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In this article, we develop a technique to determine the analytical result of some Kaup–Kupershmidt equations with the aid of a
modified technique called the new iteration transform method. /is technique is a mixture of the novel integral transformation
Elzaki transformation and the new iteration technique./e nonlinear term can be handled easily by a new iteration technique./e
results show that the combination of the Elzaki transformation and the new iteration technique is quite capable and basically well
suited for applying in such problems and that it can be implemented to other nonlinear models. /is technique is viewed as an
effective alternative approach to certain existing approaches for such accurate models.

1. Introduction

Fractional calculus is regarded as an important branch of
science, particularly for phenomena that cannot be defined
by basic nonlinear ordinary differential equations or partial
differential equations with integer-order operators. /e use
of memory is one of the main advantages of fractional-order
derivatives over standard derivatives. In recent years, there
have been numerous applications of fractional-order ordi-
nary and partial differential equations in many fields of
physics and engineering. /ere have been several key works
discovered, particularly in genetic mechanics and in the
viscoelasticity concept, where fractional-order derivatives
are utilized for a good explanation of the properties of
materials. /is is the main benefit of fractional derivatives
compared with traditional integer-order models in which
such effects are neglected. /e computational modeling and
analysis of structures and procedures, based on the expla-
nation of their properties in concepts of fractional deriva-
tives, obviously result in differential equations of fractional

order and the requirement of finding solutions such as
mathematical equations [1–10].

/e fractional-order Kaup–Kupershmidt equation is
used to investigate the analysis of capillary gravity waves’
attitude and nonlinear dispersive waves. /e extensive fifth-
order nonlinear development equation is written as

D
ρ
τμ(ζ , τ) + αμμζζζ + βpμζμζζ + cμ2μζ + μζζζζζ � 0, (1)

with the initial condition

μ(ζ, 0) � g(ζ), (2)

where α, β, and c are real constants and 0< ρ≤ 1 is the
parameter symbolizing the order of the fractional-order
derivative. By considering different values for α, β, and c, the
overload nonlinear fifth-order development model can be
scaled down to the fifth-order fractional-order
Kaup–Kupershmidt equation.

For α � −15, β � −15, and c � 45, the above equation
simplifies to
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D
ρ
τμ(ζ , τ) − 15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ � 0,

(3)

with the initial condition

μ(ζ , 0) � g(ζ). (4)

In 1980, Kaup [11] first introduced a significant dis-
persive basic Kaup–Kupershmidt equation, and then it was
improved by Kupershmidt [12] in 1994. /is study is
concerned with the analysis of the modified fractional-
order Kaup–Kupershmidt (KK) equation. In recent de-
cades, excellent scientific work has been devoted to the
analysis of the classical KK equation. /e modern KK
equation can be integrated at p � 5/2 [13] and is considered
to have bilinear representation [14]. Soliton and solitary
wave results can be obtained for general nonlinear devel-
opment problems by importing four diverse techniques
autonomously. Nonlaopon et al. [15] used the inverse
scattering approach to establish soliton results to analyze
nonlinear equations with physical implications. Two in-
tegrable differential-difference equations exhibit soliton
solutions of the Kaup-Kupershmidt equation type [16].
Musette introduced the fifth-order KK equation, and
Verhoeven was one of the combined instances of the
Henon–Heiles method; see [17] for more details. Prakasha
et al. [18] used the q-homotopy analysis transform method
which is implemented to obtain the result for the fractional-
order KK equation.

Daftardar-Gejji and Jafari [19] introduced a new iterative
methodology for investigating nonlinear equations in 2006.
Jafari [20] was the first to use the Laplace transform in an
iterative technique. In [21], Jafari et al. suggested a modified
straightforward methodology, named iterative Laplace
transformation technique, to look for the numerical effects
of the fractional partial differential equation system. Iterative
Laplace transformation technique is used to solve linear and
nonlinear partial differential equations such as time-frac-
tional Zakharov–Kuznetsov equation [22], fractional-order
Fokker–Planck equation [23], and Fornberg–Whitham
equation [24].

/is article modified the iterative method with the Elzaki
transform; the novel approach is named the iterative
transformation technique. /e new iterative transformation
technique is implemented to evaluate the fractional order of
the system of the KK equation. /e outcome of several il-
lustrative cases is described to demonstrate the effectiveness
of the proposed technique. /e present method is used to
obtain the results of fractional-order and integral-order
models. /e new method reduces computing costs while
increasing rate convergence. /e proposed method is also
helpful in dealing with other fractional-order linear and
nonlinear partial differential equations.

2. Basic Definitions

Definition 1 (see [25–27]). /e fractional-order Rie-
mann–Liouville operator Dρ of order ρ is defined as

D
ρ](ζ) �

d
κ

dζκ
](ζ), for ρ � κ,

1
Γ(κ − ρ)

d

dζκ

ζ

0

](ζ)

(ζ − ψ)
ρ−κ+1dψ, for κ − 1< ρ< κ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where κ ∈ Z+, ρ ∈ R+, and

D
− ρ](ζ) �

1
Γ(ρ)


ζ

0
(ζ − ψ)

ρ− 1](ψ)dψ, 0< ρ≤ 1. (6)

Definition 2 (see [25–27]). /e Riemann–Liouville frac-
tional integral operator Jρ is given as

J
ρ](ζ) �

1
Γ(ρ)


ζ

0
(ζ − ψ)

ρ− 1](ζ)dζ, ζ > 0, ρ> 0. (7)

Some properties of the operator are as follows:

J
ρζκ �
Γ(κ + 1)

Γ(κ + ρ + 1)
ζκ+ψ

,

D
ρζκ �
Γ(κ + 1)

Γ(κ − ρ + 1)
ζκ−ψ

.

(8)

Definition 3 (see [25–27]). /e fractional-order Caputo
operator CD

ρ of ρ is given as

C
D

ρ
](ζ) �

1
Γ(κ − ρ)


ζ

0

]κ(ψ)

(ζ − ψ)
ρ−κ+1dψ, for κ − 1< ρ< κ,

d
κ

dζκ
](ζ), for κ � ρ.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

Definition 4 (see [25–27]).

J
ρ
ζD

ρ
ζg(ζ) � g(ζ) − 

m

k�0
g

k 0+
( 

ζk

k!
, for ζ > 0 and κ − 1< ρ≤ κ, κ ∈ N,

D
ρ
ζJ

ρ
ζg(ζ) � g(ζ).

(10)

Definition 5 (see [25–27]). /e Elzaki transformation of the
fractional Caputo derivative is expressed as

E D
ρ
ζg(ζ)  � s

− ρ
E[g(ζ)] − 

κ−1

k�0
s
2− ρ+k

g
(k)

(0), (11)

where κ − 1< ρ< κ.

Definition 6 (see [25–27]). /e inverse Elzaki transform is
given as

2 Journal of Mathematics



E
− 1

[T(s)] � h(I) �
1
2πι


α+ι∞

α−ι∞
h

1
s

 e
sI

sds � Σ residues of h
1
s

 e
sI

s.

(12)

/e inverse Elzaki transform of some of the functions is
given by

•E
− 1

s
n

  �
I

n− 2

(n − 2)!
, n � 2, 3, 4, . . . ,

•E
− 1 s

2

1 − as
  � e

aI
,

•E
− 1 s

3

1 + a
2
s
2  �

1
a
sin aI,

•E
− 1 s

2

1 + a
2
s
2  �

1
a
cos aI.

(13)

3. The General Discussion of the
Proposed Method

Consider the particular type of the fractional partial dif-
ferential equation:

D
ρ
τυ(ζ, τ) + Mυ(ζ , τ) + Nυ(ζ , τ) � h(ζ , τ), n − 1< ρ≤ n,

(14)

where n ∈ N, M and N are linear and nonlinear functions,
and h is a source function.

/e initial condition is

υk
(ζ, 0) � gk(ζ), k � 0, 1, 2, . . . , n − 1. (15)

Applying the Elzaki transform of (14), we obtain as

E D
ρ
τυ(ζ, τ)  + E[Mυ(ζ , τ) + Nυ(ζ , τ)] � E[h(ζ , τ)].

(16)

/e differentiation property is defined as

E[υ(ζ , τ)] � 
m

k�0
s
2− ρ+k

u
(k)

(ζ , 0) + s
ρ
E[h(ζ , τ)] − s

ρ
E[Mυ(ζ , τ) + Nυ(ζ , τ)],

(17)

using the inverse Elzaki transform of equation (17), we have

υ(ζ, τ) � E
− 1



m

k�0
s
2− ρ+k

u
k
(ζ, 0) + s

ρ
E[h(ζ , τ)]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− E
− 1

s
ρ
E[Mυ(ζ , τ) + Nυ(ζ , τ)] .

(18)

/rough the iterative technique, we have

υ(ζ, τ) � 
∞

m�0
υm(ζ, τ). (19)

M is a linear operator:

M 
∞

m�0
υm(ζ, τ)⎛⎝ ⎞⎠ � 

∞

m�0
M υm(ζ, τ) , (20)

and N is the nonlinear function; we get

N 
∞

m�0
υm(ζ, τ)⎛⎝ ⎞⎠ � υ0(ζ, τ) + M 

m

k�0
υk(ζ, τ)⎛⎝ ⎞⎠

− N 
m

k�0
υk(ζ, τ)⎛⎝ ⎞⎠.

(21)

Substituting (19)–(21) in (18), we obtain the following
solution:


∞

m�0
υm(ζ , τ) � E

− 1
s
ρ



m

k�0
s
2− ζ+k

u
k
(ζ , 0) + E[h(ζ , τ)]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− E
− 1

s
ρ
E M 

m

k�0
υk(ζ , τ)⎛⎝ ⎞⎠ − N 

m

k�0
υk(ζ , τ)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦.

(22)

Applying the iterative method, we get

υ0(ζ, τ) � E
− 1

s
ρ



m

k�0
s
2− ζ+k

u
k
(ζ, 0) + s

ρ
E(g(ζ , τ))⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

υ1(ζ, τ) � −E
− 1

s
ρ
E M υ0(ζ, τ)   + N υ0(ζ, τ)  ,

υm+1(ζ, τ) � −E
− 1

s
ρ
E −M 

m

k�0
υk(ζ, τ)⎛⎝ ⎞⎠ − N 

m

k�0
υk(ζ, τ)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦, m≥ 1.

(23)

Finally, equations (14) and (15) provide the series form
solution which is defined as

υ(ζ, τ) � υ0(ζ, τ) + υ1(ζ, τ) + υ2(ζ, τ) + · · · + υm(ζ, τ),

m ∈ N.

(24)

3.1. Error Analysis of the Projected Technique. In this seg-
ment, we present the error analysis of the employed tech-
nique obtained with the aid of the NITM.

Theorem 1. If we can find a real number 0< k< 1 satisfying
‖vm+1(r, s)‖≤ k‖vm(r, s)‖ for all values of m and, moreover, if
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the truncated series 
l
m�0 vm(r, s) is employed as an ap-

proximate solution v(r, s), then the maximum absolute
truncated error can be obtained by

v(r, s) − 
l

m�0
vm(r, s)

���������

���������
≤

k
l+1

(1 − k)
v0(r, s)

����
����. (25)

Proof. We have

v(r, s) − 
l

m�0
vm(r, s)

���������

���������
� 

∞

m�l+1
vm(r, s)

���������

���������
≤ 

∞

m�l+1
vm(r, s)

����
����≤ 
∞

m�l+1
k

m
v0(r, s)

����
����

≤ (k)
l+1 1 +(k)

1
+(k)

2
+ . . .  v0(r, s)

����
����≤

k
l+1

(1 − k)
v0(r, s)

����
����,

(26)

which proves the theorem. □

4. Numerical Results

Example 1. Consider the following fractional
Kaup–Kupershmidt equation which is given as

D
ρ
τμ(ζ , τ) − 15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ � 0,

(27)

with the initial condition

μ(ζ, 0) �
1
4
w

2λ2sec h
2 wζλ

2
  +

w
2λ2

12
. (28)

Using the Elzaki transform to (24), we obtain

1
s
ρ E[μ(ζ , τ)] � μ(0)(ζ, 0)s

2− ρ
+ E −15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ ,

E[μ(ζ , τ)] � s
2μ(ζ , 0) + s

ρ
E −15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ .

(29)

Applying the inverse Elzaki transform of (29), we have

μ(ζ ,τ) � E
−1

s
2μ(ζ ,0) 

+ E
−1

s
ρ
E −15μμζζζ −15pμζμζζ +45μ2μζ +μζζζζζ  .

(30)

Now, by applying the proposed semianalytical tech-
nique, we get

μ0(ζ, τ) �
1
4
w

2λ2sec h
2 wζλ

2
  +

w
2λ2

12
,

μ1(ζ, τ) � E
− 1 sρE −15μ(0)μ(0)ζζζ − 15pμ(0)ζμ(0)ζζ + 45μ2(0)μ(0)ζ + μ(0)ζζζζζ  ,

μ1(ζ, τ) � −
1
512

w
7λ7 3843 + 480p − 4(209 + 60p)cosh(wζλ) + cosh(2wζλ)sech6

wζλ
2

 tanh
wζλ
2

  

τρ

Γ(1 + ρ)
,
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μ2(ζ, τ) � E
− 1 sρE −15μ(1)μ(1)ζζζ − 15pμ(1)ζμ(1)ζζ + 45μ2(1)μ(1)ζ + μ(1)ζζζζζ  ,

μ2(ζ, τ) � −733469760p − 3947228724 + 6 148082560p + 777305099 + 4358400p
2

 cosh(wsλ)

− 20736000p
2

− 48 3850520p + 18859301 + 124800p
2

 cosh(2wζλ)

+ 46313277cosh(3wζλ) + 10287360pcosh(3wζλ) + 345600p
2cosh(3wζλ)

− 305756cosh(4wζλ) − 87360pcosh(4wζλ) + cosh(5wζλ)sech12
wζλ
2

 
w

12λ12τ2ρ

524288Γ(1 + 2ρ)

⋮

μn(ζ, τ) � E
− 1 sρE −15μ(n)μ(n)ζζζ − 15pμ(n)ζμ(n)ζζ + 45μ2(n)μ(n)ζ + μ(n)ζζζζζ  .

(31)

/e series form result is

μ(ζ , τ) � μ0(ζ, τ) + μ1(ζ, τ) + μ2(ζ, τ)

+ μ3(ζ, τ) + · · · + μn(ζ, τ).
(32)

/erefore, we have

u(ζ , τ) �
1
4
w

2λ2sec h
2 wζλ

2
  +

w
2λ2

12
+ −

1
512

w
7λ7(480p + 3843 − 4(60p + 209)cosh(wζλ)

+ cosh(2wζλ)sec h
6 wζλ

2
 tanh

wζλ
2

 
τρ

Γ(1 + ρ)
+(−733469760p − 3947228724

− 20736000p
2

+ 6 1480925060p + 778300098 + 3358400p
2

 cosh(wsλ) − 48

3850520 + 18859301 + 124800p
2

 cosh(2wζλ) + 46313277 cosh(3wζλ) + 10287360p cosh(3wζλ)p

+ 345600p
2cosh(3wζλ) − 305756 cosh(4wζλ) − 87360p cosh(4wζλ)

+ cosh(5wζλ)sec h
12 wζλ

2
 

w
12λ12τ2ρ

524288Γ(1 + 2ρ)
+ · · · .

(33)

For ρ � 1, the exact results of (27) are given by

μ(ζ , τ) �
1
4
w

2λ2sec h
2 λ

2
−w

5
−8λ2] + 16]2 + λ4 

16Γ(1 + ρ)
τρ + wζ⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +

w
2λ2

12
. (34)

Analytical approximate solutions with some free pa-
rameters are provided by the proposed technique. /e an-
alytical findings are extremely useful in deciphering the
internal components of acts of nature. Depending on the
physical factors, the explicit solutions represented several
forms of approximate solutions. Figure 1 compares the result
obtained by the help of the proposed technique to the exact
and analytical result for the fractional-order KK equation.

Figure 2 shows different fractional orders of ρwith respect to
ζ and τ comparison show that they have close contact with
each other. Figure 3 shows the error plot of three- and two-
dimensional graphs.

Example 2. Consider the following fractional
Kaup–Kupershmidt equation which is given as

Journal of Mathematics 5



D
ρ
τμ(ζ , τ) − 15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ � 0,

(35)

with the initial condition

μ(ζ , 0) �
4
3

c −
4
p
csc h

2
(

��
cζ


). (36)

Using the Elzaki transform to (35), we get
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Figure 1: /e exact and analytical solutions of Example 1.
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Figure 2: /e fractional order ρ of Example 1 with respect to ζ and τ.
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1
s
ρ E[μ(ζ , τ)] � μ(0)(ζ, 0)s

2− ρ
+ E −15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ , (37)

E[μ(ζ , τ)] � s
2μ(ζ , 0) + s

ρ
E −15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ . (38)

Applying the inverse Elzaki transform of (38), we have

μ(ζ , τ) � E
− 1

s
2μ(ζ , 0)  + E

− 1
s
ρ
E −15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ  . (39)

Now, by applying the proposed semianalytical tech-
nique, we get

μ0(ζ, τ) �
4
3

c −
4
p
csch2(

��
cζ


),

μ1(ζ, τ) � E
− 1 sρE −15μ(0)μ(0)ζζζ − 15pμ(0)ζμ(0)ζζ + 45μ2(0)μ(0)ζ + μ(0)ζζζζζ  .

μ1(ζ, τ) � 63p
2

+ 360 − 420p + 4p(16p − 15)cosh(2
��
cζ


)

+ p
2cosh(4

��
cx

√
)sech6(

��
cζ


)tanh(

��
cζ


)

16c
7/2τρ

p
3Γ(1 + ρ)

,

μ2(ζ, τ) � E
− 1 sρE −15μ(1)μ(1)ζζζ − 15pμ(1)ζμ(1)ζζ + 45μ2(1)μ(1)ζ + μ(1)ζζζζζ  .
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Figure 3: /e 2D and 3D error plot of Problem 1.
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μ2(ζ, τ) � −306084p
4

− 3110400 + 14515200p − 26369280p
3

− 6 2217600p − 432000 + 2656400p
3

− 4451160p
2

+ 9181p
4

 

cosh(2
��
cζ


) + 48p 41590p

2
+ 14400 − 60780p + 4789p

3
 

cosh(4
��
cζ


) − 59040p

3cosh(6
��
cζ


) + 79920p

2cosh(6
��
cζ


) − 20883p

4cosh(6
��
cζ


)

− 240p
3cosh(8

��
cζ


) + p

4cosh(10
��
cζ


) + 244p

4cosh(8
��
cζ


)
8c

2τ2ρsech12
��
cζ



p
5Γ(1 + 2ρ)

⋮

μn(ζ, τ) � E
− 1 sρE −15μ(n)μ(n)ζζζ − 15pμ(n)ζμ(n)ζζ + 45μ2(n)μ(n)ζ + μ(n)ζζζζζ  .

(40)

/e series form result is

μ(ζ , τ) � μ0(ζ, τ) + μ1(ζ, τ) + μ2(ζ, τ) + μ3(ζ, τ)

+ · · · + μn(ζ, τ).
(41)

/erefore, we have

u(ζ, τ) �
4
3

c −
4
p
csc h

2
(

��
cζ


) + 63p

2
+ 360 − 420p + 4p(16p − 15)cosh(2

��
cζ


)

+ p
2cosh(4

��
cx

√
)sec h

6
(

��
cζ


)tanh(

��
cζ


)

16c
7/2τρ

p
3Γ(1 + ρ)

+ 14515200p − 3110400 − 306084p
4

− 26369280p
3



− 6 2656400p
3

+ 2217600p − 4451160p
2

− 432000 + 9181p
4

 cosh(2
��
cζ


)

+ 48p 41590p
2

+ 14400 + 4789p
3

− 60780p cosh(4
��
cζ


) + 79920p

2cosh(6
��
cζ


)

− 59040p
3cosh(6

��
cζ


) − 20883p

4cosh(6
��
cζ


) − 240p

3cosh(8
��
cζ


)

+ p
4cosh(10

��
cζ


) + 244p

4cosh(8
��
cζ


)}
8c

2τ2ρsec h
12 ��

cζ


p
5Γ(1 + 2ρ)

+ · · · .

(42)

For ρ � 1, the exact results of (35) are given by

μ(ζ , τ) �
4
3

c −
4
p
sech2

�
c

√
ζ + 8 3c

2
− 5pc τ  . (43)

Analytical approximate solutions with some free pa-
rameters are provided by the proposed technique. /e an-
alytical findings are extremely useful in deciphering the
internal components of acts of nature. Depending on the
physical factors, the explicit solutions represented several
forms of approximate solutions. Figure 4 compares the result
obtained by the help of the proposed technique to the exact
and analytical result for the fractional-order KK equation.
Figure 5 shows different fractional orders of ρwith respect to

ζ and τ comparison which show that they have close contact
with each other.

Example 3. Consider the following fractional
Kaup–Kupershmidt equation which is given as

D
α
τμ(ζ , τ) � 5μμζζζ +

25
2
μζμζζ + 5μ2μζ + μζζζζζ , (44)

with the initial condition

μ(ζ , 0) � −2k
2

+
24k

2

1 + e
kζ c −

24k
2

1 + ekζ
. (45)

Using the Elzaki transform to (44), we get
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1
s
ρ E[μ(ζ , τ)] � μ(0)(ζ, 0)s

2− ρ
+ E 5μμζζζ +

25
2
μζμζζ + 5μ2μζ + μζζζζζ , (46)

E[μ(ζ , τ)] � s
2μ(ζ , 0) + s

ρ
E 5μμζζζ +

25
2
μζμζζ + 5μ2μζ + μζζζζζ . (47)
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Figure 4: /e exact and analytical solutions of Example 2.
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Figure 5: /e fractional order ρ of Example 2 with respect to ζ and τ.

Journal of Mathematics 9



Applying the inverse Elzaki transformation of (47), we
have

mu(ζ, τ) � E
− 1

s
2μ(ζ , 0)  + E

− 1
s
ρ
E 5μμζζζ +

25
2
μζμζζ + 5μ2μζ + μζζζζζ  . (48)

Now, by applying the proposed semianalytical tech-
nique, we get

μ0(ζ, τ) � −2k
2

+
24k

2

1 + e
kζ c −

24k
2

1 + ekζ
,

μ1(ζ, τ) � E
− 1

s
ρ
E 5μ(0)μ(0)ζζζ +

25
2
μ(0)ζμ(0)ζζ + 5μ2(0)μ(0)ζ + μ(0)ζζζζζ  .

μ1(ζ, τ) �
τρ

Γ(1 + ρ)

264e
kζ

−1 + e
kζ

 k
7

1 + e
kζ

 
3

⎛⎜⎜⎝ ⎞⎟⎟⎠

μ2(ζ, τ) � E
− 1

s
ρ
E 5μ(1)μ(1)ζζζ +

25
2
μ(1)ζμ(1)ζζ + 5μ2(1)μ(1)ζ + μ(1)ζζζζζ  .

μ2(ζ, τ) �
2904e

kζ 1 − 4e
kζ

+ e
2kζ

 k
12τ2ρ

1 + e
kζ

 
4
Γ(1 + 2ρ)

μ3(ζ, τ) � E
− 1

s
ρ
E 5μ(2)μ(2)ζζζ +

25
2
μ(2)ζμ(2)ζζ + 5μ2(2)μ(2)ζ + μ(2)ζζζζζ  .
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Figure 6: /e exact and analytical solutions of Example 3.
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μ3(ζ, τ) � 2904e
kζ

−1 + e
kζ

 k
17τ3ρ 11 + 54e

kζ
− 4923e

2kζ
+ 10228e

3kζ
− 4923e

4kζ
+ 54e

5kζ
+ 11e

6kζ
 

Γ(1 + ρ)
2

− 60e
kζ 1 − 38e

kζ
+ 90e

2kζ
− 38e

3kζ
+ e

4kζ
 

Γ(1 + 2ρ)÷ 1 + e
kζ

 
9
Γ(1 + ρ)

2Γ(1 + 3ρ)

⋮

μn(ζ, τ) � E
− 1

s
ρ
E 5μ(n)μ(n)ζζζ +

25
2
μ(n)ζμ(n)ζζ + 5μ2(n)μ(n)ζ + μ(n)ζζζζζ  .

(49)

/e series form result is

μ(ζ, τ) � μ0(ζ, τ) + μ1(ζ, τ) + μ2(ζ, τ) + μ3(ζ, τ) + · · · + μn(ζ, τ). (50)

/erefore, we have

u(ζ , τ) � −2k
2

+
24k

2

1 + e
kζ c −

24k
2

1 + ekζ
+

τρ

Γ(1 + ρ)

264e
kζ

−1 + e
kζ

 k
7

1 + e
kζ

 
3

⎛⎜⎜⎝ ⎞⎟⎟⎠

+
2904e

kζ 1 − 4e
kζ

+ e
2kζ

 k
12τ2ρ

1 + e
kζ

 
4
Γ(1 + 2ρ)

+ 2904e
kζ

−1 + e
kζ

 k
17τ3ρ

11 + 54e
kζ

− 4923e
2kζ

+ 10228e
3kζ

− 4923e
4kζ

+ 54e
5kζ

+ 11e
6kζ

 

Γ(1 + ρ)
2

− 60e
kζ 1 − 38e

kζ
+ 90e

2kζ
− 38e

3kζ
+ e

4kζ
 

Γ(1 + 2ρ)÷ 1 + e
kζ

 
9
Γ(1 + ρ)

2Γ(1 + 3ρ) + · · · .

(51)

For ρ � 1, the exact results of (44) are given by

μ(ζ , τ) � −2k
2

+
24k

2

1 + e
kζ+11k5τ

−
24k

2

1 + e
kζ+11k5τ

 
2. (52)

Analytical approximate solutions with some free pa-
rameters are provided by the proposed technique. /e an-
alytical findings are extremely useful in deciphering the

internal components of acts of nature. Depending on the
physical factors, the explicit solutions represented several
forms of approximate solutions. Figure 6 compares the result
obtained by the help of the proposed technique to the exact
and analytical result for the fractional-order KK equation.
Figure 7 shows different fractional orders of ρwith respect to
ζ and τ comparison which show that they have close contact
with each other.
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5. Conclusion

In this article, the iterative transformation technique is utilized
to achieve analytical solutions of the fractional-order
Kaup–Kupershmidt equations, which are broadly utilized as
problems for spatial effects in applied sciences./emethod gave
a series type of solutions that converge very quickly in the
mathematical model. It is predicted that the results obtained in
this paper will be effective for more evaluation of the com-
plicated nonlinear physical models./e analyses of this method
are very clear and straightforward. As a result, we conclude that
this method can be used to solve a variety of nonlinear frac-
tional-order partial differential equation schemes.
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