. Consider ATSR
� (U, FA, TSR) is a TSR ap-

proximation space, and NTSR
is a TSR nanotopology with a

basis βTSR
. -en,

(i) if βTSR − ek
� βTSR

, then the attribute ek is called
“dispensable”;

(ii) if βTSR − ek
≠ βTSR

, then the attribute ek is not “dis-
pensable.” -erefore, the core of attributes is
CORE � ek􏼈 􏼉 which represents the common part of
reduction.

Now, we apply the topological reduction for Table 3 to
identify the key factors of “heart failure” as follows: We
compute the TSR nanotopology to decision-making for two
sets of patients:

X � p1, p4, p18, p20􏼈 􏼉 which represents a set of patients
that have the disease of heart failure and Y � p2, p5, p7, p10􏼈 􏼉

which represents a set of patients that do not have the disease
of heart failure.

We will make a topological reduction for first set X and
the second set Y similarly.

Case 1 (patients having the heart failure disease).
According to Table 3, we get STSR

(X) � p1, p4, p18, p20􏼈 􏼉,
STSR

(X) � U − p2􏼈 􏼉, and BNDTSR
(X) � p5, p7, p10􏼈 􏼉. -us,

the basis of TSR nanotopology generated by the above TSR
approximations is

βTSR
� U, p1, p4, p18, p20􏼈 􏼉, p5, p7, p10􏼈 􏼉􏼈 􏼉. (39)

Step 1. When the attribute “the breathlessness (e1)” is
removed:

-e topology generated by this base is

Table 4: Comparisons among some soft rough approximations and TSR approximations.

X
Soft rough set approach [24] -e suggested approach

BNDAS
(X) μAS

(X) BNDTSR
(X) μTSR

(X)

p4􏼈 􏼉 p1, p2, p4, p5, p7, p18, p20􏼈 􏼉 0 p1, p5, p10􏼈 􏼉 1/4
p10􏼈 􏼉 ϕ 0 p10􏼈 􏼉 0
p4, p10􏼈 􏼉 U − p10􏼈 􏼉 0 p4􏼈 􏼉 1/5
p2, p4, p10􏼈 􏼉 U − p10􏼈 􏼉 0 p1, p5, p7, p10􏼈 􏼉 1/2
p2, p10, p18, p20􏼈 􏼉 p1, p4, p5, p7, p18􏼈 􏼉 3/7 p1, p5, p10􏼈 􏼉 1/2
p2, p4, p5, p7, p10, p20􏼈 􏼉 p1, p18, p20􏼈 􏼉 4/7 p1, p10, p20􏼈 􏼉 4/7
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TSR � U, ϕ, p2􏼈 􏼉, p4􏼈 􏼉, p20􏼈 􏼉, p2, p4􏼈 􏼉, p2, p20􏼈 􏼉, p4, p20􏼈 􏼉, p18, p20􏼈 􏼉, p2, p18, p20􏼈 􏼉, p4, p18, p20􏼈 􏼉, p2, p4, p5, p7􏼈 􏼉,􏼈

p1, p4, p18, p20􏼈 􏼉, p2, p4, p18, p20􏼈 􏼉, p1, p2, p4, p18, p20􏼈 􏼉, p2, p4, p5, p7, p20􏼈 􏼉, p2, p4, p5, p7, p18, p20􏼈 􏼉,

p1, p2, p4, p7, p18, p20􏼈 􏼉􏼉.

(40)

-e complement of TSR is

T
c
SR � U, ϕ, p10􏼈 􏼉, p1, p10􏼈 􏼉, p1, p10, p18􏼈 􏼉, p5, p7, p10􏼈 􏼉, p1, p5, p7, p10􏼈 􏼉, p2, p5, p7, p10􏼈 􏼉, p1, p10, p18, p20􏼈 􏼉,􏼈

p1, p2, p5, p7, p10􏼈 􏼉, p1, p4, p5, p7, p10􏼈 􏼉, p1, p2, p4, p5, p7, p10􏼈 􏼉, p1, p2, p5, p7, p10, p18􏼈 􏼉, p1, p4, p5, p7, p10, p18􏼈 􏼉,

p1, p5, p7, p10, p18, p20􏼈 􏼉, p1, p2, p4, p5, p7, p10, p18􏼈 􏼉, p1, p2, p5, p7, p10, p18, p20􏼈 􏼉, p1, p4, p5, p7, p10, p18, p20􏼈 􏼉􏼉.

(41)

-erefore, TSR approximations of X in this case are
STSR

(X) � p1, p4, p18, p20􏼈 􏼉, STSR
(X) � U − p2􏼈 􏼉, and

BNDTSR
(X) � p5, p7, p10􏼈 􏼉. -us, the basis of TSR nano-

topology generated by the above TSR approximations is

βTSR − e1
� U, p1, p4, p18, p20􏼈 􏼉, p5, p7, p10􏼈 􏼉􏼈 􏼉 � βTSR

. (42)

Step 2. When the attribute “the orthopnea (e2)” is removed:
By the same way as in Step 1, we get

βTSR− e2
� U, p4, p18􏼈 􏼉, p1, p5, p7, p10, p20􏼈 􏼉􏼈 􏼉≠ βTSR

. (43)

Step 3. When the attribute “the paroxysmal nocturnal
dyspnea (e3)” is removed: By the same way as in Step 1, we
get

βTSR − e3
� U, p1, p4, p18, p20􏼈 􏼉, p5, p7, p10􏼈 􏼉􏼈 􏼉 � βTSR

. (44)

Step 4. When the attribute “reduced exercise tolerance (e4)”
is removed:

By the same way as in Step 1, we get

βTSR − e4
� U, p1, p4, p18, p20􏼈 􏼉, p2, p5, p7, p10􏼈 􏼉􏼈 􏼉≠ βTSR

.

(45)

Step 5. When the attribute “the ankle swelling (e5)” is
removed:

By the same way as in Step 1, we get

βTSR− e5
� U, p1, p4, p18, p20􏼈 􏼉, p2, p5, p7, p10􏼈 􏼉􏼈 􏼉≠ βTSR

.

(46)

-erefore, we get the attributes e1, e3􏼈 􏼉 are dispensable
and e2, e4, e5􏼈 􏼉 are not dispensable. Accordingly, the core of
attributes is CORE(TSR) � e2, e4, e5􏼈 􏼉, i.e., “the orthopnea,
reduced exercise tolerance, and the ankle swelling” represent
the main attributes that have close joining to the disease of
the heart failure.

By the same manner, we can make a topological re-
duction to Table 2 (an information system of all “the heart
failure” patients).

At the end of the paper, we give Algorithm 2 in table
which can be used to make a topological reduction of at-
tributes for information system in terms of the TSR
approximations.

In literature many methods for reduction of parameters
for soft sets have been given, for example, [32, 34, 41]. In all
these methods only positive parameters are considered
which result in a decision parameter as the sum of the values
allotted to an alternative. -en on the basis of this decision
parameter most suitable alternative is selected. In the present
case of decision-making these methods fail. In given case

Step 1: Input the soft set (F, A).
Step 2: Take the class SFA

� F(e): ∀e ∈ A{ } as a subbasis for a basis BFA
.

Step 3: Compute the basis BFA
� A∩B: (A, B) ∈ SFA

× SFA
􏽮 􏽯 by Definition 6.

Step 4: Generate the topology TSR � ∪ B: B ∈ BFA
􏽮 􏽯 by Definition 6.

Step 5: Investigate the TSR upper approximations, say STSR
(X), and TSR lower approximations, say STSR

(X), for every X⊆U, according
to Definition 8.
Step 6: Determine the boundary region, say BNDTSR

(X), from Step 2, according to Definition 9.
Step 7: Calculate the accuracy of the approximation, say μTSR

(X), from Step 2, according to Definition 9.
Step 8: Decide, exactly, rough sets and exact sets, using Definition 9.

ALGORITHM 1: A decision-making via TSR approximations.
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parameters are not all positive but a blend of positive and
negative, decided by the experts. Moreover decision pa-
rameter is attached already.

5. Conclusion

In this article notion of topological soft rough sets is
introduced, where topology generated from a soft set plays
a vital role. Here notion of soft rough approximations is
discussed and some of their properties are given. -eir
properties have been studied and their relationships with
some other methods have been examined. In fact, the
proposed approaches fulfill all axioms of Pawlak’s rough
sets without adding extra restrictions as Propositions 3
and 4 illustrated. -e proposed techniques depend basi-
cally on general topology and hence they open the way for
applications of topology in soft rough sets. Further, we
have answered some very important questions, such as
how to determine the probability that a subset of the
universe is definable in the classical rough sets and their
extensions (like the soft sets and topological soft rough
sets).

Finally, we have introduced medical applications, in the
decision-making of medical diagnosis for heart failure
problems [39], to illustrate the importance of current
methods and also to compare proposed method and the
previous ones. Moreover, we have succeeded in making a
topological reduction for the data set covering the result of
five symptoms for twenty patients with heart failure disease,
and thus we identify the core factors of the heart failure
diagnosis. Besides, two algorithms to our method have been
obtained.

For future works, it is hoped that presented framework
may be useful to study its application in COVID-19 and
other diseases.
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Step 1: Input a soft set (F, A), by using the two finite sets, a universe U and A a set of attributes (parameters). which represent the data
as an information table, rows of which are labeled by attributes (A) and columns by objects, and entries of the table are attribute
values.
Step 2: Compute the TSR upper approximations, say STSR

(X), and TSR lower approximations, say STSR
(X), and TSR boundary, say

BNDTSR
(X), for the decision set X⊆U, according to Definition 8.

Step 3: Generate the base βTSR
of TSR nanotopology generated by TSR approximations in Step 2 using Definition 13.

Step 4: Eliminate an attribute ek from the attributes (A) and find the TSR upper approximation, TSR lower approximation, and TSR
boundary for the decision set X on A − (ek).
Step 5: Generate the base βTSR − ek

of TSR nanotopology generated by TSR approximations given in Step 4 using Definition 13.
Step 6: Recurrence Steps 4 and 5 for every attribute in A.
Step 7: -e attributes in A for which βTSR − ek

≠ βTSR
form the CORE(TSR).

ALGORITHM 2: Topological reduction of attributes via TSR approximations.
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