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The physical and structural properties of molecular structure or graph such as boiling point, melting point, surface tension, or
solubility are studied using topological index (TI). Topological index is a mathematical formula that can be applied to any graph
which models some molecular structures. The various operations play an important role in graph theory such as joining, union,
intersection, products, and subdivision. In this paper, we computed the bounds for general Randic coindex of F-sum graphs such
as (S-sum, R-sum, Q-sum, and T-sum) in the form of their factor graphs. At the end, results are illustrated by numerical table for

the particular F-sum graphs.

1. Introduction

Graph theory is playing an important role in various sciences
particularly in computer science and mathematical chemistry.
The branch of mathematics which combines chemistry and
graph theory is called chemical graph theory. The molecular
structure descriptors have been used for quantifying in-
formation on molecules. This relates to characterizing
physico-chemical, toxicologic, pharmacologic, biological, and
other properties of chemical compounds by utilizing topo-
logical index (TT). TI is a mathematical formula that can be
applied to any graph which models some molecular struc-
tures. It is an efficient mathematical method in avoiding
laboratory experiments and time consumption [1, 2].

Actually, various TIs are introduced in order to describe
physical and chemical properties of molecules. These indices
are divided into different classes, namely, degree-based,
distance-based, and polynomial-based, but the degree-based
class is studied more than others, see the latest survey [3]. In
1947, Wiener calculated the boiling point of paraffin using
a degree-based TI, see [4]. Gutman and Trinajstic calculated
total 7r-electron energy of hydrocarbons using degree-based
first and second Zagreb indices [5]. Li and Zheng provided
the idea of first general Zagreb index (FGZI) [6].

The Randic index was proposed by Randic in 1975 and
has been widely studied in different areas. Li and Shi [7]
calculated the extremal values of Randic index and its
higher-order, zeroth-order, and general form for the
extremal graphs. Delorme et al. [8] proved a best-possible
lower bound for triangle-free graph with minimum degree
of graph and Gutman et al. [9] point out a hitherto un-
noticed feature of a molecular graph for Randic index.
Arizmendi and Arizmendi proved that graph energy is
twice of the Randic index and investigated that the equality
holds iff graph is the union of complete bipartite graphs
[10]. Li and Yang calculated the bounds for graphs whose
general Randic indices reach the maximum and minimum
[11]. Furtula and Gutman calculated Randic energy value
of the connected graph with a fixed number of vertices
[12]. Gao and Lu calculated the sharp bounds for the
unicyclic graphs [13] and Li et al. [14] computed the
bounds for of chemical (n —m) graphs for general Randic
index.

Ma et al. [15] gave a brief review for the Randic from
1975 to date such as zeroth-order Randic indices, sum-
connectivity indices, geometric-arithmetic indices, Randic
spectrum and energy, harmonic index, Randic matrix, D-L-S
generalization, Balaban index, and atom-bond connectivity
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index. Milovanovic et al. [16] wrote a note and calculated
some mathematical properties of the general zeroth-order
Randic coindex of graphs in [17].

In the development of new graphs, the various oper-
ations play an important role in graph theory such as
joining, union, intersection, products, and subdivision.
Yan et al. [18] listed five different operations on a graph G
such as line graph L(G), subdivided graph S(G), line su-
perposition graph Q(G), triangle parallel graph R(G), and
total graph T(G), respectively; further, they computed
Wiener index of these graphs. Eliasi and Taeri introduced
the F-sum graphs such as G,,;G,, where F € {S,R,Q, T},
and calculated the Wiener indices of graphs in [19]. Later
on, many researchers worked on these F-sum graphs such
as Sarala et al. computed first and second Zagreb indices
[20], Imran et al. [21] investigated the bounds of degree-
based topological indices such as bounds of Zagreb indices,
multiple Zagreb indices, the atom-bond connectivity
(ABC) index, the forgotten topological index, the geo-
metric-arithmetic (GA) index, and the Narumi-Katayama
index, and Li et al. [22] computed bounds on general
Randic indexes. Javaid et al. [23] calculated bounds for
second Zagreb coindex, Akhter and Imran [24] calculated
the forgotten topological index, Liu et al. [25] computing
first general Zagreb index of operations on graphs, and
Javaid et al. [26] calculated the Zagreb coindex and con-
nection index of these graphs.

In this article, we investigated the sharp bounds for
general Randic coindex of graphs that are obtained by using
subdivisions related operations such as R, (Gi,sG,),
R, (G1,rG,)s R (G1,oG,), and R, (G,,1G,). The rest of the
paper is organized as follows: Section 2 contains pre-
liminaries and notations, Section 3 contains the main the-
orems of the work, and Section 4 contains conclusion of the
work; further, the results are illustrated using examples for
some particular F-sum graphs.

2. Preliminaries

Let V (G) be nonempty set vertices and E(G)<V (G) @V (G)
be the set of edges, then by combining both V' (G) and E (G),
a graph is formed that is denoted by G = (V (G), E(G)). The
cardinality of vertex set is called order of graph and car-
dinality of edge set is known as size of the graph which are
denoted by |V (G)| =n and |E(G)| = m, respectively. Let
v € V(G), then its degree is denoted by d (v) and defined as
number of edges incident on it. Let G be a graph; its
maximum and minimum degrees are denoted by A (G) and
8(G), respectively. For any graph G, its complement is
denoted by G and defined as uv € E(G) iff un¢E (G). Gutman
and Trinajstic [5] introduced degree-based TIs known as
Zagreb indices. Now, we define first and second Zagreb
indices and coindices for any G,
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M (G = )Y [dg(x)+dg(x)],
x,%,€E(G)
M,(G) = Y [dg(x)dg(x,)],
x,%,€E(G) (1)
M, (G) = Z [de (x1) + dg (%)),
x1%,¢E(G)
M, (G) = Z [dg (x1)dg (x,)].
x1%,¢E (G)

Li and Zheng [6] introduced the first general Zagreb
index that is defined as

Z [dG (x1)a_l +dg (xz)a_l]- (2)

x,%,€E(G)

M{(G) =

By putting & = 2 and « = 3, we obtained the first Zagreb
index and forgotten index, respectively.

Zhou and Trinajstic [27] introduced the general sum-
connectivity index (GSCI) denoted by y, (G) after that
general sum-connectivity coindex was introduced which is
denoted by ¥, (G); these are defined as

Xk (G) = Z [dc(x1)+dc(x2)]k’
x,x,€E(G) (3)
(G = Y [dg(x)+dg(x)]"
x1%,¢E (G)

Bollobas and Erdos [28] introduced the concept of
general Randic coindex denoted R, (G); its coindex is
denoted by R, (G) which is defined as

R,(G) = Z [dc(xl)dc(xz)]a’

x,x,€E(H) (4)
R, (G) = Z [dc(xl)dc(xz)]a-

x1%,¢E(G)

The binomial and trinomial theorems are very important
while expanding expression of those described as

t/n -
Over =3 ®

i=0

n m k1
3+ 3)'= Y Py
myk,l (6)

mk,Im+k+l=n

where P, ;= (m+k+1)/m!lk!l\.

Let G be a graph, then S (G) is known as edge subdivision
graph that is obtained inserting a vertex in each edge of G,
R(G) is called triangle parallel graph that is obtained from
S(G) by joining an edge between the adjacent vertices of G,
Q(G) is called superposition graph obtained from S(G) by
joining an edge between the pairs of new vertices which are
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on the adjacent edges of G, and T'(G) is called total graph
obtained by performing both operations of R(G) and Q(G)
on S(G).

Let G, and G, be two simple connected graphs, then
their F—sum graph with vertex set V(G ;G,) =
V(G)UE(G,) xV(G,) and (s,5,) (x,,x,) € E(G.;G,) iff
s;=x, € V(G)) and s,-x,€G,, s,=x,€V(G,) and
s;-x,; € F(G,), where F € {S,R,Q, T}, For details, see Fig-
ures 1 and 2.

3. Main Results

This section contains results of the bounds for general
Randic coindex.

LB= )

m,k,l
mk,Im+k+l=a

(456 Wt (@) (ME (G + W (G) + 3
+ o (M} (Gy) + M (Gy)) + 2! (1]~ mer),

Py [MT (G (GA(G,)] + A (G [MT™(Gy) (1 (Gy) + T (G1))] + A(Go)™

UB= )

m,k,l
mk,Im+k+l=a

(Mh(6) 375 ) (M @2+ k(@) +

+ (x'f_i(Mil (G,) + M’l (Gz)) + 22“_1(n§e§ - nzel).

Proof. Using equation (4), we have

R,(GsG,)=)Y A+Y B+) C. (10)

W

51,56V (8(G,)-V (G))) x1,%,€V6,

= Z Z [ds(cl)(sl)ds(Gl)(Sz)r =

51,56V (S(G)-V (Gy)) ¥1:%2€V g,

Z A= 22%1(”%6? - nzel),
7

S8-3,
i=1

2Bi= )

sEVG1 xlxzéEG2

Y ld(sx)d(sx,)]"= )

s€Vi, x1%,¢EG,

Using equation (6),

3
a= Y (dsey)@s(s)
slszséE(S(Gl))
v (e @) (7)

[d (51, %)) (52 %)]

m= ) 2

51,56V (8(G)-V (G))) ¥1%2€V,

Theorem 1. Let G, G, be an S-sum graph, then its general
Randic coindex R, (G,,sG,) is given as

LB<R,(G,sG,)<UB, (8)

where

Pk [anﬁk (G (Gz)‘S(Gz)]ZZ +8(G,)™ [thk (G2) (e (Gy) + Xk (Gl))] + 5(G2)Zl

(5 ) sen[mr s 6+ i )]

[d (s, %) (525 xz)]a

9)
O\ i ni i i
(5 s @) @)+ 3. (6)
Consider
(2x2)%,
51,5,€V (S(G))-V (G))) ¥1:%2¢V g,
(11)

Z [(dc;l(s) + dG2 (’ﬁ))(CZG1 (s) + dG2 (xz))]a

sEVG1 xlxzqéEG2

Z Z [dél (s) +dg (s)dg, (%,) + dg, (%) + dg, (xl)dc2 (xz)]a-
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Py
e f g e f g
1 2 3 4 1 2 3 4
S(Py) (Py)
e f g e f g
1 2 3 4 1 2 3 4
R(Py) T (Py)

FiGure 1: Graph P, and its subdivision.
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FIGURE 2: Graphs G = P,, H = P,, and G,z;H = P, ;P,.
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)

S PdZ (9d (5)(dg, (x) + dg, (%)) (dg, (x1)da, (x,))

seVGl x1x2¢EGZ mk,l

2

myk,l
mk,Im+k+l=a

mkIm+k+l=a (12)

Pl Y Y dE(s)(dg, (x,) + do, (1)) (do, (x))do, (x,))' |

sEVG1 x1x2¢EG2

As we know, §(G) <d(x)<A(G),x € V(G),

S

<

>

m,k,l
mk,Im+k+l=a

2 2

Pk [M T (GO (GLA (G, )ZI],

[d (51, %)d (55, x)]" = Z Z [(dc1 (s1) +dg, (’C))(dc1 (s1) +dg, (x))]a

515,€Eg, x€Vg, 515,€Eg, x€Vg,

D)

[dGl (s1)dg, (s,) + dg, (x)(d(;1 (s1) +dg, (52)) +dg, (x)dg, (x)]a

s15,€Eg, x€V,

2 2

515,€Eg, x€Vg,

)

m,k,l
mk,Im+k+l=a

>

m,k,l
mk,Im+k+l=a

S P(ds, (s1)dg, (2))" (do, (¥)(dg, (1) + o, (52))) (dg, (00)”

mk,Im+k+l=a

Pol ¥ Y (de (s1)de, ()" (dg, (51) + dg, (1)) (de, ()"

515,€Eg, x€V,

Pk [thk (G (G1)A (Gl)zm]’

ZB3= Z Z [d(s1,x)d (55, x)]" = Z Z [(dGl(Sl)+dGz(x))(dG1(51)+dG2(x))]“

s]széEGl xevGZ

2 2

515,¢Eg, x€Vg,

2 2

s15¢Eg, xeVg, -

2 2

515¢Eg, x€Vg,

5152¢E(;1 erGz

[dG1 (51)‘161 (s2) + dg, (x)(dGl (s1) + dg, (52)) +dg, (x)dg, (x)]a

—(dcl (51)0161 (52))m(d62 (’C)(dcl (s1) + dGl (52)))1((5162 (x))ﬂ]

Y Posilde, ()dg, (52)) " (de, (s1) + do, (52)) (do, ()™

| myk,Im+k+l=a




IN

IN

IN

IN
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Y Py [M%Hk (Go)T (G)A(G)™ )
m,k,l
mk,Im+k+l=a

Z Z [d (s, x1)d (55, %,)]"

515,€Eg, x,x,€Eg,

Z Z [(dG1 (s1) + dg, (’Cl))(”lG1 (s2) + dg, (xz))]lx

515€EG, x,x,€Eg,

Z z [dcl (51)dcl (52) + dg, (51)dG2 (x;) + dg, (Sz)dG2 (%) + dg, (xl)dGz (xz)]“

5 sZEEGl xleGEGZ

y N Y (de (s1)de, (52)" (de, (s1)de, (x2) + dg, (s2)de, (1)) (do, (x1)dg, (%))

m,k,l 515,€EG, x1x,€EG,
mk,Im+k+l=a

m 1
Y Pu[A(G)A(G,) M] (G)MY(Gy)],
m,k,l
mk,Im+k+l=a

YooY [d(sux)d (%))

s18,¢Eg 51 % XZEEGZ

z Z [(dcl (s1) + dg, (xl))(dG] (s2) + dg, (xz))]“

515,¢EG, x,x,€Eg,

Z Z [dcl (Sl)dGl (s5) + dg, (51)dG2 (%,) + dg, (Sz)dc2 (%) + dg, (’Cl)dc2 (xz)]a

5 szeEGl x1xz€E(;2

;E > | X Poa(ds, (51)dg, (52))" (de, (s1)dg, (x2) + dg;, (52)des, (x1)) (des, (1), (x,) )

mk,Im+k+l=a

—k
Y Puu[AG)AG) M (G)ME (G
m,k,l
mk,Im+k+l=a

Z Z S1 X1 d(52 xz)]a

518,€Eg, %, x,¢Eg,

Z Z [(dcl (s1) + dGz (xl))(dc1 (s2) + dG2 (xz))]a

515¢EG, x,x,€Eg,

Z Z [dcl (Sl)dG1 (s5) + dg, (Sl)dG2 (%,) + dg, (Sz)dG2 (%) + dg, (xl)dGz (xz)]a

515,¢EG, x1x,¢Eg,

; Z@- S Prlde (s1)dg, (2))" (de, (5:)de, (x,) + do, (5,)de, (1)) (do, (1), (x2))

mk,Im+k+l=a

1 ——k
Y Puu[AG)AG) M (G)M (G
m,k,l
mk,Im+k+l=a
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237: Z Z [d(s1,%1)d (55, %,)]"

515,€Eg, x,x,€Eg,

Z Z [(dcl (s1) + dg, (xl))(dGl (s2) + dg, (xz))]w

515¢EG, x1x,€Eg,

Z Z [dcl (51)dc;1 (s2) + dg, (Sl)dGz (x;) + dg, (Sz)dc;2 (x;) + dg, (xl)dGz (xz)]a

515¢EG, x,x,¢EG,

ZE ZE S Pos(d, (5)dg, (52))" (de, (s1)da, (x2) + de, (5:)do, (1)) (dg, (x1)do, (x,))

mkIm+k+l=a

m 157k SV
Y Pu8(G)"AG) M (G)M (G,
m,k,l
mkIm+k+l=a

> Bs< Zkl Pyt [MI™ (G0 (G2)A (Go)] + A (G [MI™(Go) (1 (Gr) + Xi (G))

+ (G (MY(G) + M1 (G) ) (M1 (Gy) + MY (G) ),

YcC= ici,
> Y [d(six)d (s %)]"

515,€E (S(G)) *1%2€Vg,
s1eV(Gp)
267 (8(61)-V (G1))

Z Z [(ds(51)+dcz(xl))(ds (52))]a
515,€E(S(G))) x1,X%,€V,
v (e @)

IN

g
o
|

Y (e (60 (s (52)) + e, (60)) (s )|
Slszfiv(i;(fl)) XX, €V,
2V (8(61)-v(G1))

slszeE%(cl)) Zv {Zo< (: )<d5(61) (s1) (s (52))"'d, (x1)>i<dS(G1) (s2) >]

516V (Gy)
€V ($(G1)-V(G1))

24

< ( j)[Mg_i(S(Gl)Mil (G)A'S(Gy))];

i=0

gl
)
I

Z [d(s1> x)d(sz,x)]“
515,€E (S (Gl)) x1X%8V 6,
s1€v(Gy)
2V (8(61)-v(G1))

[(ds (s1) + dg, (xl)) (ds (52))]a
515€E(S(G))) *1%2#Vq,
516V (Gy)
528V (8(G1)-V (G1))



Journal of Mathematics

515,€E(8(Gy)) X158V KdS(Gl) (s1) (ds(s2)) + dg, (x1)>(dS(G1) (52))]‘1
s1ev(Gy)
2V (8(61)-V(G1))

o B e

56V (8(G)-V(Gy))

< 3§ ) s @ s

ZC3 Z [d (s, x)d (s, %)
s15,¢E (S (Gl)) xEVGZ

s1€V(Gr)
56V (8(G)-V(Gy))

Y ((ds(s0) +de, () (ds ()]
55.4E(S(G1)) *Va,
szev(s;(gle()(ii)(cl))

Z [(ds(cl) (s1) (ds(s2)) +dg, (x))<ds(cl)(52))]a
clion
2€V(S(G1)-V (61))

rtE((5) ,ZVQ[ZO( ) e @s6) ) (0 90)
5V (8(G1)-V (G1))
S (% ) s @' @)

i=0

IN

™M
O
[

z z [d (51, x)d (s5,x)]"
s15,¢E (S (Gl)) *1%2¢Va,
s1ev (Gp)
52V (8(61)-V (G1))

> > [ds(sr) +do, (x1)) (ds ()]

515,¢E (S (Gl)) x1>xz€VG2
sV (Gr)
2V (8(61)-v(G1))

Z Z de(cl) (s1) (ds (s2)) + dg, (x1)><ds(61) (52)>]a
e e
e (S(6) Y (61)

Z Z [i ( ‘: >(dS(GI) (s1) (s (52))”_idc2 (xl))i<ds(cl) (Sz)ﬂ

s]sztiE(S(G ) x1%,€Vg, Li=0
v (Gr)
2 v(5( 1)V (G1))

< 3() ot e 0]

NMQ
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2Cs= ) Y [d(s)x)d (s, %))
$15,¢E (S (Gl)) X%V,
516V (Gy)
2€V(S(G1)-V (61))

= Z Z [(ds (s1) +dg, (xl))(ds(sz))]a

5,5,¢E (S(Gy)) *1%2€V,
516V (Gy)
528V (8(G1)-V (G1))

© ST a6 o)y )]

515,¢E (S (G1)) x1X%8V 6,
s1€v (Gr)
e (5(61)V (1))

515,¢E (S (G1)) x1,%,8V 6, [
s1€V(G1)

2€V(S(G1)-V (61))

)| CONEEH)

1

We obtained upper bound by putting value of )’ A, ) B,
and Y C in equation (13). Similarly, lower bound can be  where
obtained using smallest degree of graphs G, and G,. O

Theorem 2. Let Gy,zG, be a R-sum graph, then its general
Randic coindex R, (G,,zG,) is given as:

IB= Y P2 MG (Gy)3(Gy)" ] +8(Gy)™"
kol
m,k,lr:1+k+l=tx

:( ‘: )(dS(Gl) (s1) (ds(s,))""dg, (x1)>i(dS(G1) (Sz)ﬂ

LB<R,(G,,zG,) <UB,

[MI(G2) (0:(G) + e (G1)] + 8(G) (MY (Gy) + M1 (G)) )(ME(Go) + M3 (G )

+ 2(?)&" (S(G))| M5 (S(G)(M}(G,) + M, (Gy)) |
+ oc'l'_i(Mi1 (G,) + le (Gz)) + 22“_1(1’156% - nzel),
Z P, 2" [Mfmk (GX (G)A (Gz)ZI] +A(G,)™

m,k,l
mk,Im+k+l=a

UB

[MI™(62) (1 (G) + T (G)] + (G (ME(G) + ML (G) ) (M (Go) + M3 () )

o

i=0

Proof. Using equation (4), we have

+ Y (N (S(G))[ M (S(G))(M, (Gr) + My (Go) | + (M} (Gr) + ML (o) + 2 (e} - ey

R, (G1xG,)=)Y A+Y B+ ) C.

).

(13)

(14)

(15)

(16)
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The value of Y A follows from equation (11),

ZA = 220(71(1’156% - nzel),
ZB:i&,
231 = Z Z [d(s,x,)d (s x,)]" = Z Z [(dR(GI)(S)+dG2(x1))<dR(Gl)($)+dG2(x2)>:|‘x

seVg, x1x,¢Eg, seVg, x1%,¢Eq,

= Z Z [4chl (8)dg, (s) +2dg (s)dg, (x,) +dg ()dg, (%) +dg, (x1)dg, (xz)]a

seVg, x1X,¢Eg,

= z Z [4d2Gl (s)+ 2dG1 (S)dGz (Xz) + dGz (xl) + dGZ (xl )dGz ('xZ)]a

s€Vg, X1 %,¢EG,

- Z Z Z Pm)k)l4md2G’1” (s)delé1 (s)(ch2 (xz)) +dg, (xl)k(alG2 (xl)dG2 (xz))l

se€V, x1%,¢EG, mk,l

L mk,Im+k+l=a

= > S P2 (5)(dg, (%)) + dg, (x1) (do, (x1)do, (%))

seVG1 xlngéEGZ m,k,l

L mk,Im+k+l=a

— 1
ST Y P [ GRGIAG)]
kol
m,k,lyrz+k+l=tx

YB= Y Y [dsxd(sna)]= Y Y

515,€EG, xeVg, s15,€EG, x€Vg,

-y 3 [dR(GI) (s1)dg (6, (52) + o (x)(dR(Gl) (s,) + dR(Gl)(sz)> +dg, (x)dg, (x)]“

515255(;1 erG2

09

<dR(Gl) (s1) +dg, (x)><dR(Gl) (s1) +dg, (x))]

m

= Z Z Z P kiddg, (Sl)dG1 (s2) (chz(x)(dcl (51)+dG1 (52)))k(dcz(x))21

s15,€Eg, x€Vg, mk,]

mk,Im+k+l=a

_ pomik Z Z Z Pm,k,l(dGl (s))dg, (52))"'(dGl (s1) +dg, (52))k(dG2(x))21+k

s15,€EG, xeVg, mk,l
mk,Im+k+l=a

<Pk Z Pk [M?Jrk (G (G)A(G, )2m:|’

m,k,l
mk,Im+k+l=a

YB= Y Y [dexdo) = Y Y [(deey() +de, ) (o) () + o, 9|

515¢Eg, x€Vg, 515,€Eg, x¢V g,

= Z Z [dR(Gl) (Sl)dR(Gl)(SZ) +dg, (x)<dR(G1) (s)) + dr(c,) (52)) +dg, (x)dg, (x)]“

s15¢Eq, x€Vg,
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=y ¥ S P(dds, (s1)de, (5,))" (2dg, (x)(dg, (1) + dg () (dg, (%))
515,¢Eg, x€V g, m,k,]

mk,Im+k+l=a

= 22m+k Z Z Z Pm,k,l(dGl (Sl)dG1 (52))m(dG1 (Sl) + dGl (52))k(dcz (x))ZHk
515,¢EG, x€Vg, mk,l

mk,Im+k+l=a

<2 N P M (G (G)A(G)™],
k1
mklrrZ+k+l o

Z Z 2 %1)d (52,.%,)]"

s15,€Eg, xlxzeE(2

y ¥ [(dR(GI)@l)+dcz<x1>)(dR(G])(s2>+dcz(x2>)]“

515,€Eg, x,x,€Eg,

Z Z [dR(G) s1) dg(q, )(52) +dp(c, )(Sl)dG (x2) +dg(c, )(Sz)dc2 (x1) +dg, (x,)dg, (xz)]a

s15,€Eg, x,x,€Eg,

™M
‘?d
I

Z Z Z Pm,k),(4dG1 (s1)dg, (sz))m(ZdG1 (s1)dg, (x;) +dg, (s:)dg, (951))k(dc2 (x1)dg, (xz))l

s15,€EG, x,x,€Eg, mk,l

mk,Im+k+l=a

<2 Y PG A G M (G)M] (Gy)],
m,k,l
myk,Im+k+l=a

[d(s1,x,)d (55, x2)

>

slszéE(1 x1x25E<2

[( R(G)) (s1) +dg, (xl)>(dR(Gl)(52)+dG2(x2)>]a

slszéEG X1%,€EG,

[dR(G )(Sl)dR(G )(52) +dg(c, )(Sl)dc2 (x2) + dg(q, )(Sz)dc (x1) +dg, (x,)dg, (xz)]

s széEG xX1%,€EG,

k I
P 4dG (Sl)dGl (52)) (2d01 (Sl)dc2 (x2) +dG1 (Sz)dc2 (xl)) (dc;2 ("1)‘162 (xz))
slszéE(, xleEE(,z mkl

mk,Im+k+l=a

<2k P 8(6)" 6 (G,) M} (G)ME(Gy),

mkl
mk,Im+k+l=a

Z Z [d (51, %1)d (55, xz)]

515,€EG, x,%,¢EG,

Y Y (e s + o () (e (52) + o (x2)) ]

5152¢EGI XX, &EGZ

M
&
|
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Y B

Yc
2.C
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Z Z [dR(G]) (Sl)dR(Gl) (s2) + dr(c) (s1)dg, (x;) + dr () (s2)dg, (x1) + dg, (x,)dg, (xz)]a

515,¢EG, x1x,¢Eg,

%. zﬁ_ S Pu(ds, (s1)da, (1)) (2de, (51)dg, (x2) + dg, (s2)dg, (1)) (da, (1)da, (x,))

mk,Im+k+l=a

<2 R [aG) TG MG G
kel
mklr:1+k+l =a

d(51>x1)d(52rx2)]

slszeEG XX, eEG2

[( r(G,)(s1) +dg, (xl))< R(Gy) (52) + 4, (’Q))]a

5152¢E(1 x,%,€Eg,

Il
—

dr(a) (s1) dg (G, )(52) +dg (g, )(Sl)dG2 (%) + dr (G, )(SZ)dG2 (x1) +dg, (x))dg, (xz)]

5152¢EGl x1X2¢EG

mk,l(4dG1 (s1)dg, (52)) (26101 (s1)dg, (x) +dg, (s,)dg, (xl)) (dc2 (x1)dg, (xz))
slsz¢EGl xl'xZgEGz mkl
m,kIm+k+l=a

<22 Pt A(G)"8 (G MY (G)M Gy,
m, kl
mk,Im+k+l=a

=Y P2 MGG (G + A(G) M (GL) (44 (G) + Xk (G1))]
m,k,l
mk,Im+k+l=a

+A(G)(MF(G) + M} (G)) ) (ME(Gy) + M3 (G) )
ST (DRl TUSUT
$15,€E(R(G)))

X%V, X%V,

s1€V(G1)
526V (R(G1)-V(G1))

. ( ) )[(dm+dG2<x1>)<dR<s2»]“
slszeE(R\(Gl)) XX €Ve,  xpXEVe,
A

Y ( . )[(dR@l)+d62<x1>)<dR<s2»]“
slszeE(R\(Gl)) XX &Ve, X8V,
()Y (@)
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Y ( PER) )[(dR(Q)(sl)(dR(sz))+dcz<x1>)(dR<Gl)(s2>)]“

55,€E (R (Gl)) XXV 6,
s1€v(Gr)
2€V (R(G1)-V (G1))

- %() ! ( ZZ)[Z()(d()()(d (52)e, <x1))"(dR(Gl)(sz>)’]

52€ (R((’l) v(G1))

<3¢ ) My (RGN (R(G) (M, (6) + 71, (6)],
Z [d(s1,x)d (55, x)]" = Z Z [(dR(Sl)+dG2(x))(dR(52))]a

2.6

5152¢E( (G))) x€Ve, 5,5,¢E (R(G))) *€Vg,
s1€v(Gr) s1€v (Gr)
526V (R(G1)-V (Gr)) 526V (R(G1)-V (G1))

Z [(dR(Gl) (51) (dR (52)) + dG2 (x))<dR @) (52)>](x
i)
eV (R(G1)-V (G1))

) ; [Z( >(dR(Gl)(Sl)(dR (52))n_idcz(")>i(dR(cl)(sz))i}
26V (RO (@)
i(?)[ "ML (G,)A (R(G, ))

i=0

IA

g
$H
I

> < [d (s, x)d (55, x)]"
s15¢E(R(Gy)) \ ™ xZGVFZ Xy xz¢VC2

s1€v(Gr)
26V (R(G1)-V (G1))

[ dr (s1) +dg, (xl))(d (52))]

5152¢E(R(G ))
s1€V(Gr1)
526V (R(G1)-V (G1))

[ dg () + dg, (xl)) (dg (52))]

s1€V(G1)
eV (R(G1)-V(Gr))

R(G)(51 (dR(Sz))+dG2(xl)>< R(Gl)(52)>]a

(x] XV, X xzéV(2>
515,¢E (R(G )) (x] X&V6, X ngv(2>

515,¢E (R (G) \n xZEVGZ X XZQVGZ

s1€V(Gr)
5eV (R(G1)-V (G1))
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) )[ﬂa)<dR<cl)<s1>(dR(sz>>""dcxxl))i(dR(Gl)(sz))i]

slszgiE(R(Gl)) (xl,xZEVGZ X186, !
51V (Gy) (17)

52€V (R(G1)-V (G1))

< 3§ )[ars G 6+ 7, (6)]

=

LB<R,(G,,oG,)<UB, (18)
We obtained upper bound by putting value of )’ A, ) B,
and ) C in equation (16). Similarly, lower bound can be where

obtained using smallest degree of graphs G, and G,. O

Theorem 3. Let G,,7G, be a Q-sum graph, then its general
Randic coindex R, (G,,qG,) is given as

LB = Zk:l Py [M?Mk (G (Gz)‘s(Gz)ﬂ] +8(G,)™
[MI™(6) (1 (G) + 7 (G)] + 8 (G) (ME(G)) + MY (G) ) (MF(Go) + M3 (G )
3 )7 @[ (@G (M )+ 1, (6)] + (M1 (62) + 3 62)

UB = Zkl Pk [M%Wk (GXk (Gz)A(Gz)zl] (19)
G [MI™M(G,) (4 (G)) + i (G)] + (G (ME(G) + M (6) )
(@) @)+ 3§ o't
M5 (QUG))(ML(G) + 1, (Gy)) | + ol (M1 (Go) + 77, (Gy)) + e

Proof. Using equation (4), we have Consider

R(Gp.oG)) =) A+Y B+ ) C. (20)

ZAz Z Z [d (51 1) (52 %,)]"

51,5,V (Q(G,)-V (G))) ¥1:%2€V,

- z Z [dQ(G])(Sl)dQ(GI)(SZ) = o

51,56V (Q(G)-V (G))) ¥1:%2€Vg,

(21)

The value of ) B follows from equation (17),
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2.6i=

IN

IN

$18,€E Q(G
51V (Gr)
5€V (Q(Gy)-V (Gy))

Xp» xzeVG2

515,¢E (Q (G )) \n xzeVGz

s1eV(Gr)
€V (Q(G1)-V (Gr))

5152¢E(Q (G )) (Xl x,€V,

51V (Gr)
2V (Q(G1)-V(G1))

5152¢E 1 xZGV(Z
spev ( Gl

526V (Q(G1)-V (G1))

515¢E(Q(G))) <xl,x26VGz
s1€v (Gr)
26V (Q(G1)-V (61))

) | ECIER

0

) > [d (s x)d (s, x)]" = y

5,5,¢E (Q(G,)) %<V,
s1€v(Gy)
526V (Q(G1)-v (G1))

515¢E (Q (G
s1€V(Gr)
€V (Q(G1)-V (Gr))

)Y

1)) xEVG2

2
515,¢E (Q(G,)) €V, Li=0

s1€V (Gr)
526V (Q(G1)-V (G1))

o

i=0

v

X1>X5 ¢VG2

[(dQ (s1) +dg, (xl))(dQ (sz))]a

S x2¢V02

_<dQ(c1)(51)(dQ (5,)) +de, (X1)><dQ(G1)(52)>]a

X, x2¢VC2

[«

Z( (: ><dQ(G1) (5){do (52))niidcz (x1)>i<do(cl) (52)>1]

Li=0

)
)
. %)K% (5) o, (50)(da ()]
)
)

x1,%8V 6,

{(QUG))(M,(G) + 7, (Gy) |
Y [(do(s) +dg, (0))(dg (2)]"

515¢E (Q(G,)) *<Va,
s1eV(Gr)
5€V(Q(G1)-V (Gr))

> [(daene0da () + do, ) (dg ey s)) |

(o4

i

)( (G )(51)(dQ (52)) 7idcz (x))i<dQ(Gl)(52))i:|

Z( (j) oM} (G,)A (Q(Gy)],

Z < Z + z )[d(sl,x)d(sz,x)]“
515¢E(Q(G))) \*12€Vg, x1.08Vg,

s1ev (Gr)
2V (Q(G1)-V (61))
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TaBLE 1: Bounded values of certain F-sum graphs.

F-sum operation Lower bounds Exact values Upper bounds
R, (Py.sP,) 324 784 1076
R, (P, zP)) 1640 2502 6784
R, (P3,oP,) 958 1432 1624
R, (Ps,P,) 3604 3770 10692

[(do (51) + do, (3))(do (52))]
s15,¢E (Q (G ))
$2€V ZELI()GIV)((”

X xzeVG X xzész

s15,¢E (Q (G1))
s1ev (Gr)
5eV(Q(G1)-V (G1))

515,¢E (Q (G))) (xl %€V, x1%,¢VG,

X xzeVG2 x1%:8V,

) dqo(s)) + dg, (xl))(dQ (52))]a
) ( Q(G, )(51)(dQ (52)) +dg, (xl)>(dQ(Gl)(52))]a (22)

51V (Gr)
2V (Q(G1)-v(61))

(61) V &, ) %(?)<dQ(G‘)(Sl)(dQ(SZ))n_idGz(Xl))l<dQ(Gl)(Sz)>’]
S152§EE Q G x%€Vg,  x1,%,8Vg, /) Li=
s1ev(Gy)

5eV(Q(G1)-V (G1))

i(‘f)[a’f"A"(Q(Gl))(Mi (G2)+ M, (G) |

i=0

IN

LB<R,(G,,;G,) <UB, (23)
We obtained upper bound by putting value of )’ A, ) B,

and ) C in equation (20). Similarly, lower bound can be  where
obtained using smallest degree of graphs G, and G,. O

Theorem 4. Let Gy,1G, be a T-sum graph, then its general
Randic coindex R, (G,,rG,) is given as

1= Y P M GIR(GOG)] 4 0(G)
m,k,l
mk,Im+k+l=a

[M2l+k (G,) (e (G)) + T (Gl))] + 6(G2)21<M’1c (Gy) +M]f (G1)><le (Gy) +M’f (G2)>
(4 [ G362+ 38, (G)] ol (3, (G2 # 31, (G

UB= ) P2 [MI™ (G (G)A(G)"] + A(G)™
kol
m,k,lV:erkle:zx

(M (G,) (1 (G1) + e (G1))] + A (G2)21<M’f (G,) + M, (Gl))(M’f (G,) + My (G2)>

(8 ) @My @) (6o B ()]« (0 (G) M (62)

(24)

It follows from Theorems 2 and 3.
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4. Conclusion

(i) In this paper, we calculated the upper and lower
bounds of general Randic coindex for F-sum graphs
such as R, (G,5G,), R, (Gy,zG))s R, (G1,oG,), and
R, (G,1G,) in the form of Zagreb indices and co-
incides of their factor graphs.

(ii) We illustrate the results using two graphs G, = C,,
and G, = P,, then bounded values of general Randic
coindex are given in Table 1.
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