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Toeplitz networks are used as interconnection networks due to their smaller diameter, symmetry, simpler routing, high con-
nectivity, and reliability.*e edge metric dimension of a network is recently introduced, and its applications can be seen in several
areas including robot navigation, intelligent systems, network designing, and image processing. For a vertex s and an edge g � s1s2
of a connected graph G, the minimum number from distances of s with s1 and s2 is called the distance between s and g. If for every
two distinct edges s1, s2 ∈ E(G), there always exists w1εWE⊆V(G), such that d(s1, w1)≠d(s2, w1); then, WE is named as an edge
metric generator. *e minimum number of vertices in WE is known as the edge metric dimension of G. In this study, we consider
four families of Toeplitz networks Tn(1, 2), Tn(1, 3), Tn(1, 4), and Tn(1, 2, 3) and studied their edge metric dimension. We prove
that for all n≥ 4, edim(Tn(1, 2)) � 4, for n≥ 5, edim(Tn(1, 3)) � 3, and for n≥ 6, edim(Tn(1, 4)) � 3. We further prove that for all
n≥ 5, edim(Tn(1, 2, 3))≤ 6, and hence, it is bounded.

1. Introduction and Preliminaries

Computer networking provides a technique of communication
between a number of processors connected in a network. An
interconnection network is a structure of links that joins one or
more computers to each other for communication purposes. In
the framework of computer networking, an interconnection
network is used mainly to attach processors to processors or to
permit several processors to access one or more common
memory disks. Often, they are used to attach processors with
nearby attached memories to each other. *e approach in
which these processors/memories are attached to each other
have a major effect on the cost, applicability, consistency,
scalability, and performance of a computer networking. It is
always desirable for an interconnection network to have a
smaller diameter, alternate links among the processors, a
higher level of symmetry, and simpler routing. Toeplitz net-
works are the finest example of such an interconnection
network [1].

Let G � (V(G), E(G)) be a connected and undirected
graph. Let dv represents the degree of a vertex v which is the

total number of vertices adjacent to v ∈ V(G). Also, the
minimum degree of graph G is δ � δ(G), and the maximum
degree of G is represented by Δ � Δ(G). *e number of
edges on a shortest path from vertex x1 to vertex x2 is called
the distance between them, which is denoted by d(x1, x2).
Let e1 � y1y2 be an arbitrary edge of graph G and x1 belongs
to V(G); then, the distance between them is represented and
defined by d(x1, e1) � min d(x1, y1), d(x1, y2) .

Metric dimension introduced by Slater introduced the
metric dimension in [2], and he used it to address the
challenge of locating an intruder in a network. Slater worked
on the application of robot navigation and coast guard loran
in [2, 3]. Melter and Harary introduced the term resolving
set by expanding Slater’s concept in [4]. Melter and Tomescu
studied the metric dimension’s role in pattern recognition
and image processing issues [5]. Sebo and Tannier studied
the metric dimension in combinatorial optimization in [6].
Caceres et al. worked on the mastermind and coin weighing
games through metric dimension in [7]. Chartrand et al.
computed the resolvability of graphs in [8]. Khuller et al.
studied the application of metric dimension in navigation
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systems [9]. Salman et al. calculated the metric dimension of
circulant graphs in [10]. A vertex x1 distinguishes two
vertices v1 and v2 if d(x1, v1)≠ d(x1, v2). We assume
W⊆V(G) is a metric generator of graph G, if each pair of
elements of V(G) can be distinguished by some vertex of W.
*e metric dimension dim(G) of graph G is the smallest
cardinality of the metric generator of G.

Kelenc et al. in [11] introduced the idea of edge metric
dimension as follows. A vertex x1 distinguishes any two
edges f1 and f2, if d(f1, x1)≠d(f2, x1). We assume
WE⊆V(G) is an edge metric generator of graph G, if each
pair of elements ofE(G) can be distinguished by some vertex
of WE.*e edgemetric dimension edim(G) of graph G is the
smallest cardinality of the edge metric generator of graph G.
*e smallest edge metric generator is called the edge basis
(edge metric basis). Furthermore, Kelenc et al. in [11]
compared the metric dimension with the edge metric di-
mension and also discussed some useful results for paths Pn,
cycles Cn, complete graphs Kn, and wheel graphs. Zubrilina
computed the edge metric dimension of a graph with re-
lation to the total number of vertices of graph G in [12].
Filipovi et al. computed edim(GP(n, k)) for k � 1, 2 and
found the lower bound for all other values of k in [13]. Mufti
et al. calculated edim(BS(Cay(Zn⊕Z2))) in [14]. Ahsan
et al. computed edimCn(1, k) for k � 2, 3 in [15]. Fang et al.
discussed the application of networks in electrical engi-
neering in [16]. Chen et al. studied the application in
chemical graphs in [17]. Yang et al. calculated the edge
dimension of some families of wheel-related graphs in [18].
Wei et al. studied the edge dimension of some complex
convex polytopes in [19]. Deng et al. computed the edge
dimension of triangular, square, and hexagonal Mobius
ladder networks in [20]. Ahmad et al. calculated the edge
dimension of the benzenoid tripod structure in [21].
Moreover, Ahsan et al. calculated the edge dimension of
convex polytopes in [22]. Xing et al. computed the vertex
edge resolvability of the wheel graphs in [23]. Some useful
lemmas are given.

Lemma 1 (See [11]). For any n≥ 2, edim(Pn) � dim (Pn)

� 1, edim(Cn) � dim(Cn) � 2, and edim(Kn) �

dim(Kn) � n − 1. Moreover, edim(G) is 1⇔G is path.

Lemma 2 (See [11]). For a simple, connected graph G,

(i) edim(G)≥ log2(Δ(G)).
(ii) edim(G)≥ 1 + log2 δ(G).

1e rest of the study is organized as follows.1e exact edge
metric dimension of the families of Toeplitz networks Tn(1, 2),
Tn(1, 3), and Tn(1, 4) are computed in Sections 2, 3, and 4,
respectively. In Section 5, we will calculate the upper bound of
the family of Toeplitz networks Tn(1, 2, 3). Last, the con-
clusion of the article is given.

2. Edge Metric Dimension of Toeplitz
Networks Tn(1, 2)

In this section, we will find edim(Tn(1, 2)). It has
V(Tn(1, 2)) � v1, v2, v3, . . . , vn  and E(Tn(1, 2)) �

vξvξ+1: 1≤ ξ ≤ n − 1 ∪ vξvξ+2: 1≤ ξ ≤ n − 2 .
*e Toeplitz network for n � 10 is shown in Figure 1.*e

metric dimension of Tn(1, 2) is given.

Theorem 1 (See [24, 25]). If Tn(1, 2) be a graph of the
Toeplitz network with n≥ 4, then dim(Tn(1, 2)) � 2.

In the next theorem, we will find edim(Tn(1, 2)).

Theorem 2. Let Tn(1, 2) be the Toeplitz network. 1en,
edim(Tn(1, 2)) � 4, where n≥ 4.

Proof. We have the following cases in order to determine
edim(Tn(1, 2)).

Case (i): let n � 2ρ, ρ≥ 2, and WE � v1, v2, vn−1, vn  ⊂
V(Tn(1, 2)); we will prove that WE is an edge basis of
Tn(1, 2). Now, representations of each edge of Tn(1, 2)

are given by

r v2ξ−1v2ξ+1 | WE  �

(0, 1, ρ − 2, ρ − 1), if ξ � 1,

(ξ − 1, ξ − 1, ρ − ξ − 1, ρ − ξ), if 2≤ ξ ≤ ρ − 1,

⎧⎪⎨

⎪⎩

r v2ξv2ξ+2 | WE  �

(ξ, ξ − 1, ρ − ξ − 1, ρ − ξ − 1), if 1≤ ξ ≤ ρ − 2,

(ρ − 1, ρ − 2, 1, 0), if ξ � ρ − 1,

⎧⎪⎨

⎪⎩

r v2ξ−1v2ξ | WE  � (ξ − 1, ξ − 1, ρ − ξ, ρ − ξ), for 1≤ ξ ≤ ρ,

r v2ξv2ξ+1 | WE  � (ξ, ξ − 1, ρ − ξ − 1, ρ − ξ), for 1≤ ξ ≤ ρ − 1.

(1)

Since representations of every two edges are different, it
shows that edim(Tn(1, 2))≤ 4.
Now, we will prove that the edge metric generator of
cardinality three does not exist. Suppose

contrarily that edim(Tn(1, 2)) � 3 and let
WE � v1, vα, vβ . Now, Table 1 provides conditions
on α, β, and all edges (e1, e2) for which
r(e1 | WE) � r(e2 | WE).
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As a result, there is no generator with three vertices,
showing that edim(Tn(1, 2)) � 4 for n � 2ρ, ρ≥ 2.

Case (ii): let n � 2ρ + 1, ρ≥ 2, and WE � v1, v2,

vn−1, vn} ⊂ V(Tn(1, 2)); we will prove that WE is an
edge basis of Tn(1, 2). Now, representations of each
edge of Tn(1, 2) are given by

r v2ξ−1v2ξ+1 | WE  �

(0, 1, ρ − 1, ρ − 1), if ξ � 1,

(ξ − 1, ξ − 1, ρ − ξ, ρ − ξ), if 2≤ ξ ≤ ρ − 1,

(ρ − 1, ρ − 1, 1, 0), if ξ � ρ,

⎧⎪⎪⎨

⎪⎪⎩

r v2ξ−1v2ξ | WE  � (ξ − 1, ξ − 1, ρ − ξ, ρ − ξ + 1), for 1≤ ξ ≤ ρ,

r v2ξv2ξ+1 | WE  � (ξ, ξ − 1, ρ − ξ, ρ − ξ), for 1≤ ξ ≤ ρ,

r v2ξv2ξ+2 | WE  � (ξ, ξ − 1, ρ − ξ − 1, ρ − ξ), for 1≤ ξ ≤ ρ − 1.

(2)

Since representations of every two edges are different, it
shows that edim(Tn(1, 2))≤ 4.

Now, we will prove that the edge metric generator of
cardinality three does not exist. Suppose contrarily that
edim(Tn(1, 2)) � 3 and let WE � v1, vα, vβ . Now, Table 2
provides conditions on α, β, and all edges (e1, e2) for which
r(e1 | WE) � r(e2 | WE).

Hence, there is no generator having three vertices which
prove that edim(Tn(1, 2)) � 4 for n � 2ρ + 1, ρ≥ 2. □

3. Edge Metric Dimension of Toeplitz
Networks Tn(1, 3)

Now, we will find edim(Tn(1, 3)). It has
V(Tn(1, 3)) � v1, v2, . . . , vn  and E(Tn(1, 3)) � vξvξ+1:

1≤ ξ ≤ n − 1}∪ vξvξ+3: 1≤ ξ ≤ n − 3 . Figure 2 shows the
Toeplitz network for T18(1, 3). *e metric dimension of
Tn(1, 3) is given.

v1

v2

v3

v4

v5v6

v7

v8

v9

v10

Figure 1: Toeplitz network T10(1, 2).

Table 1: (e1, e2) for which r(e1|WE) � r(e2|WE).

Conditions on α and β (e1, e2)

2≤ α≤ n − 3, 3≤ β≤ n − 2 (vn−2vn−1, vn−2vn)

α � n − 2, β � n − 1 (vn−3vn−2, vn−2vn−4)

α � n − 1, β � n (v3v4, v2v4)

Journal of Mathematics 3



Theorem 3 (See [24]). If Tn(1, 3) be a graph of the Toeplitz
network with n≥ 5, then dim(Tn(1, 3)) � 3.

In the next theorem, we will find edim(Tn(1, 3)).

Theorem 4. Let Tn(1, 3) be the Toeplitz network. 1en,
edim(Tn(1, 3)) � 3, where n≥ 5.

Proof. We have the following cases in order to compute
edim(Tn(1, 3)).

Case (i): let n � 3ρ, ρ≥ 2, and WE � v1, v2, vn−1  ⊂
V(Tn(1, 3)); we will prove that WE is an edge basis of
Tn(1, 3). Now, representations of each edge of Tn(1, 3)

are given by

r v3ξ+1v3ξ+2 | WE  � (ξ, ξ, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 1,

r v3ξ+2v3ξ+3 | WE  � (ξ + 1, ξ, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 1,

r v3ξ+3v3ξ+4 | WE  � (ξ + 1, ξ + 1, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 2,

r v3ξ+1v3ξ+4 | WE  � (ξ, ξ + 1, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 2,

r v3ξ+2v3ξ+5 | WE  � (ξ + 1, ξ, ρ − ξ − 2), for 0≤ ξ ≤ ρ − 2

r v3ξ+3v3ξ+6 | WE  � (ξ + 2, ξ + 1, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 2.

(3)

Since representations of every two edges are different, it
shows that edim(Tn(1, 3))≤ 3.
Now, we will prove that the edge metric generator of
cardinality two does not exist. Suppose contrarily that
edim(Tn(1, 3)) � 2 and let WE � v1, vβ . Now, Table 3
provides conditions on α, β, and all edges (e1, e2) for
which r(e1 | WE) � r(e2 | WE).
Hence, there is no generator having two vertices which
prove that edim(Tn(1, 3)) � 3 for n � 3ρ, ρ≥ 2.
Case (ii): let n � 3ρ + 1, ρ≥ 2, and WE � v1, v2, vn−2  ⊂
V(Tn(1, 3)); we will prove that WE is an edge basis of
Tn(1, 3). Now, representations of each edge of Tn(1, 3)

are given by

r v3ξ+1v3ξ+2 | WE  � (ξ, ξ, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 1,

r v3ξ+2v3ξ+3 | WE  � (ξ + 1, ξ, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 1,

r v3ξ+3v3ξ+4 | WE  �
(ξ + 1, ξ + 1, ρ − ξ − 1), if 0≤ ξ ≤ ρ − 2,

(ρ, ρ, 1), if ξ � ρ − 1,

⎧⎨

⎩

r v3ξ+1v3ξ+4 | WE  �
(ξ, ξ + 1, ρ − ξ − 1), if 0≤ ξ ≤ ρ − 2,

(ρ − 1, ρ, 1), if ξ � ρ − 1,

⎧⎨

⎩

r v3ξ+2v3ξ+5 | WE  � (ξ + 1, ξ, ρ − ξ − 2), for 0≤ ξ ≤ ρ − 2,

r v3ξ+3v3ξ+6 | WE  � (ξ + 2, ξ + 1, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 2.

(4)

Since representations of every two edges are different, it
shows that edim(Tn(1, 3))≤ 3.
Now, we will prove that the edge metric generator of
cardinality two does not exist. Suppose contrarily that
edim(Tn(1, 3)) � 2 and let WE � v1, vβ . Now, Table 4

provides conditions on α, β, and all edges (e1, e2) for
which r(e1 | WE) � r(e2 | WE).
Hence, there is no generator having two vertices
which prove that edim(Tn(1, 3)) � 3 for n � 3ρ + 1,
ρ≥ 2.

Table 2: (e1, e2) for which r(e1|WE) � r(e2|WE).

Conditions on α and β (e1, e2)

2≤ α≤ n − 3, 3≤ β≤ n − 2 (vn−2vn−1, vn−2vn)

α � n − 2, β � n − 1 (vn−3vn−4, vn−3vn−5)

α � n − 1, β � n (v3v4, v2v4)

v1
v2

v3

v4

v5

v6

v7

v8
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v16
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v18

Figure 2: Toeplitz network T18(1, 3).
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Case (iii): let n � 3ρ + 2, ρ≥ 1 and
WE � v1, v2, vn  ⊂ V(Tn(1, 3)); we will prove that WE

is an edge basis of Tn(1, 3). Now, representations of
each edge of Tn(1, 3) are given by

r v3ξ+1v3ξ+2 | WE  � (ξ, ξ, ρ − ξ), for 0≤ ξ ≤ ρ,

r v3ξ+2v3ξ+3 | WE  � (ξ + 1, ξ, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v3ξ+3v3ξ+4 | WE  � (ξ + 1, ξ + 1, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v3ξ+1v3ξ+4 | WE  � (ξ, ξ + 1, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v3ξ+2v3ξ+5 | WE  � (ξ + 1, ξ, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 1,

r v3ξ+3v3ξ+6 | WE  � (ξ + 2, ξ + 1, ρ − ξ), for 0≤ ξ ≤ ρ − 2.

(5)

Since representations of every two edges are different, it
shows that edim(Tn(1, 3))≤ 3.

Now, we will prove that the edge metric generator of
cardinality two does not exist. Suppose contrarily that
edim(Tn(1, 3)) � 2 and let WE � v1, vβ . Now, Table 5

provides conditions on α, β, and all edges
(e1, e2) for which r(e1 | WE) � r(e2 | WE).

Hence, there is no generator having two
vertices which prove that edim(Tn(1, 3)) � 3 for
n � 3ρ + 2, ρ≥ 1. □

4. Edge Metric Dimension of Toeplitz
Networks Tn(1, 4)

Now, we will determine edim(Tn(1, 4)). It has
V(Tn(1, 4)) � v1, v2, v3, . . . , vn  and E(Tn(1, 4)) �

vξvξ+1: 1≤ ξ ≤ n − 1 ∪ vξvξ+4: 1≤ ξ ≤ n − 4 . *e Toeplitz
network for n � 20 is shown in Figure 3. Tn(1, 4) has the
following metric dimension.

Theorem 5 (See [24]). If Tn(1, 4) be a graph of the Toeplitz
network with n≥ 6, then dim(Tn(1, 4)) � 2.

In next theorem, we will find edim(Tn(1, 4)).

Theorem 6. Let Tn(1, 4) be the Toeplitz network. 1en
edim(Tn(1, 4)) � 3, where n≥ 6.

Proof. We have the following cases in order to determine
edim(Tn(1, 4)).

Case (i): let n � 4ρ, ρ≥ 2, and WE � v1, v2, vn−2  ⊂
V(Tn(1, 4)), we will prove that WE is an edge basis of
Tn(1, 4). Now, representations of each edge of Tn(1, 4)

are given by

r v4ξ+4v4ξ+8 | WE  �
(ξ + 2, ξ + 2, ρ − ξ − 1), if 0≤ ξ ≤ ρ − 3,

(ρ, ρ, 2), if ξ � ρ − 2,

⎧⎪⎨

⎪⎩

r v4ξ+1v4ξ+2 | WE  � (ξ, ξ, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 1,

r v4ξ+2v4ξ+3 | WE  � (ξ + 1, ξ, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 1,

r v4ξ+3v4ξ+4 | WE  � (ξ + 2, ξ + 1, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v4ξ+4v4ξ+5 | WE  � (ξ + 1, ξ + 2, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 2,

r v4ξ+1v4ξ+5 | WE  � (ξ, ξ + 1, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 2,

r v4ξ+2v4ξ+6 | WE  � (ξ + 1, ξ, ρ − ξ − 2), for 0≤ ξ ≤ ρ − 2,

r v4ξ+3v4ξ+7 | WE  � (ξ + 2, ξ + 1, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 2.

(6)

Table 4: (e1, e2) for which r(e1|WE) � r(e2|WE).

Conditions on β (e1, e2)

β � 3α, 1≤ α≤ ρ (v2v3, v3v4)

β � 3α + 1, 1≤ α≤ ρ (v3v4, v4v5)

β � 3α + 2, 1≤ α≤ ρ − 1 (v2v3, v3v4)

β � 2 (v3v4, v4v5)

Table 5: (e1, e2) for which r(e1|WE) � r(e2|WE).

Conditions on β (e1, e2)

β � 3α, 1≤ α≤ ρ (v2v3, v3v4)

β � 3α + 1, 1≤ α≤ ρ (v3v4, v4v5)

β � 3α + 2, 1≤ α≤ ρ − 1 (v2v3, v3v4)

β � 2 (v3v4, v4v5)

Table 3: (e1, e2) for which r(e1|WE) � r(e2|WE).

Conditions on β (e1, e2)

β � 3α, 1≤ α≤ ρ (v2v3, v3v4)

β � 3α + 1, 1≤ α≤ ρ − 1 (v3v4, v4v5)

β � 3α + 2, 1≤ α≤ ρ − 1 (v2v3, v3v4)

β � 2 (v3v4, v4v5)
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Since representations of every two edges are different, it
shows that edim(Tn(1, 4))≤ 3.
Now, we will prove that the edge metric generator of
cardinality two does not exist. Suppose contrarily that
edim(Tn(1, 4)) � 2 and let WE � v1, vβ . Now, Table 6
provides conditions on α, β and all edges (e1, e2) for
which r(e1 | WE) � r(e2 | WE).

Hence, there is no generator having two vertices which
prove that edim(Tn(1, 4)) � 3 for n � 4ρ, ρ≥ 2.
Case (ii): let n � 4ρ + 1, ρ≥ 2, and WE � v1, v4, vn  ⊂
V(Tn(1, 4)); we will prove that WE is an edge basis of
Tn(1, 4). Now, representations of each edge of Tn(1, 4)

are given by

r v4ξ+1v4ξ+2 | WE  �
(0, 2, ρ), if ξ � 0,

(ξ, ξ, ρ − ξρ), if 1≤ ξ ≤ ρ − 1,

⎧⎪⎨

⎪⎩

r v4ξ+2v4ξ+3 | WE  � (ξ + 1, ξ + 1, ρ − ξ + 1), for 0≤ ξ ≤ ρ − 1,

r v4ξ+3v4ξ+4 | WE  � (ξ + 2, ξ, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v4ξ+4v4ξ+5 | WE  � (ξ + 1, ξ, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 1,

r v4ξ+1v4ξ+5 | WE  �
(0, 1, ρ − 1), if ξ � 0,

(ξ, ξ, ρ − ξ − 1), if 1≤ ξ ≤ ρ − 1,

⎧⎪⎨

⎪⎩

r v4ξ+2v4ξ+6 | WE  �
(1, 2, ρ), if ξ � 0,

(ξ + 1, ξ + 1, ρ − ξ), if 1≤ ξ ≤ ρ − 2,

⎧⎪⎨

⎪⎩

r v4ξ+3v4ξ+7 | WE  � (ξ + 2, ξ + 1, ρ − ξ), for 0≤ ξ ≤ ρ − 2,

r v4ξ+4v4ξ+8 | WE  � (ξ + 2, ξ, ρ − ξ − 1), for 0≤ ξ ≤ ξ − 2.

(7)

Since representations of every two edges are different, it
shows that edim(Tn(1, 4))≤ 3.

Now, we will prove that the edge metric generator of
cardinality two does not exist. Suppose contrarily that

v1
v2

v3

v4

v5

v6

v7

v8

v9
v10v11
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v14
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v18

v19
v20

Figure 3: Toeplitz network a + c.
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edim(Tn(1, 4)) � 2 and let WE � v1, vβ . Now, Table 7
provides conditions on α, β, and all edges (e1, e2) for
which r(e1 | WE) � r(e2 | WE).
Hence, there is no generator having two vertices which
prove that edim(Tn(1, 4)) � 3 for n � 4ρ + 1, ρ≥ 2.

Case (iii): let n � 4ρ + 2, ρ≥ 1, and WE � v1, v2, vn  ⊂
V(Tn(1, 4)); we will prove that WE is an edge basis of
Tn(1, 4). Now, representations of each edge of Tn(1, 4)

are given by

r v4ξ+1v4ξ+2 | WE  � (ξ, ξ, ρ − ξ), for 0≤ ξ ≤ ρ,

r v4ξ+2v4ξ+3 | WE  � (ξ + 1, ξ, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v4ξ+3v4ξ+4 | WE  � (ξ + 2, ξ + 1, ρ − ξ + 1), for 0≤ ξ ≤ ρ − 1,

r v4ξ+4v4ξ+5 | WE  � (ξ + 1, ξ + 2, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v4ξ+1v4ξ+5 | WE  � (ξ, ξ + 1, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v4ξ+2v4ξ+6 | WE  � (ξ + 1, ξ, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 1,

r v4ξ+3v4ξ+7 | WE  � (ξ + 2, ξ + 1, ρ − ξ), for 0≤ ξ ≤ ρ − 2,

r v4ξ+4v4ξ+8 | WE  � (ξ + 2, ξ + 2, ρ − ξ), for 0≤ ξ ≤ ρ − 2.

(8)

Since representations of every two edges are different, it
shows that edim(Tn(1, 4))≤ 3.
Now, we will prove that the edge metric generator of
cardinality two does not exist. Suppose contrarily that
edim(Tn(1, 4)) � 2 and let WE � v1, vβ . Now, Table 8
provides conditions on α, β, and all edges (e1, e2) for
which r(e1 | WE) � r(e2 | WE).

Hence, there is no generator having two vertices which
prove that edim(Tn(1, 4)) � 3 for n � 4ρ + 2, ρ≥ 1.
Case (iv): let n � 4ρ + 3, ρ≥ 1, and
WE � v1, v2, vn−1  ⊂ V(Tn(1, 4)); we will prove that
WE is an edge basis of Tn(1, 4). Now, representations of
each edge of Tn(1, 4) are given by

r v4ξ+1v4ξ+2 | WE  � (ξ, ξ, ρ − ξ), for 0≤ ξ ≤ ρ,

r v4ξ+2v4ξ+3 | WE  � (ξ + 1, ξ, ρ − ξ), for 0≤ ξ ≤ ρ,

r v4ξ+3v4ξ+4 | WE  � (ξ + 2, ξ + 1, ρ − ξ + 1), for 0≤ ξ ≤ ρ − 1,

r v4ξ+4v4ξ+5 | WE  � (ξ + 1, ξ + 2, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v4ξ+1v4ξ+5 | WE  � (ξ, ξ + 1, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v4ξ+2v4ξ+6 | WE  � (ξ + 1, ξ, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 1,

r v4ξ+3v4ξ+7 | WE  � (ξ + 2, ξ + 1, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v4ξ+4v4ξ+8 | WE  � (ξ + 2, ξ + 2, ρ − ξ), for 0≤ ξ ≤ ρ − 2.

(9)

Table 6: (e1, e2) for which r(e1|WE) � r(e2|WE).

Conditions on β (e1, e2)

β � 4α, 1≤ α≤ ρ (v2v3, v5v6)

β � 4α + 1, 1≤ α≤ ρ − 1 (v4v5, v5v6)

β � 4α + 2, 1≤ α≤ ρ − 1 (v2v3, v4v5)

β � 4α + 3, 1≤ α≤ ρ − 1 (v2v3, v5v6)

β � 3 (v5v6, v5v9)

Table 7: (e1, e2) for which r(e1|WE) � r(e2|WE).

Conditions on β (e1, e2)

β � 4α, 1≤ α≤ ρ (v2v3, v5v6)

β � 4α + 1, 1≤ α≤ ρ (v4v5, v5v6)

β � 4α + 2, 1≤ α≤ ρ − 1 (v2v3, v4v5)

β � 4α + 3, 1≤ α≤ ρ − 1 (v2v3, v5v6)

β � 2, 3 (v3v4, v3v7)
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Since representations of every two edges are different, it
shows that edim(Tn(1, 4))≤ 3.

Now, we will prove that the edge metric generator of
cardinality two does not exist. Suppose contrarily that
edim(Tn(1, 4)) � 2 and let WE � v1, vβ . Now, Table 9
provides conditions on α, β, and all edges (e1, e2) for
which r(e1 | WE) � r(e2 | WE).

Hence, there is no generator having two vertices which
prove that edim(Tn(1, 4)) � 3 for n � 4ρ + 3, ρ≥ 1. □

5. Upper Bounds for the Edge Metric
Dimension of Toeplitz Networks Tn(1, 2, 3)

We shall compute the upper bound of edim(Tn(1, 2, 3)) in
this section. It has V(Tn(1, 2, 3)) � v1, v2, . . . , vn  and
E(Tn(1, 2, 3)) � vξvξ+1: 1≤ ξ ≤ n − 1 ∪ vξvξ+2: 1≤ ξ ≤
n − 2}∪ vξvξ+3: 1≤ ξ ≤ n − 3 . Figure 4 shows the Toeplitz

network T19(1, 2, 3). *e metric dimension of Tn(1, 2, 3) is
stated.

Theorem 7 (See [24]). If Tn(1, 2, 3) be a graph of the Toeplitz
network with n≥ 5, then dim(Tn(1, 2, 3)) � 3.

In the next result, we will find the upper bound of
edim(Tn(1, 2, 3)).

Theorem 8. Let Tn(1, 2, 3) be the Toeplitz networks. 1en,
edim(Tn(1, 2, 3))≤ 6, where n≥ 5.

Proof. We have the following cases to calculate the upper
bound of edim(Tn(1, 2, 3)):

Case (i): let n � 3ρ, ρ≥ 2, and WE � v1, v2, v3, vn−2,

vn−1, vn} ⊂ V(Tn(1, 2, 3)); we will prove that WE is an
edge basis of Tn(1, 2, 3). Now, representations of each
edge of Tn(1, 2, 3) are given by

r v3ξ+1v3ξ+2 | WE  �
(0, 0, 1, ρ − 1, ρ − 1, ρ), if ξ � 0,

(ξ, ξ, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ), if 1≤ ξ ≤ ρ − 1,

⎧⎨

⎩

r v3ξ+2v3ξ+3 | WE  �
(ξ + 1, ξ, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ − 1), if 0≤ ξ ≤ ρ − 2,

(ρ, ρ − 1, ρ − 1, 1, 0, 0), if ξ � ρ − 1,

⎧⎨

⎩

r v3ξ+3v3ξ+4 | WE  � (ξ + 1, ξ + 1, ξ, ρ − ξ − 2, ρ − ξ − 1, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 2,

r v3ξ+1v3ξ+4 | WE  �
(0, 1, 1, ρ − 2, ρ − 1, ρ − 1), if ξ � 0,

(ξ, ξ, ξ, ρ − ξ − 2, ρ − ξ − 1, ρ − ξ − 1), if 1≤ ξ ≤ ρ − 2,

⎧⎨

⎩

r v3ξ+2v3ξ+5 | WE  �

(1, 0, 1, ρ − 2, ρ − 2, ρ − 1), if ξ � 0,

(ξ + 1, ξ, ξ, ρ − ξ − 2, ρ − ξ − 2, ρ − ξ − 1), if 1≤ ξ ≤ ρ − 3,

(ρ − 1, ρ − 2, ρ − 2, 1, 0, 1), if ξ � ρ − 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

r v3ξ+3v3ξ+6 | WE  �
(ξ + 1, ξ + 1, ξ, ρ − ξ − 2, ρ − ξ − 2, ρ − ξ − 2), if 0≤ ξ ≤ ρ − 3,

(ρ − 1, ρ − 1, ρ − 2, 1, 1, 0), if ξ � ρ − 2,

⎧⎨

⎩

r �

(0, 1, 0, ρ − 1, ρ − 1, ρ − 1), if ξ � 0,

(ξ, ξ, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ − 1), if 1≤ ξ ≤ ρ − 2,

(ρ − 1, ρ − 1, ρ − 1, 0, 1, 0), if ξ � ρ − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

r v3ξ+2v3ξ+4 | WE  �
(1, 0, 1, ρ − 2, ρ − 1, ρ − 1), if ξ � 0,

(ξ + 1, ξ, ξ, ρ − ξ − 2, ρ − ξ − 1, ρ − ξ − 1), if 1≤ ξ ≤ ρ − 2,

⎧⎨

⎩

r v3ξ+3v3ξ+5 | WE  �
(ξ + 1, ξ + 1, i, ρ − ξ − 2, ρ − ξ − 2, ρ − ξ − 1), if 0≤ ξ ≤ ρ − 3,

(ρ − 1, ρ − 1, ρ − 2, 1, 0, 1), if ξ � ρ − 2.

⎧⎨

⎩

(10)

Table 8: (e1, e2) for which r(e1|WE) � r(e2|WE).

Conditions on β (e1, e2)

β � 4α, 1≤ α≤ ρ (v2v3, v5v6)

β � 4α + 1, 1≤ α≤ ρ (v4v5, v5v6)

β � 4α + 2, 1≤ α≤ ρ (v2v3, v4v5)

β � 4α + 3, 1≤ α≤ ρ − 1 (v2v3, v5v6)

β � 2, 3 (v3v4, v3v7)

Table 9: (e1, e2) for which r(e1|WE) � r(e2|WE).

Conditions on β (e1, e2)

β � 4α, 1≤ α≤ ρ (v2v3, v5v6)

β � 4α + 1, 1≤ α≤ ρ (v4v5, v5v6)

β � 4α + 2, 1≤ β≤ ρ (v2v3, v4v5)

β � 4α + 3, 1≤ α≤ ρ (v2v3, v5v6)

β � 2, 3 (v3v4, v3v7)
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Since representations of every two edges are different, it
shows that edim(Tn(1, 2, 3))≤ 6.
Case (ii): let n � 3ρ + 1, ρ≥ 2, and WE � v1, v2, v3, vn

−2, vn−1, vn} ⊂ V(Tn(1, 2, 3)); we will prove that WE is

an edge metric generator of Tn(1, 2, 3). Now, repre-
sentations of each edge of Tn(1, 2, 3) are given by

r v3ξ+1v3ξ+2 | WE  �
(0, 0, 1, ρ − 1, ρ, ρ), if ξ � 0,

(ξ, ξ, ξ, ρ − ξ − 1, ρ − ξ, ρ − ξ), if 1≤ ξ ≤ ρ − 1,


r v3ξ+2v3ξ+3 | WE  � (ξ + 1, ξ, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v3ξ+3v3ξ+4 | WE  �
(ξ + 1, ξ + 1, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ − 1), if 0≤ ξ ≤ ρ − 2,

(ρ, ρ, ρ − 1, 1, 0, 0), if ξ � ρ − 1,


r v3ξ+1v3ξ+4 | WE  �

(0, 1, 1, ρ − 1, ρ − 1, ρ − 1), if ξ � 0,

(ξ, ξ, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ − 1), if 1≤ ξ ≤ ρ − 2,

(ρ − 1, ρ − 1, ρ − 1, 1, 1, 0), if ξ � ρ − 1,

⎧⎪⎪⎨

⎪⎪⎩

r v3ξ+2v3ξ+5 | WE  �
(1, 0, 1, ρ − 2, ρ − 1, ρ − 1), if ξ � 0,

(ξ + 1, ξ, ξ, ρ − ξ − 2, ρ − ξ − 1, ρ − ξ − 1), if 1≤ ξ ≤ ρ − 2,


r v3ξ+3v3ξ+6 | WE  �
(ξ + 1, ξ + 1, ξ, ρ − ξ − 2, ρ − ξ − 2, ρ − ξ − 1), if 0≤ ξ ≤ ρ − 3,

(ρ − 1, ρ − 1, ρ − 2, 1, 0, 1), if ξ � ρ − 2,


r v3ξ+1v3ξ+3 | WE  �

(0, 1, 0, ρ − 1, ρ − 1, ρ), if ξ � 0,

(ξ, ξ, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ), if 1≤ ξ ≤ ρ − 2,

(ρ − 1, ρ − 1, ρ − 1, 1, 0, 1), if ξ � ρ − 1,

⎧⎪⎪⎨

⎪⎪⎩

r v3ξ+2v3ξ+4 | WE  �

(1, 0, 1, ρ − 1, ρ − 1, ρ − 1), if ξ � 0,

(ξ + 1, ξ, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ − 1), if 1≤ ξ ≤ ρ − 2,

(ρ, ρ − 1, ρ − 1, 0, 1, 0), if ξ � ρ − 1,

⎧⎪⎪⎨

⎪⎪⎩

r v3ξ+3v3ξ+5 | WE  � (ξ + 1, ξ + 1, ξ, ρ − ξ − 2, ρ − ξ − 1, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 2.

(11)

V1
V2

V3

V4

V5

V6

V7

V8

V9V10

V11

V12

V13

V14

V15

V16

V17

V18

V19

Figure 4: Toeplitz network T19(1, 2, 3).
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Since representations of every two edges are different, it
shows that edim(Tn(1, 2, 3))≤ 6.
Case (iii): let n � 3ρ + 2, ρ≥ 1, and WE � v1, v2, v3,

vn−2, vn−1, vn} ⊂ V(Tn(1, 2, 3)); we will prove that WE is

an edge metric generator of Tn(1, 2, 3). Now,
representations of each edge of Tn(1, 2, 3) are given by

r v3ξ+1v3ξ+2 | WE  �

(0, 0, 1, ρ, ρ, ρ), if ξ � 0,

(ξ, ξ, ξ, ρ − ξ, ρ − ξ, ρ − ξ), if 1≤ ξ ≤ ρ − 1,

(ρ, ρ, ρ, 1, 0, 0), if ξ � ρ,

⎧⎪⎪⎨

⎪⎪⎩

r v3ξ+2v3ξ+3 | WE  � (ξ + 1, ξ, ξ, ρ − ξ − 1, ρ − ξ, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v3ξ+3v3ξ+4 | WE  � (ξ + 1, ξ + 1, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ), for 0≤ ξ ≤ ρ − 1,

r v3ξ+1v3ξ+4 | WE  �

(0, 1, 1, ρ − 1, ρ − 1, ρ), if ξ � 0,

(ξ, ξ, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ), if 1≤ ξ ≤ ρ − 2,

(ρ − 1, ρ − 1, ρ − 1, 1, 0, 1), if ξ � ρ − 1,

⎧⎪⎪⎨

⎪⎪⎩

r v3ξ+2v3ξ+5 | WE  �

(1, 0, 1, ρ − 1, ρ − 1, ρ − 1), if ξ � 0,

(ξ + 1, ξ, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ − 1), if 1≤ ξ ≤ ρ − 2,

(ρ, ρ − 1, ρ − 1, 1, 1, 0), if ξ � ρ − 1,

⎧⎪⎪⎨

⎪⎪⎩

r v3ξ+3v3ξ+6 | WE  � (ξ + 1, ξ + 1, ξ, ρ − ξ − 2, ρ − ξ − 1, ρ − ξ − 1), for 0≤ ξ ≤ ρ − 2,

r v3ξ+1v3ξ+3 | WE  �
(0, 1, 0, ρ − 1, ρ, ρ), if ξ � 0,

(ξ, ξ, ξ, ρ − ξ − 1, ρ − ξ, ρ − ξ), if 1≤ ξ ≤ ρ − 1,


r v3ξ+2v3ξ+4 | WE  �

(1, 0, 1, ρ − 1, ρ − 1, ρ), if ξ � 0,

(ξ + 1, ξ, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ), if 1≤ ξ ≤ ρ − 2,

(ρ, ρ − 1, ρ − 1, 1, 0, 1), if ξ � ρ − 1,

⎧⎪⎪⎨

⎪⎪⎩

r v3ξ+3v3ξ+5 | WE  �
(ξ + 1, ξ + 1, ξ, ρ − ξ − 1, ρ − ξ − 1, ρ − ξ − 1), if 0≤ ξ ≤ ρ − 2,

(ρ, ρ, ρ − 1, 0, 1, 0), if ξ � ρ − 1.


(12)

Since representations of every two edges are different, it
shows that edim(Tn(1, 2, 3))≤ 6. □

6. Conclusion

In this article, we have calculated the exact value of edge
metric dimension of Toeplitz networks Tn(1, 2), Tn(1, 3),
and Tn(1, 4) and the upper bound of the Toeplitz network
Tn(1, 2, 3). We conclude that the edge metric dimension of
these Toeplitz networks is constant and does not depend on
the number of vertices of the graph. Here, we end with the
following open problem.

Open problem 1. Calculate edim(Tn(1, 2, t)) for n≥ t + 3.
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