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,is paper aims to make a combination between the quantum B-algebras (briefly,X-As) and two interesting theories (e.g., soft set
theory and fuzzy soft set theory). Firstly, we propose the novel notions of soft quantum B-algebras (briefly, SQB-As), a soft
deductive system of QB-As, and deducible soft quantum B-algebras (briefly, DSQB-As). ,en, we discuss the relationship
between SQB-As and DSQB-As. Furthermore, we investigate the union and intersection operations of DSQB-As. Secondly, we
introduce the notions of a fuzzy soft quantum B-algebras (briefly, FSQB-As), a fuzzy soft deductive system ofQB-As, and present
some characterizations of FSQB-As, along with several examples. Finally, we explain the basic properties of homomorphism
image of FSQB-As.

1. Introduction

In 1999, Molodtsov [1] introduced the notion called soft sets
(briefly, SS) (i.e., which reduce the uncertainty and
vagueness of knowledge). Maji et al. [2] presented the fuzzy
soft sets (briefly, FSS). Since then, many researchers studied
further on SS and FSS as in the following published articles
(e.g., [3–9]).

In 2014, Rump and Yang [10] proposed the notion of
QB-As (i.e., a partial ordered implication algebras). Rump
[11, 12] investigated many implication algebras (for ex-
ample, pseudo-BCK-algebras, po-groups, BL-algebras,
MV-algebras, GPE-algebras, and resituated lattices). Botur
and Paseka [13] studied filters on integral QB-As, and
Zhang et al. [14] established the quotient structures by
using q-filters in QB-As and investigated the relation
between basic implication algebras and QB-As. Han et al.
[15] constructed the unitality of QB-As and explained the
injective hulls of QB-As in [16]. By the framework of
QB-As, there are many published papers on QB-As (e.g.,
[17–23]).

Regarding these developments, as the motivation of this
paper, we will combineQB-As with SS and FSS (i.e., enrich
the previous work on hybrid soft set and fuzzy soft set
theories algebras with quantum structures). We introduce
the notions of SQB-As and the soft deductive system of
QB-As and consider the relation between SQB-As and
DSQB-As. Furthermore, some conditions are given to
ensure the operations union and intersection holds of soft
deductive of QB-As. ,en, we investigate the homomor-
phism image of deductive SQB-As. Lastly, we define
FSQB-As and fuzzy soft deductive system of QB-As and
give an example to illustrate its derive properties.

In the following, we have arranged the sections as fol-
lows. In Section 2, we briefly recall many notions related to
QB-As, SS, and FSS as indicated in Definitions 1–7, which
are used in the sequel. In Section 3, we propose the notions
of SQB-As, soft deductive system of QB-As, and
DSQB-As. In Section 4, we present the notions of FSQB-As
and a fuzzy soft deductive system of QB-As and discuss the
homomorphism image of FSQB-As. ,e conclusions are
explained in Section 5.
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2. Preliminaries

We give some basic notions of QB-As, SS, and FSS before
defining SQB-As in Section 3.

Definition 1 (cf. [10]).

(1) QB-As is a partially ordered set (X, ≤ ) with two
binary operations ⟶ and ⇝ which satisfy
(∀x, y, z ∈ X):

y⟶ z≤ (x⟶ y)⟶ (x⟶ z),

y⇝z≤ (x⇝y)⇝(x⇝z),

y≤ z⟹x⟶ y≤ x⟶ z,

x≤y⟶ z⟺y≤x⇝z.

(1)

(2) QB-A is a commutative (briefly, CQB-A) if
x⟶ y � x⇝y (∀x, y ∈ X).

(3) A subset Y of a QB-AX is a subalgebra if
x⟶ y, x⇝y ∈ Y (∀x, y ∈ X).

In what follows, denote by X a QB-A unless otherwise
specified.

Definition 2 (cf. [10]). LetX1 andX2 be two QB-As. ,en,
ψ: X1⟶ X2 is a morphism of QB-As if it satisfies
(∀x, y ∈ X1):

ψ(x⟶ y)≤ψ(x)⟶ ψ(y),

ψ(x⇝y)≤ψ(x)⇝ψ(y).
(2)

We say morphism ψ is exact if the inequalities become
equations.

Definition 3 (cf. [1]). Assume thatX be a set andK be a set
of parameters. SK (called SS) is a mapping given by
S: K⟶ 2X (i.e., 2X is the power set of X ).

Definition 4 (cf. [3]). Assume that SK1
and SK2

are two SS
over X. SK1

is a subset of SK2
(denoted by SK1

􏽦⊂ SK2
) if

(1) K1 ⊂K2

(2) For every k ∈K1, SK1
(k) and SK2

(k) are identical
approximations

Definition 5 (cf. [3]). Assume that SK1
,SK2

, and SK3
are

three SS over X. SK3
is the intersection of SK1

and SK2
(denoted by SK3

� SK1
􏽦∩SK2

) if

(1) K3 � K1 ∩K2

(2) ∀k ∈K3, SK3
(k) � SK1

(k) or SK2
(k) (as both are

same sets)

Definition 6 (cf. [3]). Assume that SK1
,SK2

, and SK3
are

three SS over X. SK3
is called the union of SK1

and SK2
(denoted by SK3

� SK1
􏽦∪SK2

) if

(1) K3 � K1 ∪K2.

(2) k ∈K3,

SK3
(k) �

SK1
(k), k ∈K1\K2

SK2
(k), k ∈K2\K1,

SK1
(k)∪SK2

(k), k ∈K1 ∩K2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Definition 7 (cf. [2]). FSS (called FSS) 􏽢SK is a mapping
given by 􏽢S: K⟶ IX (i.e., IX is the set of all fuzzy sets [24]
of X ).

3. SQB-As

We define the SQB-As and give several examples based on
SQB-As. Also, we will study the union and intersection
operations between two SQB-As as follows .

Definition 8. SK is a SQB-As over X if SK(x)(∀x ∈K)

are subalgebras of X (i.e., in case K � X).

Example 1

(1) Suppose X (i.e., X � k1, k2, k3, 1􏼈 􏼉) with the order
k2, k3 < k1 < 1. Now, we show, by Table 1, the binary
operation ⟶ .
Clearly, X is a CQB-A. We define SK(∀x ∈K)

(i.e., K � X) by

SK(x) � y ∈ X|(x⟶ y)⟶ y ∈ k1, 1􏼈 􏼉􏼈 􏼉. (4)

FromTable 1, we can get onSK(k1) � X, SK(k2) �

SK, (k3) � k1, k3, 1􏼈 􏼉, andSK(1) � X, and then,
SK(x)(x ∈K) are all subalgebras of X. Conse-
quently, SK is a SQB-As over X.

(2) Suppose X (i.e., X � k1, k2, k3, 1􏼈 􏼉) with the order
k1 < k2 < k3 < 1. Now, we show, by Table 2, the binary
operation ⟶ .

Clearly, X is a CQB-A. We define SK(∀x ∈K) (i.e.,
K � X) by

SK(x) � y ∈ X|xRy⟺x⟶ (x⟶ y) ∈ k3, 1􏼈 􏼉􏼈 􏼉.

(5)

From Table 2, we can get on (HTML translation failed),
and then, SK(x)(x ∈K) are all subalgebras of X. Con-
sequently, SK is a SQB-As over X.

We ensure the operations (i.e., union and intersection)
are holding on SQB-As by the following suggested theorem.

Theorem 1. Assume thatSK1
andSK2

are SQB-As overX.
5en,

(1) IfK3 � K1 ∩K2, then SK3
� SK1

􏽦∩SK2
is called a

SQB-A over X
(2) IfK1 ∩K2 � ∅, then SK1

􏽦∪SK2
is called a SQB-A

over X
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Proof

(1) If K3 � K1 ∩K2 and by Definition 5, we obtain
SK3

(x) � SK1
(x) or SK3

(x) � SK2
(x), for all

x ∈K3. Since SK1
and SK2

are SQB-As over X,
which implies that SK3

is a SQB-As overX, that is,
SK3

(x) � SK1
(x) or SK3

(x) � SK2
(x) are both

subalgebras of X(∈K3), therefore,
SK3

� SK1
􏽦∩SK2

is a SQB-A over X.
(2) If K3 � K1 ∪K2 and by Definition 6, we obtain

SK3
(x) �

SK1
(x), x ∈K1\K2,

SK2
(x), x ∈K2\K1,

SK1
(x)∪SK2

(x), x ∈K1 ∩K2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

For x ∈K1\K2 and since SK1
is a SQB-A, then we

have SK3
(x) � SK1

(x) is a subalgebra of X. Similarly, for
x ∈K2\K1, then SK3

(x) � SK2
(x) is a subalgebra of X

due to SK2
is a SQB-A. Again, for K1 ∩K2 � ∅, so

x ∈K1 ∩K2 or x ∈K2 ∩K1, for all x ∈K3. ,us, SK3
�

SK1
􏽦∪SK2

is a SQB-A over X. □

Remark 1. If K1 ∩K2 ≠∅, then ,eorem 1 (2) does not
hold by the following example.

Example 2. Suppose X (i.e., X � 0, k1, k2, k3, k4, 1􏼈 􏼉). Now,
we show, by Tables 3 and 4, the binary operations ⟶ and
⇝, respectively.

Clearly, X is a CQB-A. ,en,

(i) We define SK1
(∀x ∈K1) (i.e., K1 � X) by

SK1
(x) � y ∈ X|xRy⟺x⟶ (x⟶ y)x􏼈

⇝(x⇝y) ∈ k3, k4, 1􏼈 􏼉􏼉.
(7)

From Table 3, we can get SK1
(0) � X andSK1

(k1) � SK1
(k2) � S K1

(k3) � SK1
(k4) � SK1

(1) �

k3, k4, 1􏼈 􏼉, and then, SK1
(x)(x ∈K1) are all sub-

algebras of X. Consequently, SK1
is a SQB-As

over X.

(ii) We define SK2
(∀x ∈K2) (i.e., K2 � k2􏼈 􏼉) by

SK2
(x) � y ∈K2|xRy⟺x⟶ y � k2, x⇝y � k2􏼈 􏼉.

(8)

From Table 4, we can get SK2
(k2) � k2􏼈 􏼉 is the

subalgebra of X. Consequently, SK2
is a SQB-As

over X.

From (i) and (ii) andK1 ∩K2 � k2􏼈 􏼉≠∅, then we have
SK3

(k2) � SK1
(k2)∪SK2

(k2) � k3, k4, 1􏼈 􏼉∪ k2􏼈 􏼉 �

k2, k3, k4, 1􏼈 􏼉 is not a subalgebra over X. ,us, SK3
is not a

SQB-A.

3.1. Soft Deductive Systems of SQB-As. Based on Definition
8, we will propose the notion of soft deductive systems of
SQB-As as indicated below.

Definition 9. Assume that X � (X,⟶ ,⇝, ≤ ) be a
SQB-A. A nonempty subsetD⊆X is a deductive system of
X if it satisfies

(1) ∀x ∈ D, x⟶ x ∈ D, x⇝x ∈ D
(2) ∀x, y ∈ X, x ∈ D, x⟶ y ∈ D⟹y ∈ D

Definition 10. LetX be a SQB-A andY a subalgebra ofX.
A subsetD ofX is a deductive system ofX related toY (i.e.,
Y-deductive system of X ), denoted by D⋈Y, and satisfies
the following two conditions:

(1) ∀x ∈ D, x⟶ x ∈ D, x⇝x ∈ D
(2) ∀y ∈ Y, x ∈ D, x⟶ y ∈ D⟹y ∈ D

Remark 2. According to Definitions 9 and 10, we obtain that
any deductive system of X is Y-deductive system if Y is a
subalgebra of X.

Table 1: ,e binary operation ⟶ .

⟶ k1 k2 k3 1

k1 1 k1 k1 1
k2 1 1 k1 1
k3 1 1 k1 1
1 k1 k2 k3 1

Table 2: ,e binary operation ⟶ .

⟶ k1 k2 k3 1

k1 1 1 1 1
k2 k1 k2 1 1
k3 k1 k1 1 1
1 k1 k1 k3 1

Table 3: ,e binary operation ⟶ .

⟶ 0 k1 (HTML translation failed) k3 k4 1

0 1 1 1 1 1 1
k1 0 k2 0 k4 1 1
k2 0 0 k2 k4 k4 1
k3 0 0 0 1 1 1
k4 0 0 0 k4 1 1
1 0 0 0 k4 k4 1

Table 4: ,e binary operation ⇝.

⇝ 0 k1 k2 k3 k4 1

0 1 1 1 1 1 1
k1 0 0 0 1 1 1
k2 0 k1 k2 k3 k4 1
k3 0 0 0 1 1 1
k4 0 0 0 1 1 1
1 0 0 0 k3 k4 1
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,e converse of Remark 2 does not hold by Example 3
(i.e.,Y is a subalgebra ofX andY-deductive system is not a
deductive system).

Example 3. Suppose X (i.e., X � 0, k1, k2, k3, 1􏼈 􏼉) with
partial order 0< k1 < k3 < 1 and 0< k1 < k2 < 1. Now, we
show, by Tables 5 and 6, the binary operations ⟶ and⇝,
respectively.

Clearly, X is a CQB-A. Consider a subalgebra Y �

k1, 1􏼈 􏼉 and a subset D � k1, k2, 1􏼈 􏼉; we can see that D⋈Y.
However,D is not a deductive system ofX since k3⟶ 1 �

1 ∈ D and k3 ∉ D.

Definition 11. Assume that SK is a SQB-A over X. SD

(i.e., SS) over X is a soft deductive system of SK, denoted
by SD

􏽦⊳⊲SK, and satisfies the following two conditions:

(1) D⊆K
(2) ∀x ∈ D, SD(x)⊳⊲SK(x)

Now, we will give an example to illustrate Definition 11
as follows.

Example 4. Suppose X (i.e., X � k1, k2, k3, k4, 1􏼈 􏼉) with
partial order k1 < k2 < k3 < k4 < 1. Now, we show, by Tables 7
and 8, the binary operations ⟶ and ⇝, respectively.

Clearly, X is a CQB-A. We define SK(∀x ∈K) (i.e.,
K � X) by

SK(x) � y ∈ X|xRy⟺ (x⟶ y)⇝y � 1􏼈 􏼉. (9)

From Tables 7 and 8, we can get on SK(k1) �SK(k2) �

1, SK(k3) � k2,1􏼈 􏼉, SK(k4) � k2,k3,1􏼈 􏼉, andSK(1) �X,
and then, SK(x)(x ∈K) are all subalgebras of X. Conse-
quently, SK is a SQB-As over X.

Next, for a subset D � k2, k4􏼈 􏼉, we define SD(∀x ∈ D)

by

SD(x) � 1{ }∪ y ∈ X|y≤x􏼈 􏼉. (10)

,en, we obtain SD(k2) � k1, k2, 1􏼈 􏼉⊳⊲ 1{ } � SK(k2)

andSD(k4) � X⊳⊲ k2, k3, 1􏼈 􏼉 � SK(k4). Consequently,SD

is a soft deductive system of SK.

Theorem 2. Assume that SK is a SQB-A over X and SD1
and SD2

are two SS. 5en,

(1) If D1 ∩D2 ≠∅, then SD1
􏽦⊳⊲SK,SD2

􏽦⊳⊲
SK⟹SD1

􏽦∩SD2
􏽦⊳⊲SK

(2) If D1 ∩D2 � ∅, then SD1
􏽦⊳⊲SK,SD2

􏽦⊳⊲SK⟹
SD1

􏽦∪SD2
􏽦⊳⊲SK

Proof

(1) Follow from Definition 5.
(2) If SD1

􏽦⊳⊲SK,SD2
􏽦⊳⊲SK, then, by Definition 6, we

haveD3 � D1 ∩D2 (i.e., x ∈ D3),SD1
􏽦∪SD2

� SD3
,

and

SD3
(x) �

SD1
(x), x ∈ D1\D2

SD2
(x), x ∈ D2\D1,

SD1
(x)∪SD2

(x), x ∈ D1 ∩D2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

Since D1 ∩D2 � ∅, we obtain either x ∈ D1\D2 or
x ∈ D2\D1. ,en, we have the following:

Case 1: if x ∈ D1\D2, since SD1
􏽦⊳⊲SK, then

SD3
(x) � SD1

(x)⊳⊲SK(x)

Case 2: if x ∈ D2\D1 and SD2
􏽦⊳⊲SK, then

SD3
(x) � SD2

(x)⊳⊲SK(x)

Consequently, for all x ∈ D3, we haveSD3
(x)⊳⊲SK(x),

which implies that SD1
􏽦∪SD2

� SD3
􏽦⊳⊲SK. □

Remark 3. If K1 ∩K2 ≠∅, then ,eorem 2 (2) does not
hold by the following example.

Example 5. Suppose X (i.e., X � 0, k1, k2, k3, k4, 1􏼈 􏼉). Now,
we show, by Table 9, the binary operations ⟶ .

Table 5: ,e binary operation ⟶ .

⟶ 0 k1 k2 k3 1

0 1 1 1 1 1
k1 0 1 k2 1 1
k2 k1 k1 1 1 1
k3 0 k1 k2 1 1
1 0 k1 k2 k3 1

Table 6: ,e binary operation ⇝.

⇝ 0 k1 k2 k3 1

0 1 1 1 1 1
k1 k2 1 k2 1 1
k2 0 k1 1 1 1
k3 0 k1 k2 1 1
1 0 k1 k2 k3 1

Table 7: ,e binary operation ⟶ .

⟶ k1 k2 k3 k4 1

k1 1 1 1 1 1
k2 k3 1 1 1 1
k3 k2 k2 1 1 1
k4 k2 k2 kc 1 1
1 k1 k2 k3 k4 1

Table 8: ,e binary operation ⇝.

⇝ k1 k2 k3 k4 1

k1 1 1 1 1 1
k2 k4 1 1 1 1
k3 k2 k2 1 1 1
k4 k1 k2 k3 1 1
1 k1 k2 k3 k4 1
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Clearly, X is a CQB-A. ,en,

(i) We define SK(∀x ∈K) (i.e., K � X) by

SK(x) � y ∈ X|xRy⟺ (x⟶ y)⟶ y ∈ k1, k2, 1􏼈 􏼉􏼈 􏼉.

(12)

From Table 9, we can get SK(0) � k1, k2, 1􏼈 􏼉,

SK(k1) � X, SK(k2) � SK(k3) � k1, 1􏼈 􏼉, and
SK(k4) � k1, k2,􏼈 k3, 1}, SK(1) � X, and then,
SK(x)(∀x ∈K) are all subalgebras of X. Conse-
quently, SK is a SQB-As over X.

(ii) We define SK1
(∀x ∈K1) (i.e., K1 � k1, k2, k3􏼈 􏼉)

by
SK1

(x) � y ∈ X|xRy⟺x⟶ y � 1􏼈 􏼉. (13)

,en, we can get SK1
(k1) � k1, 1􏼈 􏼉⊳⊲X � SK(k1),

SK1
(k2) � k2, 1􏼈 􏼉⊳⊲ a, 1{ } � SK(k2), and SK1

(k3) � k2, k3, 1􏼈 􏼉⊳⊲ k1, 1􏼈 􏼉. ,erefore, SK1
is a soft

deductive system over SK.
(iii) We define SK2

(∀x ∈K2) (i.e., K2 � k1􏼈 􏼉) by

SK2
(x) � y ∈ X|xRy⟺y⟶ x � k1􏼈 􏼉. (14)

,en, we can get SK2
(k1) � k2,􏼈

k3, 1}⊳⊲X � SK2
(k1). ,erefore, SK2

is a soft de-
ductive system over SK.

From (i)–(iii), we have SK3
� SK1

􏽦∪SK2
which is not a

soft deductive system of SK, where
SK3

(k1) � SK1
(k1)∪SK2

(k1) � k1, k2, k3, 1􏼈 􏼉 is not a
SK(a)-deductive system because
k2⟶ k4 � k1 ∈ k1, k2, k3, 1􏼈 􏼉 and k4 ∉ k1, k2, k3, 1􏼈 􏼉.

3.2. DSQB-As. We will give the notion of DSQB-As and
investigate homomorphism image ofDSQB-As as indicated
below.

Definition 12. Assume that SK is a SQB-A over X. If
SK(x)(∀x ∈K) is a deductive system of X, then SK is
called a DSQB-A over X.

Example 6 (continued from Example 1 (2)). Clearly, SK is
DSQB-A over X.

Definition 13

(1) Suppose X be a QB-A with the greatest element 1
(i.e.,X just only a poset); for any x ∈ X, the order of
element x is defined as

O(x) � min p, q ∈ N|x⟶
p

x � 1, x⇝
q

x � 1}, (i),􏼚

(15)

where N is a natural number and
x⟶p x � (((x⟶ x)⟶ · · ·)⟶ x), x⇝

q
x �

(((x⇝x)⇝ · · ·)⇝x).
(2) If p, q ∈ N does not exist to satisfy the above con-

dition (i), then x(∀x ∈ X) is called infinite order.

Remark 4. Assume that SK and SK1
be two SQB-As over

X such thatK1 ⊆K⊆X. If SK is a DSQB-A overX, then
SK1

is a DSQB-A.
,e converse of Remark 4 does not hold by the following

Example 7.

Example 7 (continued from Example 2). We define
SK(∀x ∈K) (i.e., K � X) by

SK(x) � y ∈ X|O(x) � O(y)􏼈 􏼉. (16)

,en, we get on SK(0) � SK(k3) �

SK(k4) � SK(k1) � 0, k3, k4, 1􏼈 􏼉, SK(k1) � k1􏼈 􏼉, and
SK(k2) � k2􏼈 􏼉. However, k3⟶ k1 � 0 ∈ 0, k3, k4, 1􏼈 􏼉 and
k1 ∉ 0, k3, k4, 1􏼈 􏼉 imply that SK is not DSQB-A. If we take
K1 � k3, k4, 1􏼈 􏼉⊆K and we define SK1

� y ∈􏼈

X|O(x) � O(y)}(∀x ∈K1), then SK1
is DSQB-A.

Definition 14. Assume that SK is SQB-A over X with the
greatest element 1. If SK(x) � X(∀x ∈K), then SK is
called whole DSQB-A.

Example 8. Suppose X (i.e., X � 0, k1, k2, 1􏼈 􏼉) with partial
order 0< k1 < k2 < 1. Now, we show, by Tables 10 and 11, the
binary operations ⟶ and ⇝, respectively.

Clearly, X is a CQB-A. We define SK(∀x ∈K) (i.e.,
K � X) by

SK(x) � y ∈ X|O(x) � O(y)􏼈 􏼉. (17)

From Tables 10 and 11, we can get on
SK(x) � X(∀x ∈K). ,us, SK is a whole DSQB-A over
X.

Now, we will study homomorphism image of DSQB-As
by the following two theorems.

Theorem 3. Assume that ψ: X⟶Y be a surjective exact
morphism of QB-A and X is a QB-As. If SK is a DSQB-A
over X, then ψ(SK) is alsoDSQB-A over Y.

Proof. SinceSK(x)(x ∈K) is a deductive system ofX and
ψ is surjective, then ψ(SK)(x) � ψ(SK(x)) is a deductive
system of Y which implies that ψ(SK) is a DSQB-A over
X. □

Theorem 4. Assume that ψ: X⟶ Y be a surjective exact
morphism of QB-A and SK a DSQB-A over X. 5en,

Table 9: ,e binary operation ⟶ .

⟶ 0 k1 k2 k3 k4 1

0 1 1 1 1 1 1
k1 k3 1 k2 k3 k2 1
k2 k4 k1 1 k2 k1 1
k3 k1 k1 1 1 k1 1
k4 k2 1 1 k2 1 1
1 0 k1 k2 k3 k4 1
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(1) If SK(x) � ker(ψ), for all x ∈K, then ψ(SK) is the
whole DSQB-A over Y

(2) If is wholeDSQB-A overX, then ψ(SK) is the whole
DSQB-A over Y

Proof

(1) Assume that SK(x) � ker(ψ), where
ker(ψ) � x ∈ X|ψ(x) � x⟶ x,􏼈 ψ(x) � x⇝x}.
Since ψ is surjective, then, from ,eorem 3, we have
ψ(SK)(x) � ψ(SK(x)) � ψ(X) � Y(x ∈K).
,us, ψ(SK) is the whole DSQB-A over Y.

(2) Clearly, SK(x) � X since SK is whole DSQB-A
over X(x ∈K). ,us,
ψ(SK)(x) � ψ(SK(x)) � ψ(X) � Y(x ∈K). By
,eorem 3, we have ψ(SK) is the whole DSQB-A
over Y □

4. FSQB-As

We give the definition of FSQB-As; a concrete example is
given to illustrate its derive properties. Furthermore, we
study the homomorphism image and preimage of FSQB-As.
Now, we first propose the definition of fuzzy quantum
B-algebra (briefly, FQB-A) as indicated below.

Definition 15. We call FQB-A (or a fuzzy set 􏽢μ inQB-A) if it
satisfies (∀x, y ∈ X,X is QB-A):

􏽢μ(x⟶ y)≥min 􏽢μ(x), 􏽢μ(y)􏼈 􏼉,

􏽢μ(x⇝y)≥min 􏽢μ(x), 􏽢μ(y)􏼈 􏼉.
(18)

Definition 16. We call 􏽢μ is a fuzzy deductive system ofX if it
satisfies (∀x, y ∈ X):

􏽢μ(x⟶ x)≥ 􏽢μ(x),

􏽢μ(x⇝x)≥ 􏽢μ(x),

􏽢μ(y)≥min 􏽢μ(x⟶ y), 􏽢μ(x)􏼈 􏼉.

(19)

Definition 17. Assume that 􏽢SK be a FSS over X. ,en,

(1) If there exists 􏽢μ ∈K such that 􏽢SK[μ] is a FQB-A
(i.e., fuzzy deductive system) in aQB-A overX, then
􏽢SK is called a 􏽢SK-A (i.e., fuzzy soft deductive
system FSDS) which depends on a parameter set 􏽢μ
over X

(2) If 􏽢SK[μ] is a FQB-A (i.e., fuzzy deductive system) of
X based on all parameters, then we say that 􏽢SK is a
FSQB-A (i.e., FSDS) of X

In the following, a concrete example is given to illustrate
Definition 17.

Example 9. Suppose that there are five-class cars:

X � BMW, Audi, Toyota, Jeep, Cadilac􏼈 􏼉. (20)

Let ⊕ and ⊗ be two soft machines to characterize two
cars, defined by the following manner.

BMW⊕x � Cadilac, forall x ∈ X,

Audi⊕y �
Jeep, y � BMW,

Cadilac, y ∈ Audi, Toyouta, Jeep, Cadilac􏼈 􏼉,
􏼨

Toyota⊕z �

Toyota, z � BMW,

Jeep, z � Audi,

Cadilac, z ∈ Toyota, Jeep, Cadilac􏼈 􏼉,

⎧⎪⎪⎨

⎪⎪⎩

Jeep⊕s �

Toyota, s � BMW,

Jeep, s ∈ Audi, Toyoya􏼈 􏼉,

Cadilac, s ∈ Jeep, Cadilac􏼈 􏼉,

⎧⎪⎪⎨

⎪⎪⎩

Cadilac⊕t �

BMW, t � BMW,

Audi, t � Audi,

Toyota, t � Toyota,

Jeep, t � Jeep,

Cadilac, t � Cadilac,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

BMW⊗ x � Cadilac forallx ∈ X,

Audi⊗y �
Jeep, y � BMW,

Cadilac, y ∈ Audi, Toyouta, Jeep, Cadilac􏼈 􏼉,
􏼨

Toyota⊗ z �
Jeep, z ∈ BMW, Audi{ },

Cadilac, z ∈ Toyouta, Jeep, Cadilac􏼈 􏼉,
􏼨

Jeep⊗ s �

Audi, s � BMW,

Jeep, s ∈ Audi, Toyouta􏼈 􏼉,

Cadilac, s ∈ Jeep, Cadilac􏼈 􏼉,

⎧⎪⎪⎨

⎪⎪⎩

Cadilac⊗ t �

BMW, t � BMW,

Audi, t � Audi,
Toyota, t � Toyota,

Jeep, t � Jeep,

Cadilac, t � Cadilac.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Table 10: ,e binary operation ⟶ .

⟶ 0 k1 k2 1

0 1 1 1 1
k1 k1 1 1 1
k2 k1 k1 1 1
1 0 k1 k2 1

Table 11: ,e binary operation ⇝.

⇝ 0 k1 k2 1

0 1 1 1 1
k1 k2 1 1 1
k2 0 k1 1 1
1 0 k1 k2 1
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,en, (X,⊕, ⊗ , ≤ ) is aQB-A. Now, we consider a set of
parameters: 􏽢μ �(Excellent, Good, Moderate)∈∈K. ,en, we
have the following:

(1) We define 􏽢SK[􏽢μ] over X (i.e., 􏽢SK[Excellent],
􏽢SK[Good], and 􏽢SK[Moderate] are fuzzy sets) by
Table 12.
,erefore, we can see that 􏽢SK[Excellent],
􏽢SK[Good], and 􏽢SK[Moderate] are all FSQB-As
based on parameters “Excellent,” “Good,” and
“Moderate” overX. ,us, 􏽢SK is a FSQB-A overX.

(2) We define 􏽢SK1
[􏽢μ] over X (i.e., 􏽢SK1

[Excellent],
􏽢SK1

[Good], and 􏽢SK1
[Moderate] are fuzzy sets) by

Table 13.
However, 􏽢SK1

[􏽢μ] is not a FSQB-A based on a pa-
rameter “Excellent” over (HTML translation failed),
where
􏽢SK1

[Excellent](Toyota⊕BMW) � 􏽢SK1
[Excellent]

(Toyota) � 0.1≱0.2 � min 0.2, 0.4{ } � min 􏽢SK1
􏽮

[Excellent] (Audi), 􏽢SK1
[Excellent](BMW)}. Also,

we obtain that 􏽢SK1
[􏽢μ] is a FSQB-A based on both

the parameter “Good” and “Moderate” over X.
(3) We define 􏽢SK2

[􏽢μ] over X (i.e., 􏽢SK2
[Excellent] and

􏽢SK2
[Good] are fuzzy sets) by Table 14.

,en, 􏽢SK2
[􏽢μ] is a FSDS on parameters “Excellent.”

However, 􏽢SK2
[μ] is not a fuzzy deductive system of

X based on parameter “Good,” where
􏽢SK2

[Good](Toyota)� 0.3< 0.5 � min 􏽢SK2
􏽮

[Good](Jeep⊕Toyota), 􏽢SK2
[Good](Jeep)}.

(4) We define 􏽢SK3
[􏽢μ] over X (i.e., 􏽢SK3

[Excellent] and
􏽢SK2

[Moderate] are fuzzy sets) by Table 15.
,en, 􏽢SK3

[􏽢μ] is a FSDS of X.

Now, we will present several characterizations of
FSQB-As.

By Definition 17, if 􏽢SK is a FSQB-A of QB-A over X
based on all parameters, then we say that 􏽢SK is a FSQB-A of
X, that is,

􏽢SK[􏽢μ](x⟶ y)≥min 􏽢SK[􏽢μ](x), 􏽢SK[􏽢μ](y)􏽮 􏽯,

􏽢SK[􏽢μ](x⇝y)≥min 􏽢SK[􏽢μ](x), 􏽢SK[􏽢μ](y)􏽮 􏽯.
(23)

Proposition 1. Assume X be a QB-A. If 􏽢SK is FSQB-A
overX, then, for all t ∈ [0, 1], ( 􏽢SK)t≠∅ is the subalgebra of
X, in which

􏽢SK􏼐 􏼑
t

� 􏽢SK[􏽢μ]􏼐 􏼑
t
|􏽢μ ∈K􏽮 􏽯. (24)

Proof. Let ( 􏽢SK[􏽢μ])t≠∅. ,en, ∀x, y ∈ ( 􏽢SK[􏽢μ])t; since
􏽢SK is a FSQB-A, then 􏽢SK[􏽢μ](x)≥ t, 􏽢SK[􏽢μ](y)≥ t. So,

􏽢SK[􏽢μ](x⟶ y)≥min 􏽢SK[􏽢μ](x⟶ y), 􏽢SK[􏽢μ](x⇝y)􏽮 􏽯

≥min 􏽢SK[􏽢μ](x), 􏽢SK[􏽢μ](y)􏽮 􏽯≥ t.

(25)

Similarly, we have 􏽢SK[􏽢μ](x⇝y)≥ t. ,erefore,
x⟶ y, x⇝y ∈ ( 􏽢SK[􏽢μ])t. ,is implies that ( 􏽢SK[􏽢μ])t is
the subalgebra of X.

Analogously, we can get Proposition 2 as follows. □

Proposition 2. Assume that SK1
and SK2

are two FSQB-A
overX.5en,SK1

􏽦∩SK2
andSK1

􏽦∪SK2
are FSQB-As over

X.

Definition 18. Let (α, β) be a fuzzy soft map from QB-A
over X to QB-A over Y. ,en,

(1) If α is an exact morphism fromX toY, then (α, β) is
called a FSQB-A exact morphism from X to Y

(2) If α is an isomorphism from X to Y and β is a
bijective from K1 to K2, then (α, β) is a called an
isomorphism between FSQB-As

Proposition 3. Let X and Y be two QB-As. SK is a
FSQB-A overY and (α, β) a FSQB-A exact morphism from
X to Y; then, (α, β)− 1SK is FSQB-A over X.

Table 13: Fuzzy sets 􏽢SK1
[􏽢μ] over X.

􏽢SK1
BMW Audi Toyota Jeep Cadilac

Excellent 0.4 0.2 0.1 0.6 0.8
Good 0.2 0.2 0.3 0.5 0.7
Moderate 0.1 0.1 0.4 0.5 0.9

Table 14: Fuzzy sets 􏽢SK2
[􏽢μ] over X.

􏽢SK2
BMW Audi Toyota Jeep Cadilac

Excellent 0.2 0.2 0.2 0.2 0.6
Good 0.2 0.2 0.3 0.5 0.7

Table 15: Fuzzy sets 􏽢SK3
[􏽢μ].

􏽢SK3
BMW Audi Toyota Jeep Cadilac

Excellent 0.3 0.3 0.3 0.3 0.3
Moderate 0.1 0.1 0.1 0.1 0.7

Table 12: Fuzzy sets 􏽢SK[􏽢μ] over X.

􏽢SK BMW Audi Toyota Jeep Cadilac

Excellent 0.2 0.2 0.5 0.6 0.8
Good 0.1 0.2 0.3 0.5 0.7
Moderate 0.1 0.1 0.4 0.4 0.6
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Proof. For 􏽢μ ∈ β− 1(K),

α− 1
SK( 􏼁[􏽢μ](x⟶ y)

� SKβ[􏽢μ](α(x⟶ y))

� SKβ[􏽢μ](α(x)⟶ α(y))

≥min SKβ[􏽢μ]α(x), SKβ[􏽢μ]α(y)􏼈 􏼉

� min α− 1
SK( 􏼁[􏽢μ](x), α− 1

SK( 􏼁[􏽢μ](x)􏽮 􏽯.

(26)

Consequently, (α, β)− 1SK is a FSQB-A over X.
Similarly, we can get Proposition 4 as follows. □

Proposition 4. Let X and Y be two QB-As. SK is a
FSQB-As over X and (α, β) a FSQB-As isomorphism from
X to Y; then, (α, β)SK is the FSQB-As over Y.

5. Conclusions

In this paper, we introduce the concept of SQB-As, and some
examples are given to illustrate this definition. Also, we in-
vestigate the union and intersection operations between two
SQB-As and give some conditions for the operation holds.
With the help of the definition of SQB-As, we define soft
deductive systems of SQB-As and then investigate the re-
lation between them. As a further step, we define DSQB-As
and investigate the homomorphism image of DSQB-As.
Moreover, we define FSQB-As. Finally, a concrete example is
given to illustrate its derive properties; besides, homomor-
phism image and preimage of FSQB-As are discussed.

As a future work, it makes sense to apply SQB-As to
medical diagnosis (for example, [25, 26]) in practice. Fur-
thermore, it would be interesting if we study hybrid soft
lattice-ordered quantum B-algebras.
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