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'e low-rank representation (LRR) method has recently gained enormous popularity due to its robust approach in solving the
subspace segmentation problem, particularly those concerning corrupted data. In this paper, the recursive sample scaling low-
rank representation (RSS-LRR) method is proposed.'e advantage of RSS-LRR over traditional LRR is that a cosine scaling factor
is further introduced, which imposes a penalty on each sample to minimize noise and outlier influence better. Specifically, the
cosine scaling factor is a similarity measure learned to extract each sample’s relationship with the low-rank representation’s
principal components in the feature space. In order words, the smaller the angle between an individual data sample and the low-
rank representation’s principal components, the more likely it is that the data sample is clean.'us, the proposedmethod can then
effectively obtain a good low-rank representation influenced mainly by clean data. Several experiments are performed with
varying levels of corruption on ORL, CMU PIE, COIL20, COIL100, and LFW in order to evaluate RSS-LRR’s effectiveness over
state-of-the-art low-rank methods. 'e experimental results show that RSS-LRR consistently performs better than the compared
methods in image clustering and classification tasks.

1. Introduction

'e limitations of classical feature learning techniques such
as PCA [1] easily made the robust principal component
analysis (RPCA) method an efficient choice for dealing with
noise and outliers. Specifically, RPCA is focused on learning
a low-rank subspace directly from the original high-di-
mensional data to preserve its geometric structure in a low-
dimensional subspace. And this strategy has shown tre-
mendous improvements in several applications [2–5].
However, as RPCA only seeks a single low-rank subspace, it
may still be limited with noise damage since high-dimen-
sional data are known to reside in multiple low-dimensional
subspaces [6]. 'us, extending RPCA’s idea, Liu et al. [4, 7]
proposed a method named “low-rank representation”
(LRR). LRR’s main advantage over RPCA lies in its aim to
learn data’s multiple low-dimensional subspaces and their
membership. 'is approach makes LRR very robust to the
negative effect of noise and outliers [8].

'erefore, considering LRR’s robustness mentioned
above, several attempts were made in the literature such as
references [9–13] to improve its performance. For example,
to deal with the data from nonlinear subspaces, Tang et al.
[13] proposed robust kernel LRR (RKLRR). Liu et al. [11]
then adopted a fixed-rank strategy to accelerate LRR’s
computation process. However, their performances could be
reduced with insufficient or heavily corrupted samples. 'at
is why Xiao et al. [14] had previously proposed the latent
LRR (LatLRR) for joint subspace segmentation and feature
selection. 'e idea behind LatLRR is to include hidden data
in constructing the dictionary to improve robustness further.
On the contrary, how to handle gross data damage remains
unsolved. It is observed that the more the data corrupted by
noise, the larger the degradation in the classification and
clustering performance.

To address this issue, a recursive sample scaling low-rank
representation (RSS-LRR) method is proposed in this paper.
Since some data samples will be more damaged in gross data
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corruption, we estimate each data sample’s importance using
a cosine scaling factor.'is scaling factor measures the angle
connecting each data sample and the low-rank represen-
tation’s principal components in feature space. In this way,
we then iteratively subdue noisy data samples to overcome
their effect. 'us, the proposed RSS-LRR can effectively
obtain a good low-rank representation than existing
methods. Our main contributions are summarized as
follows:

(1) We propose a novel method named “RSS-LRR,”
whichmeasures each data sample’s importance using
a cosine scaling factor. 'is scaling factor is used in
our model to extract each data sample’s relationship
with the low-rank matrix’s principal components.

(2) 'e proposed RSS-LRR method can effectively
handle noisy data samples by iteratively restricting
noisy data samples using the sample scaling factor to
suppress noise so as to obtain a good low-rank
representation.

(3) Several experiments are performed with varying
levels of corruption to evaluate RSS-LRR’s effec-
tiveness. 'e experimental results show that RSS-
LRR consistently outperforms other state-of-the-art
methods in image clustering and classification tasks.

2. Related Work

'is section presents a brief review of the baseline methods
RPCA and LRR. First, in this paper, matrices are written in
uppercase, e.g., X. 'us, ‖X‖F and ‖X‖∗ denote the Fro-
benius norm and nuclear norm, respectively. ‖X‖2 and
‖X‖2,1 denote the vector norm and L2,1-norm, which are
defined by ‖X‖1 � 􏽐i,j|xij| and ‖X‖2,1 � 􏽐i[􏽐i(xij)

2]1/2.

2.1. Robust Principal Component Analysis. To recover a
subspace structure from corrupted data, RPCA was pro-
posed in [2]. Its strategy is to decompose a given data matrix
into two components matrices by solving the following
optimization problem:

minD,E ||D||∗ + λ||E||1

s.t. X � D + E,
(1)

where the data matrix X � [x1, x2, . . . , xn] ∈ Rm×n is a
matrix of n samples in the m-dimensional space, D is the
low-rank matrix, E is a sparse error matrix, and λ is the
regularized parameter to balance the effects of the two terms.
'us, RPCA’s main objective from the above formula is to
obtain low-rank and sparse elements by combining the
nuclear norm and L1-norm. 'is approach is proven to be
possible under some assumptions [16]. However, as RPCA
assumes a single low-rank subspace, its performance can
degrade easily.

2.2. Low-RankRepresentation. Liu et al. [5] proposed LRR to
tackle RPCA’s limitations. Specifically, LRR is focused on
pursuing a data representation matrix with the lowest rank.

It can achieve that by using data’s self-expressiveness
property such that the given data itself are utilized as a self-
dictionary. 'is way, each data sample is then represented as
a linear combination of similar samples belonging to the
same class. 'e optimal low-rank matrix obtained by LRR is
defined as follows:

minZ,E ||Z||∗ + λ||E||p

s.t. X � XZ + E,
(2)

where the data matrix X � [x1, x2, . . . , xn] ∈ Rm×n denotes
the self-dictionary E is used to capture the error compo-
nents where ‖.‖p denotes a certain norm, which can be
determined based on the type of noise corruption. For
example, while ‖.‖F is a suitable candidate for data damaged
by Gaussian noise, ‖.‖1 is good for random noise. Besides,
‖.‖2,1 is an efficient choice when only a part of data are
contaminated.

Although LRR’s approach is shown to be very effective,
particularly in noisy settings, its performance may degrade
with insufficient samples. For this reason, Liu et al. [15] also
proposed latent LRR that exploits both the observed and
the hidden data to construct the self-dictionary. 'is
strategy is most useful for image restoration [17]. Conse-
quently, the work of [18] proposed a method for line
pattern noise removal to address contaminated instances. It
is realized in a transform domain by using a line pattern’s
directional property. Besides, other efforts were made in
references [11, 12, 19–31] to improve LRR’s discriminative
capability.

Notably, Bing-Kun Bao et al. [23] used a fixed-rank
approach so as to reduce LRR’s singular value decom-
position cost. Zhang et al. [24] proposed two instanta-
neous methods: the first can reasonably handle noise
interference by decomposing given data into two parts,
namely, the low-rank sparse principal feature part and a
noise-fitting error part. In [25], Tang et al. introduced a
diversity regularization and a rank constraint to suppress
the redundancy in different data views. In [26], Zhang
et al. presented a method that adaptively preserves local
information of salient features, thus guaranteeing a
block-diagonal coefficient structure. Meanwhile, a com-
pressive robust subspace clustering method was proposed
in [27] for dimensionality reduction. However, because
the subspace techniques, including LRR, do not provide
linear dimensionality reduction (LDR) functionality, the
feature selective projection (FSP) [28] was proposed. FSP
combines feature extraction, feature selection, and LRR
into a unified model to promote robust LDR. Likewise, a
method was introduced in [29], which exploits a robust
dictionary learning strategy to discover hybrid salient
low-rank and sparse representations in a factorized
compressed space. Furthermore, in an attempt to keep
both similarity and local structures, the hierarchical
weighted low-rank representation (HWLRR) [30] was
proposed. Similarly, the more recent study [31] was fo-
cused on capturing cross-view information through an
approach that preserves both diversity and consensus
information of each data view.
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3. The Proposed Method

3.1. RSS-LRR. Since real-world data are not always perfect
and inevitably corrupted by noise in practice, most existing
low-rank methods cannot guarantee robust performance.
'erefore, noise interference must be carefully handled to
resolve the present drawback. As a result, a rational solution
is pursued in this paper, which uses a cosine scaling factor to
estimate the importance of each data sample. Essentially, we
suppose that the clean data samples will give high significant
values, while the noisy ones would differ from the principal
component of the data. 'us, the cosine scaling factor D is
introduced into the LRR formulation in equation (2) using
the constraint X D � X DZ + E. 'emotivation behind our
approach is straightforward: according to reference [32], Z
can be decomposed as UΣVT, where U and V are left and
right low-rank singular vectors. In other words, U or V

becomes the pursued projection vector such that XUϵRm is
the data projection in feature space. 'erefore, XU1 is
chosen as our maximum projection direction where U1, the
maximum eigenvalue of Σ, is U’s column vectors. So, for an
outlier data sample xj, the angle between it and the principal
component vector XU1 would differ more than that of clean
data xi, as described in Figure 1(a). Hence, di expressed in
the following is used to estimate the importance of each data
sample:

di � cos θi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ε �

x
T
i XU1( 􏼁

‖x‖iXU1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ ε, (3)

where ε is a constant that stops di from 0. 'us, using the
significant factor d, a given data matrix can be scaled to
minimize the effect of noisy data samples, allowing the low-
rank structure to be realized with clean data as shown in
Figure 1(b). As such, the proposed sample scaling low-rank
model is obtained as follows:

minZ,E ||Z||∗ + λ||E||2,1

s.t. XD � XDZ + E,
(4)

where Z denotes the low-rank matrix and E is used to
capture the noise elements, similar to that in equation (2).

'en, D �

d1
⋱di

⋱dn

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ denotes the scaling factor of n samples.

From the above formulation, one can easily check that the
scaling factor π/2 suits our goal, as we can then detect the
noisy points from closer angles to π/2, with lower values being
assigned to such points. Illustratively, let us assume θi � π/2,
and di is almost 0, so xi is subdued with 􏽢xi � xidi. 'us, 􏽢X �

X D is used to obtain new training data. Besides, using SVD,
􏽢X � X D � UxΣxVT

xD � 􏽣Ux
􏽣Σx 􏽣Vx

T, meaning that both new
singular vectors 􏽣Ux and new projection vectors of sample
space are obtained by suppressing the noisy data samples. As a
result, our proposed method can then learn an optimal low-
rank structure using new data 􏽢X where the points closer to the
principal component vector are enhanced.

We give the summary of our model’s main character-
istics as follows:

(i) Unlike the existing low-rank methods, which use the
input data X itself as the dictionary, a new dictionary
is presented with 􏽢X � X D by imposing a recursive
scaling factor D on X to suppress the effect of noisy
samples.

(ii) Specifically, our recursive modeling is very useful
for learning a good low-rank representation, most
especially when the data are heavily contami-
nated. As shown in equation (4), our focus is to
find Z by minimizing equation (4) with the
constraint of 􏽢X � 􏽢X􏽢Z, thus allowing Z to preserve
a better low-rank structure using only data
samples with huge cosine similarity (referred to as
clean data samples as they would have the smaller
angle with the principal component). In other
words, Z is obtained by equation (4) using clean
data 􏽢X.

3.2. Optimization. In this section, we propose an optimi-
zation algorithm to solve equation (4). First, following
standard practice, we introduce a variable J � Z to relax
equation (4) further. 'us, equation (4) can be recast as

argminJ,Z,E||J||∗ + λ||E||2,1

s.t. XD � XDZ + E, Z � J.
(5)

'e augmented Lagrangian function equation (5) is
given as

L(J, E, Z, μ) � J∗ + λE2,1 + tr M
T
1 (XD − XDZ − E)􏼐 􏼑

+ tr M
T
2 (Z − J)􏼐 􏼑

+
μ
2

XD − XDZ − E
2
F + Z − J

2
F􏼐 􏼑,

(6)

where M1 and M2 are Lagrange multipliers, μ> 0 is a penalty
parameter, and ‖ · ‖F denotes the Frobenius norm of a
matrix. Many concepts for convex optimization have been
developed [33–35], which rely on nuclear-norm regulari-
zation. And the optimization problem can be solved via the
method in [36].

Sample Scaling Factor

di = |cos θi| + ε
xj xi XU1
θj θi

Data Matrix
Xm×n

Low-rank
Representation

Zn×n

Noise
Matrix
Em×nXm×nD

(a)

(b)

· D· · +=

Figure 1: Our proposed model’s framework.
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3.2.1. Computation of J. According to references [37, 38],
nuclear-norm minimization methods have a stable perfor-
mance. For computing J, we rewrite equation (6) as

J
∗

� argmin
J

‖J‖∗ +
1
2

‖J‖ − Z +
M2

μ
􏼠 􏼡

2

F

. (7)

3.2.2. Computation of Z. By fixing J and E and substituting
􏽢X � X D, Z can be updated using the following formula:

Z
∗

� I + 􏽢X
T 􏽢X􏼒 􏼓

− 1
􏽢X

T 􏽢X − 􏽢X
T
E + J +

􏽢X
T
M1 − M2􏼒 􏼓

μ
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠. (8)

3.2.3. Computation of E. With 􏽢X, Z, and J fixed, E can be
solved as follows:

E
∗

� argmin
λ
μ

||E||2,1 +
1
2

E − 􏽢X − 􏽢XZ +
M1

μ
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

F

. (9)

Following reference [39], equation (9) can be solved by
the following lemma.

Lemma 1 (see [40]). Let Q � [q1, q2, . . . , qn] be a given
matrix. If W∗ is the optimal solution, then

W
∗

� minwλ||W||2,1 +
1

2||W − Q||
2
F

. (10)

'us, the ith column of W∗ is

W
∗
(:, i) �

qi − λ
qi

qi, if λ< qi

����
����,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

Based on Lemma 1, supposing we have a matrix Q, W∗

can be reached directly using the above formula, making the
E computation process very efficient.

'e complete solution is given in Algorithm 1.

3.3. Complexity Analysis. 'is section gives an analysis of
the computational cost of Algorithm 1. In Step 6 of Al-
gorithm 1, the values of Jk, Zk, Ek are the same as
Jk− 1, Zk− 1, Ek− 1 in the inner loop.'erefore, as the number of
iterations k increases, the time complexity in pursuing the
low-rank variable Zk decreases faster. From the above dis-
cussion, the computing time in tk is far shorter than that in t1.
'e cost of SVD isO(n3), where n denotes the number of data
vectors. Besides,Z costsO(n2m + n3) for computation, where
m is the data dimension. E in Step 10 then costs O(dn).
Furthermore, supposing that the D subblock requires k times
until convergence, the J, Z, E subproblems will then be
calculated for tk iterations.'erefore, based on the number of
iterations, the combined cost is O(t(n3 + n2m + dn)), such
that t is a representation of the number of iterations. 'us,

when n≥m, the cost’s upper bound would be O(tn3). Ac-
cordingly, the overall computational cost of the proposed
method is O(ktn3).

4. Experiments

In this section, our proposed RSS-LRR method’s effective-
ness is evaluated by comparing it with similar methods such
as LRR [5], latent LRR [15], LRRLC, GLRR [8], and
GODEC+ [41] in background modeling from video [42] and
image denoising [43].

4.1. Background Modeling from Surveillance Video

4.1.1. Experimental Settings. 'is experiment is performed
using surveillance video with various illumination settings. It
is composed of a chain of 200 grayscale frames of 32× 32
dimensions.'us, each algorithm’s effectiveness is evaluated
using precision, recall, and F-score metrics, and their pa-
rameters are tuned according to the corresponding litera-
ture. Precisely, background modeling [44] is measured by
manually quoting out the activities. In this experiment, 50%
of frames are randomly selected as the training set, while the
remaining are treated as the testing set.

4.1.2. Experimental Results. In Figure 2, we show each al-
gorithm’s background recovery and activity segmentation
performance. Additionally, it can be observed from Table 1
that RSS-LRR outperforms other methods in activity seg-
mentation as it can better generalize to the testing frames.
'is result further substantiates our sample scaling factor
approach’s effectiveness such that a more reliable low-rank
object is obtained than that from the compared methods.

4.2. Image Clustering with Varying Levels of Noise

4.2.1. Experimental Settings. Here, several experiments are
performed on three well-known image datasets, namely,
ORL, CMU PIE, and COIL20, to evaluate the effectiveness of
the proposed algorithm on image clustering. Each algo-
rithm’s parameters are tuned according to the corre-
sponding literature using the grid search strategy. We give a
brief description of each one of these datasets as follows:

ORL: it contains face images of ten individuals, with
each of them contributing forty distinct images under
various conditions such as facial details and different
facial expressions.
CMU PIE: it is a face image repository with images of
sixty-eight individuals with different settings. It in-
cludes thirteen different poses, four different expres-
sions, and forty-two different illuminations.
COIL20: it is an object image dataset consisting of 20
separate objects. Each object contributes 72 grayscale
images, amounting to a total of 1440 images.

For each dataset, the images are resized to 32∗ 32 di-
mensions in our experiments. As illustrated in Figure 3,
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these datasets are then corrupted with 5%, 10%, 15%, and
20% random pixel noise to demonstrate each algorithm’s
robustness to noise. 'us, a spectral clustering algorithm is
applied to the similarity matrix of each algorithm to obtain
the clustering results with ten multiple tries to ensure
fairness [45].

4.2.2. Experimental Results. Tables 2–4 display the cluster-
ing results of each algorithm concerning the accuracy
evaluation metric on ORL, CMU PIE, and COIL20, re-
spectively. 'erefore, it is obvious to see that the accuracy of
our proposed RSS-LRR method consistently beats those of
the compared methods in all three datasets. For example, on
the ORL dataset, the accuracy of our proposed method is
about 1% higher than that of its closest competitor on clean
data. 'en, gradually increasing the noise level, one may
notice that all the algorithms had reduced performance.
However, our proposed method shows more robustness
than the other methods, especially with 20% noise damage.
Let us take, for instance, the clustering result of LRR, which
moved from 0.7505 to 0.3497, while that of the proposed
method had a lower drop from 0.7609 to 0.5650.

Similarly, in Tables 3 and 4, we can also see that the
proposed method maintained its performance over other
methods on the CMU PIE and COIL20 datasets. Particu-
larly, RSS-LRR results with a 20% corruption level show that
its accuracy is about 4% better than that of GODEC+, which
is 0.5069 on the COIL20 dataset. Accordingly, we present the

clustering variation graph of each method in Figure 4 that
further reveals the robustness of the proposed method to
noise.'us, it is safe to conclude that the proposed method’s
performance is steadier than that of the other algorithms,
especially at a high level of corruption. We attribute that to
our scaling factor approach in iteratively overcoming the
noise effect.

4.3. Image Recognition with Contiguous Occlusion

4.3.1. Experimental Settings. In order to evaluate the ro-
bustness of RSS-LRR on image recognition under different
levels of contiguous occlusions in images [19], we randomly
add 6 × 6 and 8 × 8 46 block occlusions to each dataset, as
illustrated in Figure 5. 'erefore, 50% of samples in each
dataset are selected as the training set and the rest as the
testing set. Besides, we compare our proposed method’s
performance with that of similar ones: LRR, LRRLC, latent
LRR (LLRR), GLRR, and GODEC+, by adopting relevant
experimental settings in Section 4.2. 'us, each algorithm’s
classification accuracy is evaluated using the K nearest
neighbor (KNN) classifier.

4.3.2. Experimental Results. In Table 5, the average classi-
fication accuracies are obtained on the ORL dataset in two
levels of contiguous occlusions. From Table 5, we can see
that the accuracy of RSS-LRR is only slightly higher than that

(1) Input: training dataset X, regulation parameter λ
(2) Initialize: t � 0, k � 0, Jk�0 � 0, Zk�0 � 0, Ek�0 � 0, ϵ1 � 10− 6, ϵ2 � 10− 6, ε � 0.0001, D � Diag(ones(n, 1)).
(3) While not converged do
(4) Update 􏽢X by 􏽢X � X D.
(5) Initialize: M1 � 0, M2 � 0, μ> 0, ρ> 0.
(6) Set: Jk � Jk− 1, Zk � Zk− 1, Ek � Ek− 1.
(7) While not converged do
(8) Update J while fixing others by equation (7).

J∗ � argminjJ∗ + (1/2)J − (Z + (M2/μ))2F
(9) Update Z while fixing others by equation (8).

Z∗ � (I + 􏽢X
T 􏽢X)− 1( 􏽢X

T 􏽢X − 􏽢X
T
E + J + ( 􏽢X

T
M1 − M2)/μ)

(10) Update E while fixing others by equation (9).
E∗ � argmin(λ/μ)||E||2,1 + (1/2)||E − ( 􏽢X − 􏽢XZ + (M1/μ))||

2
F

(11) Update the multipliers.
M1 � M1 + μ( 􏽢X − 􏽢XZ − E),

M2 � M2 + μ(Z − J)
(12) Update μ by μ � min(ρμ, max(μ))

(13) Update tk � tk + 1
(14) Check convergence conditions

|| 􏽢X − 􏽢XZk − Ek||∞< ϵ1, ||Jk − Ek||∞< ϵ1
(15) end while
(16) [U, S, V] � sv d(Z), U1 � U(: , 1);
(17) Update D by di � |cos θi| + ε and cos θi � xT

i (XU1)/xiXU1.
(18) Update k � k + 1
(19) Check convergence conditions
(20) || 􏽢X − 􏽢XZ − E||∞ < ϵ2, ||J − E||∞ < ϵ2
(21) end while
(22) Output: Z, E

ALGORITHM 1: Algorithm of our proposed RSS-LRR.
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Figure 2: Results obtained by all algorithms on surveillance video.

Table 1: Activity results of all algorithms on surveillance video.

LRR GLRR GODEC+ RSS-LRR
Train Test Train Test Train Test Train Test

Precision 0.9153 0.4872 0.9204 0.8859 0.9208 0.8840 0.9388 0.8919
Recall 0.7897 0.7358 0.7937 0.7478 0.7940 0.7492 0.7999 0.7594
F-score 0.8478 0.5862 0.8523 0.8110 0.8527 0.8110 0.8638 0.8213
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of GODEC+. On the contrary, RSS-LRR’s accuracy is sig-
nificantly better than that of LRRLC, LLRR, and LRR by
about 5%, 4%, and 12%, respectively, under 6 × 6 occlusion.
For example, the classification accuracy of RSS-LRR is 0.6015
and 0.4891 in LRR. 'is indicates that our proposed RSS-
LRR can effectively obtain a good low-rank representation
than existing methods.

From Table 6, we can see that the accuracy of RSS-LRR
is better than that of LRR by about 6%. Under 6∗ 6 oc-
clusion, the accuracy of RSS-LRR is better than that of
GODEC+ and GLRR by about 2%.'us, our proposed RSS-
LRR demonstrates approximately outstanding effectiveness
on classification accuracies among all algorithms. In Ta-
ble 7, the accuracy of RSS-LRR is higher than that of LRRLC
and LRR by about 3% and 6% under 6∗ 6 occlusion. For
example, the classification accuracy of GLRR is 0.6985 and
0.7130 in RSS-LRR, while the result of LRR is 0.6522 under
6∗ 6 occlusion.

Figures 6(a)–6(f) illustrate the variations of classification
accuracies with increasing feature dimensionalities in dif-
ferent occlusions on ORL, CMU PIE, and COIL20 datasets.

From Figures 6(a) and 6(b), we can see that RSS-LRR
achieves the highest accuracies among all algorithms. In
Figures 6(c) and 6(d), we can see that the performance of
RSS-LRR becomes better than that of others on the CMU
PIE dataset when the feature dimensionality is over 70. From
Figures 6(e) and 6(f ), on the COIL20 dataset, we can see that
the accuracies of RSS-LRR gradually show its superiority
when the feature dimensionalities are more than 70.

From the above discussion, it can be seen that our
proposed RSS-LRR shows better performance in classifi-
cation accuracy compared with the other algorithms.

4.4. Experiments on Large-Scale Dataset

4.4.1. Experimental Settings. In this experiment, RSS-LRR
effectiveness is further evaluated on two larger datasets,
namely, COIL100 and LFW. Also, the relevant settings from
previous sections are adopted to perform the large-scale
experiment. We give a brief description of each dataset as
follows:

Original data Deg. = 0.05 Deg. = 0.15 Deg. = 0.2Deg. = 0.1

Figure 3: Example of the original image and corrupted one with different degree of noise on the ORL dataset.

Table 2: Clustering results concerning the accuracy of different algorithms on the ORL dataset.

0% 5% 10% 15% 20%
LRR 0.7505± 1.65 0.7335± 1.82 0.6955± 1.76 0.6247± 1.75 0.3497± 1.95
LRRLC 0.7512± 1.17 0.7248± 1.69 0.7053± 1.72 0.6260± 1.27 0.3604± 2.34
LLRR 0.7518± 1.70 0.7371± 1.31 0.7169± 1.18 0.6397± 1.67 0.3953± 1.98
GLRR 0.7460± 1.03 0.7402± 0.95 0.7098± 1.48 0.6650± 1.65 0.5638± 1.22
GODEC+ 0.7469± 1.27 0.7344± 1.03 0.7156± 1.44 0.6726± 1.76 0.5413± 1.75
RSS-LRR 0.7609± 1.09 0.7487± 1.38 0.7182± 1.12 0.6825± 1.23 0.5650± 1.50

Table 3: Clustering results concerning the accuracy of different algorithms on the CMU PIE dataset.

0% 5% 10% 15% 20%
LRR 0.6964± 1.03 0.6906± 1.54 0.6631± 1.80 0.5924± 1.81 0.4703± 1.75
LRRLC 0.7086± 1.41 0.7017± 1.84 0.6777± 1.70 0.6075± 1.95 0.4919± 2.07
LLRR 0.7188± 1.27 0.7083± 1.42 0.6926± 1.53 0.6149± 1.96 0.5118± 1.83
GLRR 0.7212± 1.57 0.7109± 1.67 0.6947± 1.03 0.6776± 1.71 0.5657± 1.92
GODEC+ 0.7297± 0.88 0.7147± 1.21 0.7058± 1.75 0.6406± 1.97 0.5422± 1.86
RSS-LRR 0.7308± 1.27 0.7286± 1.39 0.7125± 1.48 0.6834± 1.65 0.5725± 1.61

Table 4: Clustering results concerning the accuracy of different algorithms on the COIL20 dataset.

0% 5% 10% 15% 20%
LRR 0.7047± 1.25 0.6869± 1.55 0.6203± 1.47 0.4757± 1.97 0.3955± 1.91
LRRLC 0.7158± 1.48 0.6875± 1.52 0.6519± 1.60 0.5291± 2.04 0.4112± 2.09
LLRR 0.7170± 1.71 0.6949± 1.69 0.6618± 1.97 0.5340± 1.93 0.4260± 1.99
GLRR 0.7234± 2.02 0.6976± 1.98 0.6757± 1.51 0.5687± 2.38 0.4718± 2.12
GODEC+ 0.7224± 1.44 0.7006± 1.56 0.6822± 1.72 0.5977± 2.13 0.5069± 1.86
RSS-LRR 0.7285± 1.66 0.7103± 1.42 0.7055± 1.55 0.6123± 1.89 0.5417± 2.35
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Figure 4: Clustering variation of different algorithms with varying noise levels on (a) ORL, (b) PIE, and (c) COIL20 datasets.

original

6×6
occlusion

8×8
occlusion

Figure 5: Example of the original image and corrupted one with different occlusion sizes on the COIL20 dataset.

Table 5: Classification accuracies on ORL under 6× 6 and 8× 8
occlusions.

LRR LRRLC LLRR GLRR GODEC+ RSS-LRR
6× 6 0.4891 0.5488 0.5534 0.5721 0.5953 0.6015
8× 8 0.3899 0.4046 0.4337 0.4473 0.4620 0.4762

Table 6: Classification accuracies on CMU PIE under 6× 6 and
8× 8 occlusions.

LRR LRRLC LLRR GLRR GODEC+ RSS-LRR
6× 6 0.7835 0.7980 0.8054 0.8247 0.8249 0.8415
8× 8 0.7589 0.7773 0.7821 0.8081 0.7919 0.8112
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Figure 6: Variations of classification accuracies with increasing feature dimensionalities of 6 × 6 and 8 × 8 occlusions on (a, b) ORL,
(c, d) CMU PIE, and (e, f ) COIL20 datasets.
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COIL100: it has 7200 images of 100 objects, which
amount to 72 images for each object with each image
taken at pose intervals of 5 degrees.
LFW: the Labeled Faces in the Wild (LFW) dataset
originally contains more than 13000 face images, mainly
from Internet sources. However, 2484 face images were
extracted from 38 classes in our experiments due to
fewer samples in some categories. Each image was
resized to 64×64 pixels, yielding 4096 features per image.

4.4.2. Experimental Results. From the classification results
in Tables 8 and 9, it can be noticed that RSS-LRR perfor-
mance is consistently better than that of the compared
methods. For instance, while RSS-LRR’s performance of
0.6052 on the COIL100 dataset corrupted with 6× 6 block
occlusion (Table 8) is slightly better than that of the second-
best GODEC+ by over 1%, it is far better by over 2% under
8× 8 block occlusion. Similar results are obtained on the
LFW dataset (Table 9), where the proposed method’s per-
formance is also better than that of the GODEC+ method,
which follows closely, except that more margin of over 4% is
obtained under 6× 6 block occlusion.

From the clustering results displayed in Tables 10 and 11,
the following can be observed:

(i) Although all methods obtained comparative per-
formances on both datasets, their accuracies degrade
significantly by increasing noise. 'is, however, is
not unexpected because more corruption levels
would mean that more discriminative data features
are destroyed, making it difficult to accurately group
similar data samples in the same cluster.

(ii) Furthermore, while the relatively newer method
GODEC+ shows more robustness to noise than the
older methods, its clustering accuracy on clean data
is slightly lower than that of the other methods on
the LFW dataset, perhaps due to class imbalance in
this dataset.

(iii) Overall, RSS-LRR’s robustness to noise grows
stronger with the increase in noise level. For ex-
ample, its performance on COIL100 under 0%
noise is merely 1% better than that of its closest
competitor GODEC+, but it is over 2% better
under 20% noise. 'e same can be said on the LFW
dataset, where RSS-LRR’s clustering accuracy is
only about 2% better than that of LRR on clean
data, whereas it is more than 4% better than that of
GODEC+, which is the closest result under the 20%
noise level.

Additionally, in order to demonstrate more novelty,
RSS-LRR’s clustering and classification performances on
large-scale datasets are further compared with those of
two more recent state-of-the-art (SOTA) methods,
namely, nonnegative sparse discriminative low-rank
representation (NSDLRR) [47] and low-rank and col-
laborative representations for hyperspectral anomaly
detection (LRCRD) [48]. From the classification results
displayed in Figure 7, it can be observed that all three
methods obtain correlative results on both datasets.
However, RSS-LRR shows more robustness, especially on
the LFW dataset. Similarly, the clustering results are
shown in Figure 8, and the results are also close with those
of the proposed method displaying the best overall
performance.

Table 7: Classification accuracies on COIL20 under 6× 6 and 8× 8 occlusions.

LRR LRRLC LLRR GLRR GODEC+ RSS-LRR
6× 6 0.6522 0.6843 0.6912 0.6985 0.7056 0.7130
8× 8 0.6282 0.6305 0.6538 0.6490 0.6433 0.6638

Table 8: Classification accuracies on COIL100 under 6× 6 and 8× 8 occlusions.

LRR LRRLC LLRR GLRR GODEC+ RSS-LRR
6× 6 0.4765 0.5369 0.5501 0.5689 0.5912 0.6052
8× 8 0.3812 0.3991 0.4287 0.4454 0.4588 0.4803

Table 9: Classification accuracies on LFW under 6× 6 and 8× 8 occlusions.

LRR LRRLC LLRR GLRR GODEC+ RSS-LRR
6× 6 0.5106 0.5562 0.5732 0.5899 0.6021 0.6457
8× 8 0.4031 0.4321 0.4416 0.4541 0.4953 0.5276

Table 10: Clustering results concerning the accuracy of different algorithms on the COIL100 dataset.

0% 5% 10% 15% 20%
LRR 0.6854± 1.53 0.6741± 1.28 0.6376± 1.89 0.4964± 2.61 0.4236± 1.42
LRRLC 0.6931± 1.37 0.6823± 1.43 0.6423± 1.59 0.5191± 1.87 0.4243± 1.87
LLRR 0.7043± 1.46 0.6812± 1.53 0.6442± 1.64 0.5230± 2.01 0.4195± 1.78
GLRR 0.7102± 1.67 0.6854± 1.85 0.6532± 1.49 0.5694± 2.38 0.4832± 2.05
GODEC+ 0.7156± 1.87 0.7001± 1.47 0.6588± 1.84 0.5854± 2.13 0.5154± 1.21
RSS-LRR 0.7264± 1.31 0.7113± 1.44 0.7015± 1.18 0.6103± 1.42 0.5417± 1.61
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4.5. Convergence Study. Based on established standards of
inexact augmented Lagrange multiplier (IALM) optimiza-
tion strategy in several pieces of literature [5, 49–51], the
objective function values of the J, Z, and E subproblems
were expected to decrease monotonically in each iteration

until convergence. Besides, the Z subproblem is known to
have a closed-form solution [51] since it has a convex
function. Also, the convergence of the J and E subproblems
is confirmed by references [36, 52–54], respectively. 'us, a
slow convergence is supposed when everything is put
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Figure 7: Classification results concerning the accuracy of different SOTA methods on (a) COIL100 and (b) LFW datasets under various
block occlusion levels.
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Figure 8: Clustering results concerning the accuracy of different SOTAmethods on (a) COIL100 and (b) LFW datasets under various noise
levels.

Table 11: Clustering results concerning the accuracy of different algorithms on the LFW dataset.

0% 5% 10% 15% 20%
LRR 0.7605± 1.53 0.7305± 1.84 0.7122± 1.76 0.6263± 1.75 0.3547± 1.65
LRRLC 0.7512± 1.53 0.7298± 1.26 0.7099± 1.72 0.6310± 1.27 0.3864± 2.14
LLRR 0.7518± 1.32 0.7431± 2.17 0.7169± 2.18 0.6397± 1.74 0.4311± 1.98
GLRR 0.7560± 1.03 0.7457± 1.97 0.7098± 1.53 0.6780± 1.85 0.5256± 1.87
GODEC+ 0.7491± 1.27 0.7434± 1.92 0.7156± 1.44 0.6856± 1.79 0.5413± 1.34
RSS-LRR 0.7832± 1.36 0.7567± 1.72 0.7269± 1.84 0.6952± 1.68 0.5893± 1.76
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together. Luckily, as shown in Figure 9, the proposed al-
gorithm has a strong convergence property, as it converges
within 150 iterations on COIL100 and ORL datasets.

5. Conclusion

In this paper, we propose a recursive sample scaling low-
rank representation method named “RSS-LRR.” Different
from the existing methods, each data sample’s importance is
estimated by introducing a cosine scaling factor. 'is scaling
factor is used to extract each sample’s relationship with the
low-rank representation’s principal components in the
feature space. 'us, our proposed model can effectively
reduce the noise effect by iteratively reducing the importance
of noisy samples in learning the robust low-rank matrix.
Several experimental results on well-known benchmark
datasets demonstrate that RSS-LRR performs better in
clustering and classification tasks than the state-of-the-art
methods. It includes various experiments conducted on
gross corrupted data. 'erefore, we will extend RSS-LRR’s
idea to multiview data in future work.

Data Availability

'e datasets used in this study are open benchmark datasets
that are allowed for use in research. 'e following is a
description and links to each one of them. Each can be
accessed using the corresponding link. ORL contains face
images of ten individuals, with each of them contributing
forty distinct images under various conditions such as facial
details and different facial expressions: http://cam-orl.co.uk/
facedatabase.html. CMU PIE is a face image repository with
images of sixty-eight individuals with different settings. It
includes thirteen different poses, four different expressions,
and forty-two different illuminations: https://www.cs.cmu.
edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html.
COIL20 is an object image dataset consisting of 20 separate
objects. Each object contributes 72 grayscale images,
amounting to a total of 1440 images: https://www.cs.

columbia.edu/CAVE/software/softlib/coil-20.php.
COIL100 has 7200 images of 100 objects, which amount to
72 images for each object with each image taken at pose
intervals of 5 degrees: https://www.kaggle.com/jessicali9530/
coil100. 'e Labeled Faces in the Wild (LFW) dataset
originally contains more than 13000 face images, mainly
from Internet sources. However, 2484 face images were
extracted from 38 classes in our experiments due to fewer
samples in some categories. Each image was resized to
64× 64 pixels, yielding 4096 features per image: http://vis-
www.cs.umass.edu/lfw/.
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